Remnants of semiclassical bistability in
the few-photon regime of cavity QED
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Abstract:  Broadband homodyne detection of the light transmitted by
a Fabry-Perot cavity containing a strongly-coupfédCs atom is used
to probe the dynamic optical response in a regime where $zsnical
theory predicts bistability but strong quantum correctichould apply.
While quantum fluctuations destabilize true equilibriunstability, our
observations confirm the existence of metastable statésfinite lifetimes
and a hysteretic response is apparent when the opticalidnmedulated on
comparable timescales. Our experiment elucidates rens@aniclassical
behavior in the attojoule~ 10 photon) regime of single-atom cavity QED,
of potential significance for ultra-low power photonic sigprocessing.

© 2011 Optical Society of America

OCI S codes: (000.1600) Classical and guantum physics; (020.5580) Qoaelectrodynam-
ics; (020.1335) Atom optics; (130.3750) Optical logic ded; (130.4815) Optical switching
devices; (190.1450) Bistability; (270.2500) Fluctuasiprelaxations, and noise; (190.3100) In-
stabilities and chaos.

Referencesand links

1.

2.

3.

10.

11.

12.

13.

J. L. O'Brien, A. Furusawa, and J. Vutkovi¢, “Photonicagtum technologies,” Nature Photoni8;s687-695
(2009).

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan,@stby, K. J. Vahala, and H. J. Kimble, “Efficient
Routing of Single Photons by One Atom and a Microtoroidal i§g&vwWhys. Rev. Lett102, 083601 (2009).

L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J.Gambetta, L. Frunzio, S. M. Girvin, M. H.
Devoret, and R. J. Schoelkopf, “Preparation and measureohémree-qubit entanglement in a superconducting
circuit,” Nature467, 574-578 (2010).

. C. Savage and H. .J. Carmichael, “Single-atom opticaabikty,” IEEE J. Quantum Electror24, 1495-1498

(1988).

. G. Rempe, R. J. Thompson, R. J. Brecha, W. D. Lee, and HniblKj “Optical bistability and photon statistics

in cavity quantum electrodynamics,” Phys. Rev. L6#. 1727 (1991).

. M. A. Armen and H. Mabuchi, “Low-lying bifurcations in ci&y quantum electrodynamics,” Phys. Rev.78,

063801 (20086).

. J. Kerckhoff, M. A. Armen, D. S. Pavlichin, and H. MabuctiThe dressed atom as binary phase modulator:

towards attojoule/edge optical phase-shift keying,” Gpipressl9, 6478-6486 (2011).

. D. A.B. Miller, “Are optical transistors the logical nestep?,” Nature Photonies3-5 (2010).
. S. H. StrogatzNonlinear Dynamics and Chaos: Wth Applications to Physics, Biology, Chemistry and Engineer-

ing (Perseus, Cambridge, MA, 1994).

H. Mabuchi, “Coherent-feedback control strategy topseps spontaneous switching in ultralow power optical
bistability,” Appl. Phys. Lett98, 193109 (2011).

K. Srinivasan and O. Painter, “Linear and nonlinear agpptspectroscopy of a strongly coupled microdisk-
quantum dot system,” Naturs0, 862-865 (2007).

A. Faraon, |. Fushman, D. Englund, N. Stoltz, P. Peteoft] J. Vuckovi¢, “Coherent generation of non-classical
light on a chip via photon-induced tunnelling and blockadigture Physicgl, 859-863 (2008).

L. A. Lugiato, inProgressin Optics, edited by E. Wolf (North-Holland, Amsterdam, 1984), VoIXX



14. A. Szoke, V. Daneu, J. Goldhar, and N. A. Kurnit, “Bideabptical element and its applications,” Appl. Phys.
Lett. 15, 376 (1969).

15. S. D. Smith, “Optical bistability, photonic logic, andtal computation,” Appl. Opt25, 1550-1564 (1986).

16. S. Ya.Kilin and T. B. Krinitskaya, “Single-atom phassthbility in a fundamental model of quantum optics,” J.
Opt. Soc. Am. B3, 2289 (1991).

17. C. J. Hood, M. S. Chapman, T. W. Lynn, and H. J. Kimble, ‘IRieae cavity QED with single atoms,” Phys.
Rev. Lett.80, 4157-4160 (1998).

18. X.Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Obgstion of femtojoule optical bistability involv-
ing Fano resonances in high-Q/Vm silicon photonic crystalatavities,” Appl. Phys. Let@1, 051113 (2007).

19. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, Hiygna, and M. Notomi, “Sub-femtojoule all-optical
switching using a photonic-crystal nanocavity,” Nature@nics4, 477-483 (2010).

20. H. J. Carmichael ifrrontiers in Quantum Optics, edited by E. R. Pike and S. Sarkar (Adam Hilger, Bristol,
1986).

21. H. Gang, C. Z. Ning and H. Haken, “Codimension-two biétiens in single-mode optical bistable systems,”
Phys. Rev. Ad1, 2702 (1990).

22. H. Gang, C. Z. Ning and H. Haken, “Distribution of subicet Hopf bifurcations and regular and chaotic attrac-
tors in optical bistable systems,” Phys. Rew$ 3975 (1990).

23. H. Mabuchi, “Derivation of Maxwell-Bloch-type equati® by projection of quantum models,” Phys. Rev/&\
015801 (2008).

24. M. A. Armen, A. E. Miller, and H. Mabuchi, “Spontaneougssed-state polarization in the strong driving regime
of cavity QED,” Phys. Rev. Lettl03 173601 (2009).

