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Abstract
In the quest for creating “quantum enhanced” systems for information processing many

currently pursued design strategies are difficult to scale significantly beyond a few dozen

qubits. The dominant design paradigm relies on starting with near perfect quantum com-

ponents and a vast overhead of classical external control. In my thesis I present tools

and methods for a more integrated framework which treats quantum and hybrid quantum-

classical systems on equal footing.

We have recently defined a Quantum Hardware Description Language (QHDL) capable

of describing networks of interconnected open quantum systems. QHDL is compiled to

symbolic and numerical system models by a custom software tool suite named QNET.

This allows us to rapidly iterate over quantum network designs and derive the associated

equations of motion.

Building on a recently developed model reduction technique for describing networks of

nonlinear oscillators in the semi-classical regime, I present a library of nonlinear optical

circuit designs useful for all-optical computation. I further present an end-to-end theoretical

proposal to create all-optical neuromorphic circuits capable of supervised learning. The

system is hierarchically composed of tunable linear amplifiers, analog phase memories and

thresholding non-linear circuits which can be used to construct more general quantum

feedback networks for nonlinear information processing.

Finally, I introduce a novel model transformation capable of dividing the description of

quantum states into a low-dimensional quasi-classical part coupled to a lower complexity

quantum state. This approach is exact and naturally tailored to simulating coupled quan-

tum systems with varying degrees of dissipation.
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1. Introduction

I joined Hideo Mabuchi’s group in early 2011 at a time when it appeared as if the general

field of quantum information technology was having a bit of a hangover after the excitement

of the 1990’s and early 2000’s.

Scaling up quantum systems with well-controllable qubits has proven harder than ex-

pected with theoretical advances having run greatly ahead of experimental capabilities.

Recently, however, steady advances in several of the leading hardware platforms have even

led to strong private sector investment into quantum technology and it is therefore a won-

derful time work in this field.

What excited me especially about the work being done in Hideo Mabuchi’s group was that

Hideo very explictly re-framed the problems of designing quantum information processing

hardware as belonging to a genuinely new engineering discipline that required a whole new

set of methods, tools and intuition. I thoroughly agree with his vision that, in particular,

developing methods for coherent feedback quantum control and more generally quantum

feedback networks will aid our understanding of how to incrementally synthesize complex

and potentially quite heterogeneous quantum systems. Circuits and networks have been an

immensely successful way of exploring the physically realizable design space given some basic

building blocks. This should evenutally enable tayloring quantum systems for particular

information processing tasks.

Although ultimately key enablers of ‘quantum enhanced’ information technology will be

advances in material and individual device fabrication quality, there are some incredibly

important issues that are not addressed by merely improving individual qubit devices or

even by solving the problem of single qubit error correction and two-qubit fault tolerant

gates: Currently proposed schemes appear to envision a quantum computer connected

to an extremely sophisticated classical co-processor that processes error syndromes and

other measurements, and applies optimal control pulses to achieve correcting feedback or

drive specific sequences of quantum operations. However, given that the currently most

promising quantum hardware platforms all require cryogenic environments, this external

classical co-processor will likely have to be physically separated from its quantum counter-

part necessitating a very large overhead of communication into and out from the cryogenic

environment.

1



1. Introduction

It is here where the framework of quantum feedback networks can be of immense value as

it provides the potential of greatly reducing this ‘classical hardware’ overhead required for

controlling a quantum device. By providing a unified language capable of describing het-

erogeneous networks of systems of varying level of dissipation and thus quantum coherence

it becomes possible to design devices that autonomously self-stabilize [57, 58] and that may

not require externally generated optimal control signal pulses for driving specific quantum

interactions but that instead can be externally programmed in a very high level way. In

the case of the above cited quantum memory proposals by Joe Kerckhoff, and also in the

proposed ultra low-power all-optical decoder of Low Density Parity Check Codes [87] devel-

oped by Dmitri Pavlichin, all one must do is supply power and the hardware autonomously

carries out useful operations.

The organization of this thesis roughly follows my research projects in chronological or-

der. In Chapter 2 I introduce the theoretical framework underlying most of my work,

especially that on Quantum Hardware Description Language which is presented in Chapter

3. In Chapter 4 I then turn to analyzing various building blocks featuring small networks

of ultra-low power nonlinear optical resonators and propose concrete ways in which their

intrinsic dynamics enables useful computation. This effort culminates in Chapter 5 in an

end-to-end description of a neuromorphic, all-optical design proposal for a system that

can incrementally learn through supervised training. Finally, Chapter 6 presents a novel

description and simulation method for accurately representing states of open quantum sys-

tems in low dimensional bases. This method naturally yields coupled equations of motion

for the reduced complexity quantum state and a set of semi-classical manifold coordinates,

which will enable applying the insights gained by studying semi-classical circuit models to

designing hybrid quantum-classical networks for information processing tasks.

2



2. Quantum Feedback Networks

In this chapter we present the general mathematical framework used to model quantum

feedback networks. We first introduce a necessary and convenient quantum stochastic dif-

ferential calculus and the most general Hudson Parthasarathy parametrization of Markovian

open quantum systems interacting with a finite number of bosonic baths. We then proceed

to summarize the extremely useful (S,L, H) circuit algebra developed by Gough and James

and finally finish with a brief description of linear quantum feedback networks and an

example application.

2.1. Quantum Stochastic Differential Calculus

The framework of Quantum Stochastic Differential Equations (QSDEs) is quite formidable

and can be a bit intimidating when starting out. The classic and most accessible reference

for this is given by Gardiner and Collett [35] but they only derive the Heisenberg picture

evolution of all operators and not a general QSDE for the unitary system+environment

propagator U(t).

