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An optical resonator with intracavity Kerr nonlinearity can exhibit dispersive bistability suitable for all-
optical switching. With nanophotonic elements it may be possible to achieve attojoule switching energies,
which would be very attractive for ultra-low power operation but potentially problematic because of quantum
fluctuation-induced spontaneous switching. In this Letter I derive a quantum-optical model of two Kerr-
nonlinear ring resonators connected in a coherent feedback loop, and show via numerical simulation that
a properly designed ‘controller’ cavity can significantly reduce the spontaneous switching rate of a bistable
‘plant’ cavity in a completely embedded and autonomous manner.

PACS numbers: 42.50.Lc,42.50.Nn,42.65.P¢,42.79.Ta

Although current nanophotonics research focuses mainly
on the design and demonstration of individual optical
components, future progress towards technological rele-
vance will surely require the development of nanopho-
tonic circuit theory at a level of sophistication compara-
ble to that of modern electronics. As the performance
regime of interest for nanophotonic technologies extends
to picosecond switching times and attojoule (few-photon)
switching energies, quantum-optical effects will be of
great practical significance even if the information pro-
cessing paradigm remains purely classical (i.e., before the
advent of true quantum information technology). Rigor-
ous yet user-friendly theoretical methods (based on new
generalizations of classical stochastic systems theory!)
for the quantum-optical analysis of photonic circuits have
recently been developed?, but compatible algorithmic de-
sign methods?* are still quite limited in scope. It is thus
an opportune moment to begin investigating relatively
simple nanophotonic circuit ‘motifs’ in order to exercise
our new analysis methods and to provide guidance for
subsequent work on more complex component networks.
Given the ubiquity of feedback configurations for noise
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FIG. 1. Quantum trajectory simulation of the mean intra-
cavity photon number for a driven optical resonator includ-
ing a Kerr nonlinear medium. The jumps between low and
high photon-number states, which occur spontaneously with
the drive amplitude held fixed, are symptomatic of quantum
destabilization of dispersive optical bistability.
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suppression within microelectronic circuits, it seems nat-
ural to focus such preliminary exploration on coherent
(optical) feedback motifs for managing quantum fluctu-
ations in ultra-low power nanophotonic circuits.

Here we consider a coherent feedback®® strategy for
suppressing spontaneous switching in dispersive optical
bistability. Dispersive bistability is of interest as a po-
tential physical basis for the design of ultra-low power
nanophotonic switches® ¥, but in the attojoule switch-
ing regime where the logical states are separated by a
small number of photons, quantum fluctuations will in-
duce unwanted spontaneous switching!®1? that must be
accounted for in circuit design. For example, Fig. 1 shows
a simple quantum trajectory simulation (performed us-
ing the Quantum Optics Toolbox for Matlab'3) of the
mean intracavity photon number for a Kerr-nonlinear op-
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FIG. 2. Upper panels: Schematic diagrams of coherent feed-
back configurations with linear static (left) and nonlinear dy-
namic (right) controllers. Lower panel: Nonlinear steady-
state phase shift of a coherent field upon reflection from the
Kerr-nonlinear controller cavity (see text for details).



tical resonator, assuming parameters (cavity decay rate
kp = 150, drive detuning A, = 5kp, and nonlinear co-
efficient xpg = —A;/10v/2) that classically would be
expected to support dispersive optical bistability with
attojoule separation between the logical high and low
states. The quantum model4, corresponding to the Mas-
ter Equation (A =1)

1 1
b= —ilHy )+ my {bpr ~ Lo - prfb}, 1)
Hy = ApbTo + xpb bbb + iy /Ryz (8D — BbT), (2)

clearly predicts spontaneous transitions that would com-
promise the performance of such a device in a photonic
switching context. Here b is the annihilation operator for
the intracavity field mode, (3 is the complex amplitude of
a coherent drive field, and xp3 < Ky is the partial decay
rate associated with the input coupler of the resonator.
In Fig. 1 we have set 3,/kp3 = 10.49344/50 to achieve
approximately equal time-average occupation of the low-
and high-photon number states.

In order to motivate our coherent-feedback stabiliza-
tion strategy for suppression of such ‘quantum jumps’
we first consider a feedback configuration with a linear
static controller. If we assume that the bistable (‘plant’)
cavity has three distinct input-output ports correspond-
ing to the bias input and the feedback-loop input and
output, we can model'® the effects of a simple optical
feedback loop with unit gain and total phase shift ¢ (as
depicted in the upper left panel of Fig. 2) using the Mas-
ter Equation (1) with H, — Hp(p) and K — Kp(p),
where

Hy () = Hy + sin(p)y/Ry1kpzb'b, (3)
k() = Koz + [VEp1 + e“"\/ﬁb2|2. (4)

Here kp1,2 are the partial decay rates associated with
coupling to the feedback loop; it is assumed that xy; +
Kp2 + Kp3 = Kp and in what follows we will set them
equal. It can be seen that the net effects of the feedback
loop are a ¢-dependent frequency pulling of the effective
drive detuning and a ¢-dependent change in the effective
cavity decay rate. Either or both of these effects could
potentially be used to suppress spontaneous switching of
the bistable cavity if ¢ could be adjusted to a value that
stabilizes the low state when the state is low, and to a
value that stabilizes the high state when the state is high.