25. A.C. Doherty, A. S. Parkins, S. M. Tan, and D. F. Walls, ‘tdo of a two-level atom in an optical cavity,” Phys.
Rev. A56, 833 (1997).

26. S. M. Tan, “A computational toolbox for quantum and atmptics,” J. Opt. B: Quantum Semiclass. Oht.
424-432 (1999).

27. J. Kerckhoff, H. I. Nurdin, D. S. Pavlichin, and H. MabictDesigning quantum memories with embedded
control: Photonic circuits for autonomous quantum erraraxdion,” Phys. Rev. Lettl05 040502 (2010).

28. H.Mabuchi, Q. A. Turchette, M. S. Chapman, and H. .J. KantReal-time detection of individual atoms falling
through a high-finesse optical cavity,” Opt. Letl, 1393-1395 (1996).

29. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. Mor#, A. J. Munley, H. Ward, “Laser phase and
frequency stabilization using an optical resonator,” Afilys. B31 97 (1983).

30. P. Berman., EdCavity Quantum Electrodynamics (San Diego: Academic Press, 1994).

31. H.J. Carmichaeln Open Systems Approach to Quantum Optics (Springer, Berlin, 1993).

32. C.W. Gardiner and P. ZolleQuantum Noise (Springer-Verlag, Berlin, 2004).

33. A. Barchielli, “Direct and heterodyne detection andentapplications of quantum stochastic calculus to quantum
optics,” Quantum OpR2 423-441 (1990).

Research over the past decade in single-atom cavity quaeleectrodynamics (cQED) has
largely focused on the generation of non-classical staftdigitt and on the development of
devices for quantum information protocols [1, 2, 3]. Howesiagle-atom cQED with strong
coupling is also a natural context in which to study the iplgy of nonlinear mean-field dynam-
ics and quantum fluctuations [4, 5, 6, 7], which is a topic afaty broad fundamental interest
and with potentially greater near-term relevance for infation technology [8]. Dynamical
systems theory [9] provides key methods and insights foeqaitibrium statistical mechanics,
as well as essential tools for analyzing and engineerinimear phenomena. Substantial work
will be required to generalize these methods to encompas®gn coherence and fluctuations
for applications in the emerging disciplines of nanoscalé Qquantum engineering. Absent a
systematic understanding of quantum stochastic nonlipeanomena in the strong coupling
regime, intuitive connections to semiclassical theoryjte important guidance for analyzing
and engineering the behavior of open quantum systems [6HEOE we show that the optical
response of a strongly driven single-atom cQED system lgléésplays competing influences
of semiclassical bistability and quantum fluctuations, uuttitative agreement with theory.
Our experiment utilizes a single gas-pha%s atom as the nonlinear medium in a Fabry-
Perot optical resonator, but we note that the same physmsdtalso be relevant to quan-
tum nonlinear dynamics in strongly coupled nanophotonstesys [11, 12]. We study the dy-
namic input-output properties of the atom-cavity systera parameter regime that semiclassi-
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Fig. 1. (a) Steady state intracavity mode amplitwddérom the semiclassical Maxwell-
Bloch Equations (MBESs) as a function of drive amplitugdor the experimental cQED
system with{®,A} = {—1.1,.7}k mode-drive and atom-drive detunings. Blue (green) in-
dicates dynamically stable (unstable) solutions, prédictrue amplitude bistability for
drives in the intervak = [1.5,2.3]k. (b) Wigner quasi-probability functions of the steady
state cavity field from the quantum model as a function ofeéwmplitude for the same
parameters as (a). (c) Sample trace of amplitude quadratm®dyne measurement of
the transmitted field during an atom transit with the drivenéd on at = 2us and held
at E = 2.6k. The slight decrease in signal variance between 2 anpd 1¢ likely due to

a gradual decrease in the coupling rgtfom a initial, near-maximal value as the atom
moves through the cavity mode.

cally [13] would be expected to exhibit absorptive bistéypilvith a hysteresis loop [14] suitable
for attojoule ¢ 10 photon) optical switching [15]. Theoretical studies énahown [4, 16, 6]
however that quantum fluctuations of the cavity field and atadipole should induce sponta-
neous switching between low- and high-transmission stdtstroying true optical bistability,
when the energy separation of the semiclassical dynamiitattors reaches the few-photon
scale. Previous experimental studies have proven the pagdize fully quantum models for
predicting the steady-state optical response in singisr@QED with strong driving [17]. Here
we take an important step further by recording dynamic sgtheat reaffirm the quantum me-
chanical model, but nonetheless reveal remnant behavianigcent of the semiclassical pic-
ture even in the deep quantum regime. As research on narmpbdagic devices pushes to-
wards attojoule-scale switching energies [18, 19, 8], fiona@lizing such remnant behaviors
will become a definitive challenge.

The Maxwell-Bloch Equations (MBES) represent a semictadsnean-field approximation
to the cQED master equation (see Appendix B) in the limit oédkveoupling and large atom
number [13, 20] and have been used in research on opticabbist with atomic ensembles as
the intracavity nonlinear medium [21, 22, 6]. In single+atoavity QED with strong coupling
and saturating driving fields, the MBEs should not applgriori as they ignore correlations
between the atom and intra-cavity photons. However, the ¥@&retain some relevance as a
projection of the quantum master equation onto the sub-mldndf semiclassical atom-field
states [23] and numerical studies have shown [6] that swiatdf the full quantum model often
mimic those of the MBEs qualitatively.