The most general parametrization of the full QSDE for the propagator was actually

worked out by Hudson and Parthasarathy in [51] and it was connected to continuous mea-

surement processes by Barchielli and Lupieri [4], but despite some early work on cascading

quantum input-output systems by Gardiner and Carmichael [33, 15] it took another 15 years

before the full Hudson-Partharasathy QSDE parametrization which consists of the three ob-

jects (S,L, H) gained a full operational interpretation and really became a practical tool in

formulating a theory of Quantum Feedback Networks [40, 41].

Additionally, powerful insight was generated by the very powerful adiabatic elimination

theorems proved by Bouten, Van Handel and Silberfarb [12, 13], primarily because they al-

lowed deriving models with scattering matrices containing non-trivial operators from initial

system models that are much closer to the somewhat more fundamental physical theory of

cavity QED.

The QSDE for the propagator contains all the information about system and bath observ-

ables. For any specific (continuous) measurement one may then derive the corresponding

quantum filter, i.e., a prescription of how to update the current estimate of the system

3



2. Quantum Feedback Networks

state based on the measured signal. Since having the quantum state allow us to compute

a prior probability distribution for the measurement signal, we can also use these known

statistics to stochastically sample different measurement trajectories and consequently the

corresponding information state1 of the system.

Many further researchers contributed to this framework over the years and I will not be

able to list all relevant resources, but some good references are [34, 38, 137, 136, 79, 15, 33,

134, 135] and more recently [10, 39, 11, 40, 12, 13, 41, 140].

I will not re-derive the Hudson-Parthasarathy QSDE from a more fundamental model

here. The main difficulty encountered here lies in transforming a white Schrödinger equation

from what is effectively the Stratonovich picture to the Ito formalism. Ryan Hamerly has

a nice derivation in his thesis [46].

Instead, I will demonstrate the algebraic consistency of the approach and how – given

the formal requirements – it really could not be formulated any different way. I will also

try and provide as much physical intuition as possible to the (S,L, H) coefficients.

We first present the result, the full QSDE for the unitary propagator of a system coupled

to bosonic quantum fields

dU(t) =

{
−
(

L†L

2
+ iH

)
dt− L†S dB(t) + dB†(t) L + Tr

(
(S− 1)dΛ(t)T

)}
︸ ︷︷ ︸

dG(t)

U(t) . (2.1)

This equation is in Ito form, i.e., all differentials are forward differentials A(t)dQ(t) :=

A(t)[Q(t + dt) − Q(t)], which is very convenient when deriving further results from the

above QSDE. The Ito form is also the primary reason why (2.1) does not look like a typical

differential equation for a unitary operator: As it is, the ‘generator’ dG(t) is not an anti-

hermitian operator, i.e., it does not obviously correspond to a Hamiltonian.

If we were to work instead in the Stratonovich convention the above differential equation

would be generated by a manifestly hermitian Hamiltonian. To see this I point you to

Chapter 1 Section 3 of Ryan Hamerly’s thesis [46] in which he explicitly converts an SDE

from a central difference form that would correspond to the Stratonovich picture to the Ito

form shown above. A more formal treatment but less accessible to non-mathematicians can

be found in [39].

The most important assumption underlying the formalism in either convention is the

white noise approximation which allows us to greatly simplify the description of the external

fields and derive Markovian dynamics for a system interacting with such fields.

If we describe our external fields in terms of continuously labeled bosonic mode operators

{bj(t), b†j(t), t ∈ [−∞,∞), j = 1, 2, . . . , n} then the white noise approximation essentially

1I.e., the most likely quantum state conditioned on the measurement record.

4



2.1. Quantum Stochastic Differential Calculus

boils down to assuming the following commutator relationship:

[bj(t), b
†
k(t
′)] = δjkδ(t− t′). (2.2)

Due to the singular nature of the commutator relationship it is useful to introduce integrated

field processes

Bj(t) :=

∫ t

bj(t
′)dt′ ≡

∫ t

dBj(t
′) , (2.3)

B†j (t) :=

∫ t

b†j(t
′)dt′ ≡

∫ t

dB†j (t
′) , (2.4)

Λjk(t) :=

∫ t

b†j(t
′)bk(t

′)dt′ ≡
∫ t

dΛjk(t
′) , (2.5)

where we leave the lower integration bound unspecified as we will always be interested in

differences between such integrals.

Here, the discrete indices j label the external field channel. For a resonator in which

we neglect all but one resonant internal mode, there will be one ‘channel’ for each way in

which photons can exit the resonator. Although the reality of some loss mechanism may

physically be quite different from such an external bosonic bath mode, in many cases it

works extremely well for the purpose of building accurate models [14].

For a system with several internal resonances, each physical environment coupler (e.g., a

cavity mirror) can correspond to interaction with multiple baths if those internal resonances

are spectrally very well separated. In any intermediate case some care must be taken and

the formalism should not be applied blindly.

The continuous label t does not simply represent time in the sense of Heisenberg picture

operators. Instead, it denotes the time at which this particular ‘time slice’ of the electro-

magnetic field interacts with the system. On the other hand, under the dynamics described

by (2.1) the external field of a given channel and time is unchanged until the exact time it

interacts with the system.

A final ingredient in both motivating and defining the calculus lies in the constraint that

the external field is initially in a vacuum state or a coherently displaced field. Although

one can still derive Heisenberg picture QSDEs for more general Gaussian field states, such

as thermal states and squeezed states, there is then no general QSDE for the full unitary

propagator due to additional formal problems affecting related to the Gauge process Λ(t).