To realize the desired form of nonlinear dynamic
controller we consider an auxiliary (‘controller’) Kerr-
nonlinear optical cavity (with parameters k, = 50, A, =
3Kas Xa = —A4/8) connected as shown in the upper right
panel of Fig. 2. Such a cavity imparts a drive amplitude-
dependent phase shift on the beam that reflects from its
input coupler. The lower panel of Fig. 2 shows an ap-
proximate representation of reflected phase versus drive
amplitude (in units that would correspond to |{(b)| for a
coherent state of the plant), computed using a Master
Equation analogous to (1) (the approximation consists
in considering the complex phase of (a) as the phase of
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FIG. 3. Upper plot: Quantum trajectory simulation of the
mean plant intracavity photon number assuming nonlinear
dynamic coherent feedback control with ¢ = 2.3681. Lower
plot: Plant and feedback phases (smoothed, see text) dis-
played on the same time axis as the upper plot.

the intracavity field, where a is the corresponding anni-
hilation operator, but this introduces small errors as the
intracavity field becomes somewhat non-Gaussian at high
drive amplitude). Our basic coherent control strategy is
to choose ¢ such that the overall feedback phase (includ-
ing the amplitude-dependent phase shift contributed by
the controller cavity) is close to @ when the plant is in
the low photon-number state (decreasing xy () and thus
reducing the efficiency of pumping by the detuned bias
input §), and closer to zero when the plant is in the high
photon-number state.

The Master Equation for this coherent feedback con-
figuration is given by'®

. . 1 1
p=—ilHpl+ Y {Lij} - §L;Ljp - gpL;Lj} :
j=1,2

H=H,+ Hy(p) + 7',;1@(6“"@% — e %abh)
i

+%(alﬁ —a'b),

i

L1 = /kea + (ei“"«/ﬁbg + Vkp1)b,

Ly = \/r3b, (5)

where H, is obtained by setting b — a in Eq. (2). Given
the highly nonlinear nature of the model, a simple numer-
ical procedure was used to find a value of ¢ that resulted
in reduced spontaneous transition rate. This was done
by holding all other parameters fixed and determining
the steady-state density matrix for various trial values
of ¢; it was found that plant bistability is recovered in
the closed-loop configuration only in narrow ranges of ¢
around @ = 2.3681 and ¢ ~ 5.2277. The former setting
successfully reduces the spontaneous transition rate in
the plant cavity, while the latter setting increases it.
The upper panel of Fig. 3 displays a quantum trajec-
tory simulation of the closed-loop model with ¢ = 2.3681;
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FIG. 4. Inset: Mean plant photon number as a function of
time for two different initial conditions and in the open-loop
(green/red), closed-loop ¢ = 2.6381 (blue/black), and closed-
loop ¢ = 5.2277 (magenta/cyan) cases. Main plot: Normal-
ized versions of the data from the inset (see text).

spontaneous transitions between low and high photon-
number states are clearly still present but occur at a re-
duced rate. The lower panel of Fig. 3 shows the com-
plex phase of (b) (corresponding approximately to the
plant phase) and the phase of the coherent feedback field
after reflection from the controller cavity (computed as
the complex phase of \/kq(a) + €“?|/kp2(b)) on the same
time axis (although significantly low-pass filtered to re-
duce shot-noise fluctuations). The difference of these two
values corresponds to the phase shift of the coherent feed-
back loop. In accordance with the intuitive strategy de-
scribed above, it can be seen that the feedback phase
shift takes a value (a 2.7) that decreases the effective
plant decay rate (by a factor ~ 0.4) when the plant is
in the low photon-number state. In the high photon-
number state the feedback phase shift fluctuates around
a value ~ 1.57.

The inset of Fig. 4 displays the evolution of the mean
plant photon number (b'b) as a function of time, starting
from either a zero- or nine-photon initial condition (com-
puted in the closed-loop cases by numerically integrating
the master equation and in the open-loop case by numeri-
cal diagonalization of the Liouville super-operator'?). In
the long time limit both initial conditions regress to a
steady-state value, which is the average of the conditional
mean photon number in the low and high logical states.
Results are shown for the open-loop case and the dynamic
coherent feedback cases with ¢ = 2.3681 (longest decay
timescale) and ¢ = 5.2277 (shortest decay timescale). It
can be seen that the low and high logical states, and
therefore the steady-state photon number, vary some-
what among the three cases. The main plot of Fig. 4 dis-
plays the same data in a normalized fashion. The curves
correspond to [(bTb)(t) — (bTb)(c0)| and are normalized
to have identical values at the first time point (chosen

as t = 0.25 in order to omit initial transients while the
simplistic initial conditions equilibrate to their nearby
logical states). The fact that the curves obtained with
low (x) and high (o) initial conditions coincide shows
that low—high and high—low transitions are suppressed
(or enhanced) equally. The regression timescale in the
@ = 2.3681 closed-loop case is longer than that of the
open-loop case by a factor ~ 2.5.

It should be noted that within the two-cavity coherent
feedback configuration we have considered, and with the
key ‘structural’ parameters (xp, kp) of the plant cavity
held fixed, there remains a great deal of room for opti-
mizing the operating conditions (5, Ap) and controller
parameters (Ag, Kq, Xa and @) to achieve potentially su-
perior suppression. Given the rather demanding nature
of the numerical computations involved (a total Hilbert
space dimension of 625 was used in this work and Master
Equation integrations were essential), a brute-force scan
of so many degrees of freedom would not seem feasible
but it seems likely that a more principled computational
optimization approach could be developed.

Recent theoretical investigations—based on classical
electromagnetic models—of circuit motifs'® and optimal
pulse shaping for switching applications'® have offered a
glimpse of the great potential for innovative engineering
at the signals-and-systems (as opposed to device physics)
level in nanophotonics. Here we have attempted to ex-
tend this exploration to the quantum optical regime of
attojoule switching energy, demonstrating that new the-
oretical methods! can be used to analyze intuitive coher-
ent feedback control schemes in quantitative detail.
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