The MBEs predict absorptive optical bistability for the gareters of our experiment, as
shown in Fig. 1(a). The vertical axis represents input daiveplitude (withy,/27pW per unit on
the vertical axis), and the solution curve passes througizdmtal planar coordinates propo-
tional to the real and imaginary parts of the output steddtecomplex field amplitude(s). The
projection of the curve onto the bottom face of the coordirmix indicates the phases of the
steady-state solutions (relative to the optical phaseefdber drive), while the projection onto



the back face illustrates the input-output relation for &mge-quadrature homodyne detec-
tion. In this representation, a characteristic ‘S-curygears with two stable solutions and one
unstable solution co-existing fd& in the range of1.5,2.3]«. Using identical parameters, the
steady-state solution of the quantum master equation caleteemined for each value of the
drive strength. Contours of the corresponding intracaligtlyl Wigner functions (tracing over
the atomic states) are displayed for several drive strargthig. 1(b). A double-peaked struc-
ture emerges along the amplitude quadrature in a ran@g efsimilar to the bistable region
of the MBEs. The bimodal steady states correspond to an @reoh mixture of two states:
a weakly excited atom and low-amplitude field state, and ly &dturated atom and a high-
amplitude field state. Thus, the two peaks of the distrilbutitay be qualitatively associated
with the low- and high-amplitude branches of the semictadsibsorptive bistability curve, but
in the quantum model neither is truly stable [4]. It can bengdat in any single trial the cavity
field (and thus the output power) spontaneously switchesd®t low and high states, as in
the experimental data of Fig. 1(c) (described below). Theslsastic switching is a dramatic
consequence of quantum fluctuations in this non-lineajaitte-scale optical system.

In our experiment [7, 24], laser coolédCs atoms are dropped into a Fabry-Perot optical
resonator (length 27m, 10cm radius of curvature mirrors, field decay raj@m= 9.3MHz)
supporting a circularly-polarized, 852nm Th)Mmode actively frequency-stabilized relative
to the (6S,/,,F = 4,me = +4) — (6P;/5,F = 5 m = +5) atomic cycling transition (with
dipole decay ratg, /2= 2.6MHz). As an atom falls through the cavity mode it experience
a position-dependent coupling ragglmaximumgp,/2m =56.8MHz at the cavity anti-nodes)
that can be monitored via the transmission of a weak and ddtaincularly-polarized optical
probe. Once a strongly coupled atom is detected, the proler@nd detuning are adjusted for
optical homodyne detection and 200MS/s data acquisitiost @rrow at 2ts on the time axis
in Fig. 1(c). Fig. 1(c) depicts a representative signaldath has been post-filtered at 20MHz
bandwidth for clarity); with the drive amplitude held at adftkvalue oE = 2.6k, the amplitude
guadrature of the transmitted field fluctuates with a largeawae until 14us (red arrow) when
the atom is abruptly lost and and the measured transmissttiassto the shot noise-variance
signal with intermediate mean amplitude expected for ouitgavhen empty (perturbed only
by slight ~1-10kHz mechanical instabilities). See Appendix A for mesplanation of the
apparatus.

Zooming in on segments of the trace in Fig. 1(c) reveals Sgamt dynamics orus time
scales. While the signals after the atom has left the ca@te lwhite noise, Gaussian statistics
as expected (e.g. the +419us segment from Fig. 1(c) is shown in Fig. 2(a)) single shataig
observed when the drive is first turned on are more volatile 2+ 7us segment from Fig. 1(c)
is shown in Fig. 2(b)), with suggestive, sharp transitioasdeen low and high outputs and a
seemingly bimodal distribution. Figs. 2(c-d) depict twonabigh variance segments from two
more experimental trials. The significance of these obsienamay be understood from sim-
ulated measurement signals using quantum trajectory ipobs (see Appendix B). Fig. 2(e)
shows a simulated amplitude quadrature measurement segreeaming perfect detection ef-
ficiency of all photons that decay from the cavity. This siatatl signal randomly switches
between two, roughly Gaussian-distributed output statee,with a low mean and one with
a high mean. This signal’s bimodal distribution may be diyeelated to the bimodal, steady
state Wigner function for the intracavity field calculatadrig. 1(b) (discussed futher below).
Re-simulating the same realization of the signal accogrfiin the calibrated overall photon
collection efficiency (20% in the particular data set fromiethtraces in Fig. 2(a-d) were pro-
duced), yields a signal in which binary switching is muchlésstinct in Fig. 2(f), but resembles
the single shot data shown in Figs. 2(b-d) in both the vigybdind apparent time scales of the
large fluctuations.
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Fig. 2. (a) Amplitude quadrature photocurrent data segraken from the 14- 19us in-
terval in Fig. 1(c). The histogram of the data points in tlegreent are presented on the
right, revealing a distribution that well-fits the expectamrmal distribution of photocur-
rents when our cavity is empty. (b) High-variance photoentrsegment taken from the
2—T7us interval in Fig. 1(c), when the atom should be near-maxintalupled to the cavity
mode. Faint, but sharp transitions between high and lomusipnd a seemingly bimodal
distribution are visible in this single shot measuremesytd) Two more high variance seg-
ments from two different experimental runs with the samepeaters. (e) A typical Bs
amplitude quadrature segment simulated using quanturectoay techniques, assuming
perfect detection efficiency, with a clearly bimodal outf{é)t The same simulated realiza-
tion as (e), but with calibrated detection inefficiency gieh signal that resembles (b-d) in
both visibility and time scale for the large fluctuations.

