To derive closed-loop models for coherent feedback control we utilize quantum stochastic differential equations
(QSDEs), as in [1,2]. We are working with right-QSDEs and each component in the feedback loop is represented by a
triple (S,L,H), where S is a scattering matrix, L is a vector of coupling operators (between input-output fields and internal
degrees of freedom) and H is the Hamiltonian of the internal degrees of freedom. We make use of the concatenation

product
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where the components of G; and G, need not commute, and the series product

Gz < Gl = (stl,SZLl + Lz, Hy +H, + Im{LE_Sle}).
We also note the generalized input-output relations,
(dA)

= SdAt + Ldt.
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We first use the series product to derive an open-loop model for the plant cavity with a coherent driving field. The plant
cavity itself is described by an autonomous dynamical model
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Gor = (1, Jkp1 b,Hbu), Gp2 = (1, Jkb2b,0), Gps = (1, Jkb3 b,0).
In order to include a coherent input field g we use the series product,
N = Gp H Gp2 B (Gpz < (1,,0))

= Gp1 B Gpz B (1, B + /Kb3 b, Im{ /i3 b B} )

1/0/0 JKo1 b
= [ o tlo] ||| Jmb || Hw+SE0p-bs)
001 B+ /Kb




The corresponding open-loop master equation is
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We note that

L g i (bp— pb) — 1 B (b'p — pb') = LB - '), p) = L2 (b — b, p),

hence we can pull this remaining term into the Hamiltonian and finally write
p == —i[Hou —i/xcp3 (0B —DbB*), p] + (kb1 + Kbz + Kb3){bpb* — %b*bp —~ %pb"b}.

We thus see clearly that the total cavity decay rate is simply x, = kp1 + kb2 + kb3 While the effects of the driving term can
be absorbed into the system Hamiltonian. The driven cavity model can thus be written
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The total Hamiltonian here corresponds to Hy, in the main text.



We next consider the effects of linear static coherent feedback, with a simple phase shift, as depicted in the upper left
panel of Figure 2. We can write

N|_3 = Gbl < ((e“/’,0,0) < sz) H (Gbg < (l,ﬂ,O))
= (1, /Kbt ,Hou) < (e‘w,e“PJK_t)zb,O) H (Gpz < (1,8,0))
= (ei‘f’,( Kbl + e‘<”JK_t)2)b,Hbu + Sin(p,/Kblez bTb) H (Gps < (1,5,0))
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where we re-use what we have derived above regarding the driving term, yielding the closed-loop master equation
p = ~i[Heu — i/Kes (0" — bB*) + sin g JKozxsz b'b] + (kcus + | /Ker + €% Jkoz ) {bpb+ - %b*bp - %pb*b}.

Hence the total cavity decay rate is a function of ¢, and there is an additional frequency-pulling term in the Hamiltonian.
We note that for ¢ = 0 we obtain

p = —i[Hpy — i /Ko (b' B — b*)] + (kb + 2. /KbikD2 ){bpb* - %b*bp - %pb"'b},
while for ¢ = 7 we obtain
p — —i[Hpy — i /Ko (b' B —bB*)] + (kb — 2. /KbikD2 ){bpb" - %b"bp - %pb"’b}.

Hence in these simple cases we have either a pure increase or a pure decrease in the cavity decay rate as the only net
effect of the feedback. These can be understood as interferometric constructive/destructive interference of the output
fields from the x,; and «p, cavity mirrors. We infer that since the external driving term (through mirror xy,3) is unaffected,
it should be possible to use ¢ to tune the average intracavity photon number. In particular if we have a detuned driving
field, we should be able to decrease the effective driving strength by decreasing the effective «, and vice versa.

For the nonlinear dynamic controller we assume two cavities a (controller) and b (plant) with component models
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where

Ha = (ya@*a+ Az)a*a,
Hou = (xob*b + Ap)b*Db.

We define the partitioning

Gp = Gp1 H Gp2 H Gys,

where

Gbl = (1! \/Kbl vabU)l sz = (1! \/sz b!0)1 Gb3 = (l! \/ Kb3 b!O)'

For the interconnection diagram shown in the upper right panel of Figure 2 we compute the feedback network as

Nnp = Gp1 < (Ga < ((€'2,0,0) < Gpz)) B (Gps < (1, 5,0))

= ((1, Jxo1 b, Hoy) < ((1, Jxza,Ha) < (€', /2 b,0))) B (1, B + Kbz b, Im{ /xps Bb7})

= ((1, /Ko b, Hou) < (€%, Jiaa + € /K2 b, Ha + Im{ei® JKakpz a'b})) B (1, B + Koz b, Im{ /kps fb'})

= (ei‘/’, Jikaa+ (e [oz + Jxb1 )b, Ha + Hpy + sing Jicpiicnz b'b + Im{e' /icakpz a'b + J/icakm ab*‘})

B (1,8 + J/Kpz b, Im{/Kpz fo'})
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J, Ha + Hpy + sing Jxpikpz b'b + Im{e' /xakpz a’b + Jxakpr ab™ + /xp3 ﬁb*}).

We thus have a total Hamiltonian,

H = Ha + Hou + sin @ /Ko b*b + VK;“’Z (eva’h — e-vab’) + —V'Cg’icbl(aw _a'h) + —V’;i“(ﬁb+ — B*b),
and (as we did above) we note that the second Lindblad term leads to terms in the Master Equation,
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, . K K
- Kbg{bpr - %b'bp— %prb} + 2b3 (B*b— pb)p + 2b3 p(Bb — B*b).

We retain the first term in braces as a modified L, — /«kp3 b and note that

L2 (g — oty + L2 p(pb’ — pb) = [ S (ﬁ*b—ﬁb*)m}
— | 15 b g |
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We therefore add this to the original Hamiltonian terms to obtain

H — Ha + Hou + 5in @ JKo1x07 b*b + VK;“’Z (ea’b — e-vab’) + VK;’;“ (@b’ —a'b) + i /Ke3 (B*b — Bb1),

L1 = Jxkaa+ (e" /K2 + ko1 )b,

L2 = ,/Kbg b
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