Ultimately, we are always interested in computing certain expectation values such as

correlation functions for the output fields. As we will see below, these will generally contain

a contribution due to the system output but also a singular part due to the field itself.

Since the output processes are effectively Heisenberg picture operators we can evaluate

expectations in the initial state. For a vacuum or coherent field state, we can avoid all

5



2. Quantum Feedback Networks

singularities by bringing the operators into normal order2 since

〈β1(t), . . . , βn(t)| b†j1(t) · · · b†jm(t)bk1(t) · · · bkn(t) |β1(t), . . . , βn(t)〉 (2.6)

= β∗j1(t) · · ·β∗jm(t)βk1(t) · · ·βkn(t). (2.7)

As an example let us say we are interested in carrying out a homodyne field measurement

of a laser beam. This exactly corresponds to measuring the x-quadrature of a bosonic

quantum noise process X(t)−X(0) := B(t)− B(0) + B†(t)− B†(0) in a coherent state of

constant amplitude β. This quantity appears to be of order O(t) and we can easily verify

that its expectation is 〈X(t)−X(0)〉β = [β + β∗]t. However, if we ask for the expectation

of its square we find

〈β| (X(t)−X(0))2 |β〉 = 〈β|
(∫ t

0
[b(t) + b†(t)]dt

)2

|β〉 (2.8)

= 〈β|
∫ t

0

∫ t

0

[
b(t′) + b†(t′)

] [
b(t′′) + b†(t′′)

]
dt′dt′′ |β〉 (2.9)

= 〈β|
∫ t

0

∫ t

0

[
b(t′)b(t′′) + b†(t′)b(t′′)

]
dt′dt′′ |β〉 (2.10)

+ 〈β|
∫ t

0

∫ t

0

 b(t′)b†(t′′)︸ ︷︷ ︸
b†(t′′)b(t′)+δ(t′−t′′)

+b†(t′)b†(t′′)

 dt′dt′′ |β〉 (2.11)

= (β + β∗)2t2 + t. (2.12)

Thus the quantity X(t) − X(0) is in this sense O(t) but [X(t) − X(0)]2 also has an O(t)

contribution. This complicates working with these quantities when taking the t→ 0 limit,

i.e., when working with differential quantities.

To address this, one defines an extended Quantum Ito calculus that allows to still de-

fine generalized product and chain rules for such quantum stochastic differentials. In

the example above, taking t → dt we then have [X(dt) − X(0)]2 = [dB(t) + dB(t)†]2 =

dB2(t) + dB†2(t) + dB†(t)dB(t)︸ ︷︷ ︸
0

+ dB(t)dB†(t)︸ ︷︷ ︸
dt

.

More generally we can derive a full Ito table (Table 2.1) based on bringing all differentials

into normal order and substituting “δ(0)dt ≈ 1”. Then, taking the product of any two

Quantum stochstic processes Q = AB, the differential is given by

dQ = dAB +AdB + dAdB (2.13)

with the Ito rules applied to the last term. A generalization of the chain rule is then given

by

F = f(A)⇒ dF = f ′(A)dA+
1

2
f ′′(A)dAdA. (2.14)

2I.e., creation operators are commuted all the way to the left of annihilation operators.
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2.1. Quantum Stochastic Differential Calculus

dX \ dY dt dBj dB†j dΛjk

dBm 0 0 δmjdt δmjdBk

dB†m 0 0 0 0

dΛmn 0 0 δnjdB
†
m δnjdΛmk

Table 2.1.: The Quantum Ito table. Each entry gives the result of the product dXdY where dX is

enumerated downwards and dY is enumerated to the right.

We now proceed to demonstrate that the parametrization of the Hudson-Parthasarathy

QSDE is in some sense the most general.

2.1.1. The necessity of the Hudson Parthasarathy generator

We now prove that any Ito QSDE that generates a unitary quantum stochastic process and

features the quantum noise processes introduced above, is necessarily of Hudson Parthasarathy

form, i.e., the coefficients appearing in the QSDE will necessarily obey the same constraints.

To see this, assume first that we wished to define an alternate QSDE that generates a unitary

quantum stochastic process V (t). We make the following Ansatz:

dV =
[
Kdt+ M†dB + dB†N + Tr

(
QdΛT

)]
V (t) (2.15)

where N,M are n dimensional vectors of system operators and we generally take X† to be

the transpose and element-wise adjoint of a matrix or vector of operators. Q is an n × n
matrix of system operators. We assume that the noise increments dB,dB†,dΛ commute

with any system operator and they also commute with the unitary V (t) itself since they

are forward differentials (this is where using the Ito formalism pays off). Demanding that

V (t) be unitary at all times is equivalent to demanding that V (t)†V (t) ≡ 1. Applying our

Ito-product rule yields

d[V †V ] = dV †V + V †dV + dV †dV (2.16)

= V †
[
K†dt+ dB†M + N†dB + Tr

(
Q†dΛT

)]
(2.17)

+ V †
[
Kdt+ M†dB + dB†N + Tr

(
QdΛT

)]
V (2.18)

+ V †
[
K†dt+ dB†M + N†dB + Tr

(
Q†dΛT

)]
(2.19)

×
[
Kdt+ M†dB + dB†N + Tr

(
QdΛT

)]
V (2.20)

7



2. Quantum Feedback Networks

We can now apply the Ito table to the last two rows and collect contributions to different

differentials:

d[V †V ] = V †
[
K† +K + N†N

]
V dt (2.21)

+ V †dB†
[
M + N + Q†N

]
V (2.22)