To confirm the steady state quantum mechanical model in thle détection bandwidth
regime more quantitatively, in Fig. 3 we compare amplitwadet phase-quadrature photocurrent
distributions obtained from three different sets of modiee] atom-drive detunings and drive
amplitudes ©, A, andE, respectively), with~15% overall cavity photon detection efficiency
(independently calibrated for each parameter set, witlatrans attributed to thermal drifts in
the signal-local oscillator optical mode matching). Eaigtdgram is computed from an aggre-
gate of several fewts-long segments of the highest variance photocurrent glath, as those
presented in Figs. 2(b-d). While enhanced amplitude nsiséwnays visible when the drive is
first triggered, a minority of events exhibit fluctuationsn&far-maximal magnitude since our
atom detection scheme is triggered by strongly coupled sGrz g?/2k y, >> 1) that may still
be significantly less than near-maximally coupled; a maxmofiC = 67 is achievable with our
apparatus (see Appendices A and B). Because of this pasttieel to isolate near-maximally
coupled atom transits, useful segments of photocurremgéiner sparse in our overall data set.
We are thus limited to the presentation of small numbersiiesi, but given the very distinctive
features of the bistability-related signals (to be diseddselow) and the straightforward nature
of our selection criterion (highest atom-induced photoentrvariance), we are confident that
our analysis procedure enables us to draw physically mgaiiiconclusions.

For a near-detuned system at the onset of ‘bistability’ WithA E} = {—1.1,.7, 2.6}k,
wide/bimodal and narrow/normal distributions are apptianthe amplitude- and phase-
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Fig. 3. (a-c) Wigner function representations of the expegsteady state photocurrent dis-
tributions, using calibrated detection efficiencies anadvédths, for three sets of detuning

and drive parameters. Marginal distributions of homodyreasaurements of any quadra-
ture may be obtained by integrating these representati@rdlee perpendicular quadrature
(see Appendix B). (d-f) Histograms represent the phasg,) and amplitude-quadrature

(ap) photocurrent distributions from ensembles of the highvasiance segments. The his-
tograms are compared with theoretically expected didinba obtained from correspond-

ing Wigner functions (a-c), respectively.

quadrature distributions, respectively (Fig. 3(d)). Hoer when the atom-drive detuning is
increased td\ = 3k for the same drive amplitude, the low-amplitude transmifteld domi-
nates (Fig. 3(e)) as the drive threshold for ‘bistabilitytieases withA|. The bimodal ampli-
tude distribution reemerges when the drive amplitude issiased tee = 3.7k in Fig. 3(f).

The data are in agreement with quantum theoretical predist{see Appendix B), despite
the use of a somewhat idealized model that assumes a staptirgprateg. Whereag actu-
ally depends upon atomic position and Zeeman sub-statesamslary within a photocurrent
segment because of complex atomic motion and imperfeatapiblarization after manys
[25, 7], laser cooling and the cavity aperture ensures ttuahs fall transversely through the
mode in~ 50us, stochastic heating should induce diffusia@00nm during the first s of
strong probing, and optical dipole forces should be minifmahear-maximally coupled atoms.
While technical noises like fluctuations in the atomic cangpduring a transit, cavity instabil-
ity and laser noise could also give rise to signals with sigbet noise variance, such sources
may be ruled out by a combination of being too small to be ofdrtance, of occurring only on
significantly longer time scales, and/or the fact that theyhl induce super shot-noise distribu-
tions in both quadratures roughly equally due to ®ue —k probe detuning (such quadrature-
independent fluctuations appear to be minimal in Fig. 3, @agthe amplitude quadrature-only
‘quantum switching’ is prominent). Although the complgpdtf the measurements’ dependence
on g precludes statistically rigorous parameter estimatios find that a fixed effective value
g = 0.8 x go in our analysis provides a good visual fit to the distribusiaf these short-time
datasets (corresponding to a near-optigtaif one makes the gross simplification of fitting the
experimental histograms to theoretical marginal distidms with fixedg, assuming that the
uncertainties of the histogram data points are constantaodrrelated) in all three parameter
sets with~ 10% uncertainty irg and no other free parameters. We believe that this apprexima
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Fig. 4. The autocorrelation function for the same aggrebataplitude quadrature pho-
tocurrent data presented as a histogram in figure 3(d) idagisg in black. Blue crosses
represent the autocorrelation of photocurrents simulateduantum trajectory methods
[26] for identical parameters, as in Fig. 2(f). The stapitf these quasi-bistable signals is
enhanced relative to linearly scaled empty cavity transimisdata taken after the atom is
lost (red pluses, also presented with a 20MHz analog baridwidd scaled to match the
0 and 1(us autocorrelation of the high-variance ‘experiment’ siyrend thexk ~1 = 17ns
cavity decay time (dashed orange line) characterizingrtttagavity field relaxation of the
empty resonator. We attribute the elevated and noisy aurglation of the atom-cavity
transmission data at 1us timescales to dynamic fluctuationsgnas in Fig 3.

tion of fixedg and the finite (20 MHz) bandwidth of our presented homodygeals account
for slight mismatches between theory and experiment initinglitude quadrature splitting and
phase-quadrature mean in the six data sets.

Hence, even in the single-atom10 photon regime, distinct high- and low-amplitude states
of the output field are not washed out completely by quantuctifations. Remnant signa-
tures of optical bistability are visible in the bimodal outgphotocurrents of Figs. 2 and 3.
Similarly, as suggested in Fig. 2, we see in Fig. 4 that alghahe output field switches spon-
taneously when an atom is present in the cavity, it remainsetaded over timescales much
longer than that of light transmitted through an empty gaviithis atom-induced memory ef-
fect can be seen as an additional remnant of MBE-type ogiistdbility, where classically the
high- and low-amplitude states are truly stable (due toigdgé fluctuations in the system)
and would therefore exhibit infinite correlation time. Ceqaently, it should also be possible
to observe the hysteretic amplitude response charaateoistlassical optical bistability by
modulating the system drive slowly compared to the timesfal relaxation of the intracavity
field (set in our case by the cavity decay time) but rapidly pamd to the ‘metastable’ mem-
ory timescale indicated in Fig. 4. Accordingly, the data ig.’B were obtained by recording
amplitude-quadrature homodyne photocurrents while simgehe drive strength sinusoidally
at 0.25MHz or 1MHz. Figs. 5(a) and 5(b) depict represengagingle-shot photocurrent seg-
ments with{®,A} = {—1.1,.7}k encompassing several cycles of sinusoidal drive amplitude
modulation (AM) spanning the steady state bimodal regionrdases in both the mean and
variance of the output photocurrent, largely in phase wlih drive amplitude, can be dis-
cerned in both of these real-time plots. However, plottimgphotocurrent as a function of the
instantaneous drive amplitude (Figs. 5(c) and 5(d)) revaalignificant hysteresis in the sys-
tem response at 1IMHz AM that is barely noticeable at the mdiabatic .25MHz AM rate.
Whereas the response of the empty cavity is linear and netetstic with fixed (shot-noise)
output photocurrent variance at these modulation fregaeneonlinear increases in the signal
mean and variance are evident in both traces at mid-swedMKAEz AM, a hysteresis loop ap-
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Fig. 5. (a-b) Single-shot, amplitude quadrature measunesnas the drive amplitude is
swept at .25MHz and 1MHz, respectively. Black traces are R@Mandwidth photocur-

rents while the green, dashed traces represent the instaniz drive amplitude. (c-d)
Dashed red (blue) traces portray the same photocurrentirdé#g and (b), respectively,
as a function of the instantaneous, increasing (decregsirge amplitude. Error bars
represent sample mean and sample standard deviation oétie ghotocurrents within
non-overlapping drive amplitude intervals. Red and blggoms represent theoretically ex-
pected photocurrent mean and sample variance as a fundtiostantaneous drive (see
Appendix B). (e-f) Only the sample means of 3 additional Erghot measurements of
similar duration are plotted in each figure as a function efitistantaneous drive ampli-
tude, as in (c) and (d), overlaying the same theoreticalpeeted photocurrent statistics.

pears to open between the upward and downward drive amgldweeps, with the low (high)
state persisting over a wider range of increasing (deargadrive amplitudes than at .25MHz
AM. Moreover, we emphasize that despite the large variandée signals when viewed at
such high bandwidth, the transition from a non-hysteretibysteretic mean response as the
AM rate increases is significant, as highlighted in Figs-B(&hese data are consistent with
theoretical predictions (see Appendix B), again assuntiagame effective value gi= .8 x gg
determined from the short-time segments analyzed in Fig. 3.

In conclusion, we have probed the dynamic optical respohsedoiven, strongly coupled,
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Fig. 6. The essential optical and electro-optical comptmémat define and stabilize the
science cavity resonance frequency, drive the cQED systetact individual atom transits,
and perform homodyne detection of the cQED transmitted,fasddxplained in the text.

single-atom cQED system in the vicinity of atomic satunatid/hile our observations further
confirm the predictions of a fully-quantum model, qualitatiemnants of semiclassical absorp-
tive bistability are clearly visible in the data. While theantum fluctuation-limited lifetimes of
the low- and high-amplitude states in attojoule opticastability’ may be too short for direct
use in photonic switching, our results clearly illustrdiattexisting theoretical models can be
used to predict and analyze the dynamic response of reaetewi the few photon regime. Such
models can be used to make detailed predictions of the ingbagtantum effects on ultra-low
energy switch performance, which may be of interest to tiphotonic engineering commu-
nity. Beyond mere simulation and analysis, existing theoaemethods can be used to explore
new approaches to the suppression of quantum fluctuatiahs thesign of switches and related
nanophotonic devices, for example by exploiting embeddéeéient feedback control [10, 27].
Even in a purely classical information processing paradigigh spatial-density and ultra-low
power nanophotonic circuit design presents intriguing cballenges for the nascent applied
physics discipline of quantum engineering.

Appendix
A. Experimental apparatus

The experiment consists of a standard cQED setup invohasgrl cooled33Cs atoms and
a high finesse Fabry-Perot optical resonator [24, 7, 28]odgi frequency and polarization
selectivity, we attempt to drive only th@S, »,F = 4,me = +4) — (6P;5,F =5,m¢ = +5)
atomic cycling transition at 852nm in order to approximdie atom as a two-level system.
Although the cavity used in the experiment was construaeaptimize signatures of sponta-



neous dressed-state polarization at high drive amplit[je& proved well-suited to study the
amplitude ‘bistabiliy’ dynamics presented in the mainceti

Inside a UHV & 10~° Torr) chamber and placed on a multi-stage vibration-isotestack,
the Fabry-Perot optical resonator is formed by two higheiVity (8ppm transmission, 2ppm
loss), 10cm radius of curvature dielectric mirrors withgbly 27um of separation, yielding a
300,000-finesse optical resonator for the standing wavh]gbEL8um-waist transverse spatial
mode with a field decay rate &f = 277 x 9.3MHz. We took particular care to mount the mir-
rors in a rotationally-symmetric manner to minimize strgguced birefringence in the mirror
coatings, allowing for full polarization-selectivity ofi¢ atomic transitions. The cavity length
is tuned and actively stabilized by two shear-mode pienbebteplates underlying the two mir-
ror mounts. The precise cavity length and resonance frayusrcontinually stabilized by the
Pound-Drever-Hall (PDH) [29] method using an additionaklaprobe detuned by the desired
probe/cavity resonance frequency by two cavity free spécdinges (at an optical wavelength
of roughly 826nm, which interacts negligibly with Cs).