+ V †
[
M + N + Q†N

]†
dBV (2.23)

+ V †Tr
([

Q + Q† + Q†Q
]

dΛT
)
V (2.24)

We must require all the square bracketed expressions to vanish independently. The first

constraint is most generally satisfied by

K† +K + N†N = 0⇔ K = −iH − 1

2
N†N, (2.25)

where H = H† is an arbitrary Hermitian system operator that we will come to identify as

the system Hamiltonian. The last constraint can be equivalently written as

[1 + Q]† [1 + Q] = 1, (2.26)

which suggests that S := 1 + Q is a unitary matrix of system operators. With this we can

rewrite the second (and the equivalent third) constraint as

M + S†N = 0⇔M = −S†N. (2.27)

If we now make the final relabeling N → L and reinsert all these into the original QSDE

for V we find

dV =

[
−
(
iH +

1

2
N†
)
dt− L†SdB + dB†L + Tr

(
[S− 1]dΛT

)]
V (t) (2.28)

which is fully identical to (2.1)! We can thus see that any unitary operator process gener-

ated by the linear and quadratic noise operators dB,dB† and dΛ must have the Hudson-

Parthasarathy form. We now proceed to give operational meaning to the (S,L, H) parame-

ters by deriving the Heisenberg equations of motion as well as the input-output relationship.

2.1.2. The Heisenberg picture QSDEs

Defining the Heisenberg picture operators as jt(X) := U †(t)XU(t) we derive its SDE via

the Ito rules:

djt(X) = dU †XU + U †XdU + dU †XdU (2.29)

= U †
(
i[H,X] +

1

2
L†[X,L] +

1

2
[L†, X]L

)
Udt (2.30)

+ dB†U †S†[X,L]U + U †[L†, X]SUdB (2.31)

+ Tr
(
U †
[
S†XS−X

]
UdΛT

)
. (2.32)
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2.1. Quantum Stochastic Differential Calculus

We can rewrite this as

djt(X) = jt

i[H,X] +
1

2
L†[X,L] +

1

2
[L†, X]L︸ ︷︷ ︸

L∗X

 dt (2.33)

+ dB†jt

(
S†[X,L]

)
+ jt

(
[L†, X]S

)
dB

+ Tr
(
jt

(
S†XS−X

)
dΛT

)
,

where we have implicitly defined the adjoint Liouville super operator L∗X := i[H,X] +
1
2L†[X,L] + 1

2 [L†, X]L. This Heisenberg picture QSDE is very useful as we can compute

expectation values in an initially factorizable state ρ = ρS ⊗ ΩR where ΩR denotes the

collective vacuum state for the external fields. All the quantum noise increments have zero

expectation in the vacuum state and therefore the expectation of X evolves as

d 〈X〉ρS⊗ΩR
=

〈
jt

(
i[H,X] +

1

2
L†[X,L] +

1

2
[L†, X]L

)
︸ ︷︷ ︸

L∗X

〉
ρS

dt (2.34)

= Tr
(
ρSU

†(t)[L∗X]U(t)
)
dt (2.35)

= Tr

U(t)ρSU
†(t)︸ ︷︷ ︸

ρS(t)

L∗X

 dt (2.36)

= Tr ([LρS(t)]X) dt (2.37)

!
= Tr (dρS(t)X) (2.38)

where we have taken the super-adjoint of L∗ which is given by

Lρ = −i[H, ρ] +
∑
k

[
LkρL

†
k −

1

2
{L†kLk, ρ}

]
. (2.39)

Thus, we have derived the standard Lindblad master equation directly from the Heisenberg

picture QSDE:

ρ̇(t) = Lρ = −i[H, ρ] +
∑
k

[
LkρL

†
k −

1

2
{L†kLk, ρ}

]
. (2.40)

The formalism is quite powerful and can also be used to derive dynamics conditioned on

a continuous measurement (quantum filtering) but a more general treatment would exceed

the scope of this introduction. A thorough overview of this is given in [11].

9



2. Quantum Feedback Networks

2.1.3. The output noise processes

Defining the output field processes as

B′(t) := U †(t)B(t)U(t) (2.41)

Λ′(t) := U †(t)Λ(t)U(t) (2.42)

we can again use the Ito rules to derive their associated SDEs

dB′(t) = jt(S)dB(t) + jt(L)dt (2.43)

dΛ′(t) = jt(S
])dΛ(t)jt(S

T ) + jt(S
])dB](t)jt(L

T ) (2.44)

+ jt(L
])dBT (t)jt(S

T ) + jt(L
]LT )dt (2.45)

where we use the same X] notation as Gough and James [41] for the elementwise adjoint

of an operator matrix X. Equation (2.43) is especially enlightening as it demonstrates that

the scattering matrix literally ‘scatters’ input fields to outputs and that the L operator

appears as a linear contribution to the output field and as a quadratic contribution to the

output Gauge process. In the next section I will introduce the Gough-James circuit algebra

which will provide further intuition for the (S,L, H) parametrization.

2.2. SLH and the Gough-James Circuit Algebra

(S,L,H) = S

H
L

internal
dynamics

direct scattering
bath inputsbath outputs

bath
coupling

Figure 2.1.: A quantum network component model interacting with n external quantum fields is

parametrized by three objects: a scattering matrix S mediating direct scattering of

inputs to outputs, a coupling vector L describing the coupling of each external field to

the internal degrees of freedom and a Hamiltonian that induces the internal dynamics.