A Doppler-limited, magneto-optically trapped ensembleQW) of ~ 10° atoms is formed
roughly 1cm above the cavity mode in the UHV chamber. Aftesliom, the ensemble trap is
switched off, allowing the cold atoms to fall under gravibyvards the cavity mode and by the
time they reach the cavity mode their free-fall velocityderto dominate any residual thermal
motion. Due to the strong coupling between the targeted iattvamsition and the cavity mode
(with calculated maximum valug = 27T x 56.8MHz at the cavity anti-nodes, using the dipole
strength of the atomic transition and cavity mode volum@)iMidual atom transits are detected
by monitoring the g-dependent) cavity transmission amplitude using a redbtiweak and
near-resonant probe [28], a free space balanced phottaietacd an actively phase-locked
optical local oscillator (LO). Although multiple atom trsits per drop may be visible (apparent
whenevelC = g?/2ky, > 1), the atomic ensemble is sufficiently diffuse such that ravem
than one strongly-coupled atom is simultaneously presetite cavity mode and we acquire
data from only one transit per ensemble drop. It is in prilecgossible that a weakly coupled
“haze” of background atoms are also coupled to the mode,Hauetis now a considerable
literature (starting with [28]) that demonstrates thatphed-atom cavity QED systems quan-
titatively reproduce the predictions of single-atom thye@nce a strongly coupled atom has
been detected, the probe power and frequency shift to theedesxperimental levels and data
acquisition is initiated.

Fig. 6 depicts many aspects of the resonance lock, optitead, dransmission measurement,
and atom-triggering in the experiment (the laser coolintipapsystem is standard and remains
tacit). A diode laser is PDH frequency locked 253MHz to theebbf a large, mechanically
stable ‘transfer’ cavity mode, which is itself locked 253¥té the red of the(681/2, F= 4) —

(6P3/2,F = 5), 852nm hyperfine transition (so that the diode laser is omet@esonance).
The purpose of this- 80,000 finesse, 10kHz-linewidth transfer cavity is two-foldoyide a
stable, Cs-locked frequency reference for all the lasedsamt as a cleaning cavity for the
diode laser, producing a more narrow linewidth 852nm laseirce in transmission than is
easily achievable in the laser lock. The 852nm beam tratehlity the transfer cavity seeds
a high power slave laser, which sources the light used in twhscience cavity drive and
optical local oscillator. The ‘drive’ arm of the slave outps frequency shifted to the red of
the atomic transition again before entering an electricapbdulator (EOM 1), which adds
the optical carrier sideband near atomic resonance the¢ses the science cavity’s dynamic
drive (the carrier and other sidebands are sufficientlyrdedifrom the cQED system and have
no measurable effect). The science cavity is actively ktali by a second, titanium-sapphire
(Ti:S) laser at roughly 826nm and frequency locked relatovehe 852nm diode laser and
the atomic transition via a frequency lock of the Ti:S lasethe transfer cavity: an optical



sideband exactly two free spectral ranges to the red of thiesdtkescience cavity resonance near
the atomic resonance is defined by a second EOM (EOM 2) andtogeidH resonance lock
the science cavity in transmission. The power of the lockaisgr was kept at100nW so that
the AC Stark shift it induced in the atoms could be neglectedur analysis. As implied by
the main article, the effects of the uncertainties in syspamameters (e.g. laser noise, cavity
resonance frequency instabilities, AC Stark shifts of tteerg are dominated by the effects of
the variations in the atom-cavity coupling rate.

For detecting and triggering off of strongly coupled atomsily their~ 50us transit through
the mode, the drive is initially tuned several MHz from thesided frequency for the experi-
ment and its amplitude is set below the level of atomic sétumawhile the several mW optical
LO is tuned to the experimental drive frequency. Both hatgne quadratures of the transmit-
ted atom-probe are detected via their interference wittofiteeal LO. The heterodyne phase
guadrature is used to stabilize the relative phase of theedpace LO against slow drifts in
the signal and LO path lengths via a 1kHz bandwidth opticalseHock loop. The amplitude
qguadrature is monitored by a Schmitt trigger that fires whemteasured field amplitude drops
below a threshold indicating a strongly coupled atom in @naty. This trigger shifts the drive
amplitude, frequency and LO-relative phase to the desxpdr@mental configuration and ini-
tiates data acquisition of the homodyne photocurrent aMZ®8. Although collected at full
bandwidth, the data presented in the main article has bediticahlly filtered for clarity using
a 20MHz two-pole low pass, filtering out as much of the higlyfrency shotnoise as possible
while still preserving the visibility of the fast, quantumdkuations.

B. cQED modeling and photocurrent predictions

The driven Jaynes-Cummings Hamiltonian [30, 31] is theddath quantum model of the in-
ternal dynamics of a two-level atom coupled to an opticabmesor mode in a frame rotating
with the external drive{= 1)

H=Ac'0+0©a'a+iga’'o —ac’) +iE(a'—a), (1)

wherea is the cavity mode annihilation operatar,is the atomic lowering operator aricde-
notes the Hermitian conjugate. From left to right, the RH&&correspond to the atom-drive
detuning, the mode-drive detuning, the atom-mode couphing the external drive, respec-
tively. The complete quantum model of this system comes featending these Hamiltonian
dynamics to include processes associated with the digsipat photons through the cavity
mirrors at mean rater2per intra-cavity photon and excited atomic state spontasiemission
at mean rate 2, as modeled by ando operator-coupling to external quantum fields [30, 31].
Only one of these fields, the transmitted mode, is monitoyesils homodyne detection setup.
For many applications, the entire model may be effectivefyresented by master equation
that describes the unconditional evolution of any mode@ratom operato® (in the Heisen-
berg picture) [32, 31]

d

7O = IH.0+2 (aTOa— %aTaO— %OaTa) +2y; (GTOG— %GTGO— %OOTU)

= 0. ()

For example, the (one dimensional) null space of the analagechrodinger picture ‘Liouvil-
lian,” Zs, corresponds to the steady state density matrix utilizédgs. 1(b) and 3 in the main
article. This model may be trivially extended to describe ititeraction of any number of two
level atoms with the mode (or even with multiple modes).

Starting from this quantum model, the Maxwell-Bloch Eqaas (MBES) may be derived
by first assuming the approximation that atom-mode operatpectations factor [13, 6&.9.



(ac™) ~ (a) (o) (see also [23]). This approximation is equivalent to maugthe cavity mode
as if it were a noiseless classical field coupling to a tweeletom or to an ensemble of atoms
(as the case may be). The MBEs can take the form of a set of falefirst-order, non-linear
differential equations of motions fqa) and other expectations. Steady state solutiong&pr
(proportional to the mean field transmitted by a Fabry-Peawtty) and their dynamical sta-
bility may be found. Properly scaled, these mean-field smistdepend on the atom(s)-mode
coupling only through a dimensionless parameter knownestoperativity,C = Ng? /2Ky, ,
whereN is the number of coupled atoms agithe rate of coupling to a single atom [6]. Thus, as
long as the cooperativities are equal in both cases, thishpddicts equivalent steady states
for a coupled atom and for a coupled macroscopic atomic eplgerRor highly non-linear,
C > 1 systems, however, the correlations between discret¢éagincis in the mode (photons)
and the atom(s) that are ignored in the mean-field model meyapsignificant role in the over-
all dynamics whemN ~ 1, as demonstrated in the main article, with our experiméhtg67,
N=1 system.

Measurements of the external field transmitted by the cQEdDegy are modeled using a
guantum stochastic differential equation (QSDE) framéw8@, 33]. Loosely speaking, this
model represents observables of the transmitted field megdy our homodyne detection
setup as a linear combination of cavity mode observables qmhtum white noises.” For
example, expected photocurrent distributions and cdioglsmay be calculated from the char
acteristic functional [33, 32]

r[B] = <9exp{ [ by [ B;dsom,s}> @3)

wherefs is some complex-valued scalar function of tirhelenotes complex conjugatioBeyt s

is the QSDE annihilation process of the measured, transairfigtld,.7 is the time-ordering op-

erator, and the expectation is taken over both the systemxrchal field degrees of freedom.
Assuming a boxcar averaging photocurrent filter of widtfso thatBs = for0<s<Tt

and s = 0 otherwise), the Fourier transform of Eq. (3) produces aesgntation of the field

analogous to a Wigner quasi-probability distribution

W) = 5 [ @Ppert e AT [en# B @

wherep is the reduced density matrix for the cQED system alone & tifmay be the steady
state density matrix, for example)?p = Bv/2knpia’ — B*\/2knap; is a ‘measurement su-
peroperator,’ ang is the efficiency with which photons decaying from the cawgity measured
by the homodyne detector. As with a Wigner functiBriog ), the probability that a homodyne
measurement of quadratuBeat timet will take the (real) valuerg, is obtained by integrating
W (a) over the complementary quadrature,

R(a) = [ datg, W (a1). ©)

In practice, we approxima{(a) by assuming short photocurrent integration times so that
we may ‘freeze’ the relevant internal dynamics over the darnmperval, takingr.Z — 0. This
approximation also implies the assumption that the Gandhiatuations in the input vacuum
field are not correlated with system state over the effectieasurement time interval. As a
result, in this approximatio(a) is equivalent to a convolution of the Wigner function for
the system state and a symmetric, mean-zero Gaussiarbdiigtn with a variance set by the
effective integration time (which represents the contitiuof vacuum field fluctuations to the
measurement distribution). These methods and approxinsatiere employed in Fig. 3 of the
main article.