In [40, 41], Gough and James have introduced an algebraic method to derive the QSDE

(S,L, H) parameters for a full network of cascaded quantum systems from the individual

10



2.2. SLH and the Gough-James Circuit Algebra

(S,L, H) parameters of its constituents. A general system with an equal number n of

input and output channels is described by the parameter triplet (S,L, H), where H is the

effective internal Hamiltonian for the system, L = (L1, L2, . . . , Ln)T the coupling vector

and S = (Sjk)
n
j,k=1 is the scattering matrix (whose elements are themselves operators). An

element Lk of the coupling vector is given by a system operator that describes the system’s

coupling to the k-th output channel. Similarly, the elements Sjk of the scattering matrix

are in general given by system operators describing the scattering between different field

channels j and k. We have visualized the role of the individual operators in Figure 2.1.

As we have explicitly verified in Section 2.1.1, the only conditions on the parameters are

that the Hamiltonian is self-adjoint and the scattering matrix is unitary:

H∗ = H and S†S = SS† = 1n. (2.46)

We adhere to the conventions used by Gough and James, i.e., the imaginary unit is given

by i :=
√
−1, and the adjoint of an operator A is given by A∗, the element-wise adjoint of

an operator matrix M is given by M]. Its transpose is given by MT and the combination

of these two operations, i.e. the adjoint operator matrix is given by M† = (MT )] = (M])T .

2.2.1. Fundamental circuit operations

Q1

Q2

(a) Q1 �Q2

Q2 Q1

(b) Q2 CQ1

Q

(c) [Q]1→4

Figure 2.2.: Basic operations of the Gough-James circuit algebra.

In [41], Gough and James have introduced two operations that allow the construction of

quantum optical ‘feedforward’ networks:

1. The concatenation product (Figure 2.2(a)) describes the situation where two arbitrary

systems are attached to each other without optical scattering between the two systems’

in- and output channels:

(S1,L1, H1)� (S2,L2, H2) =

((
S1 0

0 S2

)
,

(
L1

L1

)
, H1 +H2

)
. (2.47)

11



2. Quantum Feedback Networks

Note however, that even without optical scattering, the two subsystems may interact

directly via shared quantum degrees of freedom.

2. The series product (Figure 2.2(b)) is to be used for two systems Qj = (Sj ,Lj , Hj),

j = 1, 2 of equal channel number n where all output channels of Q1 are fed into the

corresponding input channels of Q2

(S2,L2, H2)C (S1,L1, H1) =
(
S2S1,L2 + S2L1, H1 +H2 + Im

[{
L†2S2L1

}])
(2.48)

From their definition it can be seen that both the series product and the concatenation

product not only yield valid circuit component triplets that obey the constraints (2.46),

but they are also associative operations.3 To make the network operations complete in the

sense that it can also be applied to situations with optical feedback, an additional rule is

required: The feedback operation (Figure 2.2(c)) describes the case where the k-th output

channel of a system with n ≥ 2 is fed back into the l-th input channel. The result is a

component with n− 1 channels:

[ (S,L, H) ]k→l =
(
S̃, L̃, H̃

)
, (2.49)

3For the concatenation product this is immediately clear, for the series product in can be quickly verified

by computing (Q1 CQ2)CQ3 and Q1 C (Q2 CQ3).
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2.2. SLH and the Gough-James Circuit Algebra

where the effective parameters are given by [40]

S̃ = S��[k,l] +



S1l

S2l

...

Sk−1 l

Sk+1 l

...

Snl


(1− Skl)−1

(
Sk1 Sk2 · · · Skl−1 Skl+1 · · · Skn

)
, (2.50)

L̃ = L
��[k] +



S1l

S2l

...

Sk−1 l

Sk+1 l

...

Snl


(1− Skl)−1Lk, (2.51)

H̃ = H + =


 n∑
j=1

L∗jSjl

 (1− Skl)−1Lk

 . (2.52)

Here we have written S��[k,l] as a shorthand notation for the matrix S with the k-th row

and l-th column removed and similarly L
��[k] is the vector L with its k-th entry removed.

These resulting parameters fulfill the conditions4 for circuit components. Moreover, it

can be shown that in the case of multiple feedback loops, the result is independent of

the order in which the feedback operation is applied5. The possibility of treating the

quantum circuits algebraically offers some valuable insights: A given full-system triplet

(S,L, H) may very well allow for different ways of decomposing it algebraically into networks

of physically realistic subsystems. The algebraic treatment thus establishes a notion of

dynamic equivalence between potentially very different physical setups. Given a certain

number of fundamental building blocks such as beamsplitters, phases and cavities, from

which we construct complex networks, we can investigate what kinds of composite systems

can be realized. If we also take into account the adiabatic limit theorems for QSDEs

[12, 13] the set of physically realizable systems is further expanded. Hence, the algebraic

methods not only facilitate the analysis of quantum circuits, but ultimately may very well

4This is obvious for L̃ and H̃, for a proof that S̃ is indeed unitary see Gough and James’s original paper

[40].
5Note however that some care has to be taken with the indices of the feedback channels when permuting

the feedback operation.
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2. Quantum Feedback Networks

lead to an understanding of how to construct a general system (S,L, H) from some set

of elementary systems. There already exist some investigations along these lines for the

particular subclass of linear systems [85] which can be thought of as a networked collection

of quantum harmonic and parametric oscillators. Additional useful references for quantum

feedback networks can be found in [140].

2.3. Linear quantum feedback networks

There exists a special class of (S,L, H) models consisting only of harmonic and/or para-

metric oscillator degrees of freedom represented by mode operators {ak, a†k, k = 1, 2, . . . ,m}
interacting with n external fields. Among such systems, we may further constrain the

(S,L, H) parameters such that

1. S ∈ Cn×n ∩ U(n), i.e., S is a purely number valued unitary matrix,

2. the coupling vector is linear in the mode operators which we assemble into a vector

a = (a1, . . . , am)T such that L = C−a + C+a] with C± ∈ Cn×m

3. the Hamiltonian is quadratic6 H = a†Ω−a+ 1
2

[
a†Ω+a] + aTΩ†+a

]
with Ω†− = Ω− and

Ω± ∈ Cm×m.

We call such systems linear quantum systems because the Heisenberg equations of motion (cf

Equation (2.33)) for the mode operators are linear as well as the input-output relationship

(cf Equation (2.43)). Specifically they can be cast into the form

dă(t) = A ă(t)dt+ B dB̆(t), (2.53)

dB̆
′
(t) = C ă(t)dt+ D dB̆(t), (2.54)

where we use the doubled-up mode vectors of [43, 140] taken to be in the Heisenberg picture,

i.e., a(t) = jt(a) :

ă(t) =

(
a(t)

a](t)

)
, dB̆ =

(
dB(t)

dB](t)

)
, dB̆

′
=

(
dB′

dB′∗

)
. (2.55)

The matrices are again defined through ‘double-up notation’ ∆̆(X,Y) ≡

(
X Y

Y∗ X∗

)
, as

A = ∆̆(A−,A+), B ≡ −∆̆(C†−,−CT
+)∆̆(S,0), C = ∆̆(C−,C+), D ≡ ∆̆(S,0), (2.56)

and where

A± = −iΩ± −
1

2

(
C†−C± −CT

+C]
±

)
. (2.57)

6Linear drive terms are permitted in H as well as constant terms in L but they can easily be added later.
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2.3. Linear quantum feedback networks

In addition to the linear systems described here, one may also define more general linear

quantum feedback networks by directly specifying the (A,B,C,D) matrices and by relax-

ing the conditions on the input field states to general Gaussian states. The (A,B,C,D)

matrices are always subject to some physical realizability constraints [84] but within these

constraint one may construct systems that do not admit any (S,L, H) representation, al-

though in some case one may construct (S,L, H) models that will approximate the linear

system in some parameter limit [43].

2.3.1. Transferfunction and Squeezing

By Fourier transforming equations (2.53) and (2.54), we can find the system transfer

function Ξ that directly links the Fourier transformed input and output fields ˜̆b
(′)

(ω) :=
1

2π

∫∞
−∞ e

iωtdB̆
(′)

(t) as

˜̆b
′
(ω) = Ξ(ω)˜̆b(ω), (2.58)

where

Ξ(ω) ≡ D + C(−iω1−A)−1B. (2.59)

Due to the inherent redundancy of the doubled up notation, the transfer function can be

decomposed as

Ξ(ω) =

(
S−(ω) S+(ω)

S+∗(−ω) S−∗(−ω)

)
. (2.60)

From these matrices one can calculate the quadrature dynamics and eventually calculate

the power spectral density of a given quadrature, which is known as squeezing spectrum

[42]

Pθj (ω) = 1 +Nj(ω) +Nj(−ω) + e2iθMj(ω) + e−2iθMj(−ω), (2.61)

for j = 1, 2, ... representing each output port and θ as the quadrature angle. In our case,

the feedback system output is j = 1. Here, the parameters Nj(ω) and Mj(ω) are defined

through

Nj(ω) ≡
∑
k

|S+
jk(ω)|2, Mj(ω) ≡

∑
k

S−jk(ω)S+
jk(−ω), (2.62)

where S−jk and S+
jk are the (j, k) entries of the matrices S−(ω) and S+(ω), respectively.

There are more general expressions for computing the multi-mode squeezing. We refer to

[42] for more details.

2.3.2. Coupled OPOs for spectral shaping of squeezed light

In this section I will briefly summarize the theory and experimental results of an experiment

carried out in our group first by Orion Crisafulli and then by Daniel Soh. These results were
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2. Quantum Feedback Networks

also published in [23]. The physical setup consisted of two degenerate parametric oscillators

(DOPOs) in a feedback configuration. DOPOs are in some sense the ideal systems for

realizing quantum limited, phase sensitive gain and producing squeezed light [66].

Squeezed light is characterized by an asymmetry in the variance of the field quadratures

∆X2,∆P 2 [130]. Like vacuum states or coherent states, squeezed states of light are mini-

mum uncertainty states, i.e., they saturate Heisenberg’s uncertainty principle ∆X∆P = ~
2

but in contrast to vacuum states and coherent states the variances are different ∆X 6= ∆P .

Squeezed states can be used for enhancing the sensitivity of any measurement in which

the measured signal is encoded in a particular quadrature of some light signal. This has

been exploited in increasing the sensitivity of interferometers such as those appearing in

gravitational wave detectors [18].

Squeezed light can be produced in an optical parametric oscillator when the parametric

gain becomes nearly as large as the linear losses. When the parametric gain approaches the

linear loss, the linear model becomes unstable and the linear description breaks down. From

[42] it is known that static self feedback of a DOPO can increase the amount of squeezing

a system is capable of by effectively modulating the total linear loss of the system.

In our experiment, we investigated what happens when the feedback signal itself was

acted on by a second DOPO. Specifically, a probe signal reflects off one mirror of a first

DOPO which we will call the plant, then reflects off a mirror of a second DOPO which we

call the controller and is then fed back to another mirror of the plant where it can interfere

with that mirror’s output field.

A full experimental schematic is shown in Figure 2.3.