Similarly, integrating Eq. (3) over sonf&, /»>-quadrature produces the characteristic func-
tional

Do 1K = <9exp{i /O ! kdeg’s}% (6)

whereks is an aribtrary real-valued scalar function of time ahvg s/dt = Is is the homodyne
photocurrent operator of quadratule This functional may be used to calculate moments of
instantaneous photocurrent measurements [33, 32]

n 0"
dk,..0k,

For instance, the mean amplitude-quadrature photocuatéimiet is calculated to be
(Ity = Tr [—iopt] (8)

where—i.Zop = \/2Kn (p[aJr + apt) while the two-time photocurrent correlation ts t’ <
T)

(ltyelty) = (=) g7 [K][k=0- (7)

(lplt) = 8(t —t') = Tr [Moexp{ L (t' —t)}#op] - 9)

Note that the first term on the RHS of Eq. (9) may be identifiethasshotnoise contribution
to the photocurrent correlation function, while the secisthe contribution from the sys-
tem. As the detector-filtered photocurrent operatois= _foT fi(s)lsds where f;(s) is some
filter function imposed by the detection at timée.g. a low-pass filter initiated at tintg the
above two equations may in principle be used to calculatertban and variance of filtered
photocurrent measurements. In practice, though, we ageiké a small integration time ap-
proximation, justified by our high bandwidth detection. & approximate the staf® as static
over the effective integration time (as far as detectiomiscerned), we may takg in the RHS
of Egs. (8) and (9) as independent of time over the effectitegration interval and approxi-
mate.Z(t' —t) = 0, greatly simplifying these calculations. These appr@tions again allow
us to model the detector filter function by a simple time-agéng filter of widtht = 2/(7tfc),
where f; = 20MHz is the cut-off frequency of the two-pole low pass filtieat sets the band-
width of the data presented in the main article. Thus the raedrvariance of the photocurrent
measurements expected from our detector when the systerthis statepr may be calculated
from

TTr [—i0pt]
() = 1-T°Tr[M5p] (10)
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These methods and approximations were used to calculatbgbey curves in Fig. 5 of the
main article. Integrating the Schrodinger-picture mastgration for AM drive (initiating sys-
tem and drive in the ground state) returns an expected ensaydiem statg; at each pointin

a drive cycle. These states were then used to calculate pee®d ensemble mean and stan-
dard deviation of the photocurrent measurements using(&EQs. given the bandwidth of the
data. Relating the master equation’s quantum ensembigesiyicle predictions to the several
cycle, single shot data in Fig. 5 is justified by an assumptibthe system’s ergodicity (see
below).

Finally, we relied on quantum trajectory methods [31], whiompliment the above master
equation-based approaches to simulate typical measutemgmected from our apparatus in
Figs. 2 and 4. While the master equation may be used to modeharies of experimental
realizations, a simulated quantum trajectory may be usemstruct potential experimental
homodyne measurement sequences, correctly sampled fespdlee of all possible sequences.
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Fig. 7. Reproduction of several figures in the main articfgaeing experimental data with
simulated photocurrent data produced by quantum trajpct@thods. (a), Simulated am-
plitude quadrature photocurrent data wit®,AE} = {-1.1,.7,2.6}k, 20MHz analog
bandwidth and perfect detection efficiency. (b), Same aquarirajectory realization as
(a), but with the 20MHz bandwidth photocurrent simulatedhwj = .2 efficiency. (c),
Histogram of simulated inefficient photocurrents in conmgganr to the expected distribu-
tion derived from master equation based techniques. (djpfamean and sample stan-
dard deviation of simulated photocurrents from fifty 1MHz Alykcles, overlaying master
equation-based predictions.

For example, simulation of an amplitude quadrature phatect given a set of experimental
parameters first involves the calculation of a possiblettayy for the internal quantum state
vector|(c(t)) by numerically integrating the stochastic Schrodingeratign [26, 31]

dlge(t)) = —(iH+KaTa+yl0To)|wc(t)>dt+(@(a+a*>cdt+dw(l))\/Za|wc(t))+
(«/Zyl<a+a bedt + dwy? )\/ZVLJM,UC (11)

where{dw(l),dw(z)} are randomly generated, independent Wiener increméh¢sijenotes
expectation with respect taJc(t)) and the state vector is forcibly re-normalized after each
recursive update. The simulated photo-incren@fitmay then be obtained using this state
trajectory and calibrated detection efficiengyy

d¥; = /77 (V2k(a+ah)edt+ AW ) + 1-naw® (12)

wheredV\4(3) is a third, independent Wiener increment.

Again, quantum trajectory simulations more directly refarce time-series, experimental
measurements, while master equation-based simulatipnssent ensembles of trajectories or
measurements. In Fig. 7 we present many of the same figutes indin article using simulated
photocurrent data based on quantum trajectories in cosgavwiith the master equation pre-
dictions. Figs. 7(a-b) depict simulated amplitude quadephotocurrents with the same exper-
imental parameters as in Figs. 1(c), 2 and 3(d) in the maiclartn Fig. 7(a), the measurement
of the the mode leaking from the cavity is simulated as detbuaiith perfect efficiency, while
Fig. 7(b) simulates the same realization, but with our expentally typical 20% efficiency, as



in Fig. 2(e-f). Fig. 7(c) histograms a simulated inefficiphbtocurrent trajectory in comparison
with the expected amplitude quadrature distribution ugng(5) (.e. reproducing the ampli-
tude quadrature component of Fig. 3(d) in the main articiegusimulated data). Finally, Fig.
7(d) compares the sample mean and sample standard dewasionulated amplitude quadra-
ture measurements during 50 cycles of a 1IMHz AM externakdfir comparison to Fig. 5(d)
in the main article. Both Figs. 7(c) and (d) utilize sevenales more aggregate data than the
experimental data presented in the main article in orderttoudate the convergence of pre-
dictions from quantum trajectories to those of master egunaimulations. As we expect both
types of systems to be stationary ergodic processes, wedmpeically confirmed that the
main discrepancies between quantum trajectory and steaigyrnsaster equation based simula-
tions observed in Fig. 7 arise from the marginal appropniess of ther.#Z — 0 approximation
when modeling 20MHz bandwidth signals derived from oureyst
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