We found that the feedback allows for substantially tuning the resulting squeezing spec-

trum by modifying the frequency at which maximum squeezing and and anti-squeezing

occurs. The results are presented in Figure 2.4. This effect is strongly sensitive to the op-

tical path lengths in the feedback loop as these influence the effectively formed supermode

spectrum of the total network. A system such as ours could be very useful as a source of

tunable squeezed light in sensing applications where the frequency of the signal to be mea-

sured can shift or is initially only known to be fairly close to the frequency of our squeezed

light.

16
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Figure 2.3.: The full experimental setup for two OPOs in a mutual feedback loop.
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(a) x = 0.17
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(b) x = 0.33

Figure 2.4.: Open-loop and closed loop squeezing spectra of the maximally amplified and squeezed

quadratures. The green traces give the vacuum level which is identical for all quadra-

tures. The pink and cyan traces give the open loop squeezing spectra of the maximally

squeezed and anti-squeezed quadratures, respectively, while the red and dark blue traces

were obtained in closed loop (though without pumping the controller). Figure 2.4 (a) is

at relative plant pump amplitude of x = 0.17 and (b) at approximately twice the pump

amplitude x = 0.33 where the actual pump power is then given by x =
√

Pp

Pth
.
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3. Specification of photonic circuits using

Quantum Hardware Description

Language

This chapter was also published as [117].

In this work we propose and demonstrate a modeling and simulation workflow based on

schematic capture using a Quantum Hardware Description Language (QHDL) for nanopho-

tonic circuits, which we will define as a proper subset of the standard VHSIC Hardware

Description Language (VHDL). Our approach utilizes a mixture of common open-source

software packages and custom processing scripts to provide a high-level, modular interface

to the quantum circuit ‘algebra’ of Gough and James [40, 41] (which generalizes earlier

work on cascaded open quantum systems by Carmichael [15] and by Gardiner [33]). The

natural hierarchical organization of VHDL and the schematic capture workflow should fa-

cilitate future work on model reduction and design abstractions for nanophotonic circuits,

which seems essential given the extremely high dimension (variable count) associated with

many-component quantum models.

In the following sections we first review the formal setting of (S,L, H) component models

and the concatenation and series and products as introduced by Gough and James, which

have recently been used to derive quantum nonlinear photonic circuit models by hand or

using custom-coded computer algebra scripts [57, 58, 69, 68]. While we will restrict our

attention here to linear and cavity nonlinear optics, it should be noted that the (S,L, H) for-

malism can in principle be used to describe hybrid circuits incorporating suitable spintronic,

nanomechanical [55], and/or quantum-electronic components. Likewise, the approach we

describe here could be extended straightforwardly to admit static Bogoliubov components

as described in [43]. We then review the proposed syntax of QHDL and illustrate its use

in the specification of a simple interferometer as a network of elementary optical compo-

nents. After describing methods that can be used to parse QHDL circuit descriptions to

derive quantum equations of motion for analysis and/or numerical simulation, we illustrate

the full schematic capture workflow using an example of constructing a bistable latch from

cavity nonlinear optical components. The paper closes with a brief consideration of model
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3. Specification of photonic circuits using Quantum Hardware Description Language

reduction in the (S,L, H) context.

3.1. Modeling quantum circuitry

Within this section we use {Qj , j = 1, 2, 3, . . . , N} to denote individual quantum input-

output components. We clearly distinguish between input and output ports and do not

consider bi-directional ports, although for physical reasons every input port is assumed to

have an associated output port and v ice versa.

3.1.1. The circuit algebra

Our modeling workflow is based on the Gough-James synthesis results for open quantum

systems [40, 41], which provide a purely algebraic method to derive quantum Markov models

for a network of interconnected quantum components.

A component with an equal number n of input and output channels is described by the

parameter triplet (S,L, H), where H is the effective internal Hamilton operator for the

system, L = (L1, L2, . . . , Ln)T the coupling vector and S = (Sjk)
n
j,k=1 is the scattering

matrix, whose elements are themselves operators.

Each element Lk of the coupling vector is given by an operator that describes the system’s

coupling to the k-th input channel. Similarly, the elements Sjk of the scattering matrix are

given by system operators describing the scattering between different field channels j and

k. The only mathematical conditions on the parameters are that the Hamiltonian operator

be self-adjoint and the scattering matrix be unitary:

H† = H and S†S = SS† = 1n.

The master equation [36] corresponding to a given (S,L, H) model is

dρt
dt

= −i[H, ρt] +

n∑
j=1

(
LjρtL

†
j −

1

2

{
L†jLj , ρt

})
(3.1)

Here [A,B] ≡ AB − BA and {A,B} ≡ AB + BA, while ρt is a density matrix describing

the evolving state of the internal degrees of freedom. It is also straightforward to obtain the

quantum filtering equations [11, 138] for stochastic simulation of a given (S,L, H) model.

While the scattering matrix elements Sjk do not appear in Eq. (3.1) they are required for

the composition rules described below, which can be used to derive the overall parameter

triplet for a network of interconnected quantum input-output components. The (S,L, H)

circuit algebra plus simple correspondences such as Eq. (3.1) provide all that is needed to

obtain overall equations of motion for complex photonic circuits.

In [41], Gough and James have introduced two operations that allow for the construction

of arbitrary networks of optical feedforward circuits:
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3.1. Modeling quantum circuitry

Q1

Q2

(a) Q1 �Q2

Q2 Q1

(b) Q2 CQ1

Q

(c) [Q]k→l

Figure 3.1.: Basic operations of the Gough-James circuit algebra.

1. The concatenation product (cf. Figure 3.1(a)) describes a formal adjoining of two

systems in which there is no optical scattering between the systems:

(S1,L1, H1)� (S2,L2, H2) ≡

((
S1 0

0 S2

)
,

(
L1

L2

)
, H1 +H2

)
(3.2)

Note however, that even without optical scattering, the two subsystems may interact

via shared quantum degrees of freedom. A simple example of this scenario is given

by a two-mode resonator (such as a ring-resonator) with an atom that interacts with

both optical modes, but in which there is no direct scattering between the modes.

2. The series product (cf. Figure 3.1(b)) describes a configuration in which two systems

Qj = (Sj ,Lj , Hj), j = 1, 2 possessing an equal number of channels n are connected

in such a manner that all output channels of Q1 are fed into the corresponding input

channels of Q2. The resulting system is then given by

(S2,L2, H2)C (S1,L1, H1) ≡
(
S2S1,L2 + S2L1, H1 +H2 + =

{
L†2S2L1

})
, (3.3)

where we define the imaginary part of an operator as ={A} ≡ A−A†
2i .

To make the network operations complete, one additional rule is required: The feedback

operation (cf. Figure 3.1(c)) describes the case where the k-th output channel of a system

with n ≥ 2 channels is fed back into the l-th input channel. The result is a system with

n− 1 channels:

[(S,L, H)]k→l ≡
(
S̃, L̃, H̃

)
(3.4)

Formulae for the resulting parameter triplet are provided in 3.4.

Note that the series product can be expressed in terms of the concatenation and feedback

operations (e.g., for two components with n = 1 we have Q2 C Q1 = [Q1 � Q2]1→2), and

consequently, the latter two operations are sufficient to perform all network calculations.

However, the series product is a useful shorthand and allows for a more intuitive network

expression.
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3. Specification of photonic circuits using Quantum Hardware Description Language

For use in the following we define the identity system with n channels

1n ≡ (1n,0, 0) , (3.5)

where 1n = (δkl)
n
k,l=1 is the identity matrix in n dimensions, as well as the channel permuting

system

Pσ ≡ (Pσ,0, 0) , (3.6)

where the permutation matrix is defined by Pσ ≡
(
δk,σ(l)

)n
k,l=1

. This definition ensures that

Pσ2 C Pσ1 = Pσ2◦σ1 .

3.1.2. The QHDL syntax

QHDL is a subset of structural VHDL [89], which we will use as a formal syntax for specify-

ing photonic circuits in terms of interconnections among referenced quantum input-output

components. These components can themselves represent composite networks of subcom-

ponents, facilitating hierarchical approaches to photonic circuit design. It is useful to start

with a set of basic components such as beamsplitters and phase-shifts, as well as linear

and non-linear cavity models with one or more coupling mirrors1, which can be collected

in a shared library file. The set of such primitive components within a QHDL software

environment can of course be extended at any time.

Within the context of a single QHDL file, the exact physical model (parameter triplet)

of any referenced component is left unspecified except for its external ports and paramet-

ric dependencies. This approach allows the circuit designer to operate at a high level of

abstraction, facilitating last-minute substitution of alternative physical component models

(including effective models with reduced simulation complexity) into a given interconnection

topology.

In the following section, we will introduce the QHDL syntax by means of a very simple

circuit that realizes a Mach-Zehnder interferometer.

A QHDL file begins with the entity declaration, which defines the abstract interface of

the circuit being specified: it specifies a list of named input and output ports (of the overall

circuit), which are required in order for the circuit itself to be callable as a composite QHDL

component, as well as any numeric parameters required for physical modeling. Note that

we require that all input ports appear before all output ports.

1It is important to note that the Gough-James circuit algebra cannot be used to build dynamical systems

from static components, e.g., it cannot create the Fock space and operator algebra for an optical resonator

mode as an automatic result of cascading beamsplitters and phase-shifts in the configuration of a ring

cavity. All such dynamic components therefore must be implemented as primitive (S,L, H) models.
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(a−b)

BS1

a

b

c

d

(a+b)
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a b
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Figure 3.2.: A basic Mach-Zehnder setup.

Listing 3.1: Entity declaration

1 entity Mach_Zehnder is

2 generic (phi_mz: real := 0);

3 port (In1, VacIn: in fieldmode; Out1, Out2: out fieldmode);

4 end Mach_Zehnder;

For this entity we must then have one or more architecture declarations in the same QHDL

file. These provide alternative ways of realizing the internal structure of the circuit. The

architecture declaration consists of a head which specifies the interfaces of all components

used in the architecture body and all internal signals. The component declarations are very

similar to the entity declaration- they serve to establish an interface for each subcomponent.

Listing 3.2: Architecture head

1 architecture structure_MZ of Mach_Zehnder is

2 component beamsplitter

3 port (a, b: in fieldmode; c, d: out fieldmode);

4 end component beamsplitter;

5

6 component phase

7 generic (phi: real);

8 port (a: in fieldmode; b: out fieldmode);

9 end component phase;

10

11 signal bs1_phase, bs1_bs2, phase_bs2: fieldmode;

The architecture body then consists of a series of instance assignments for each occurrence

of any of the previously specified component types. Each instance assignment specifies the

relationship between the component-instance parameters and the entity parameters. In

addition, it specifies a port map detailing how the component-instance is connected to the

internal signals or the external ports.

Listing 3.3: Architecture body

1 begin

2 BS1: beamsplitter
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3. Specification of photonic circuits using Quantum Hardware Description Language

3 port map (a => In1, b => VacIn, c => bs1_bs2, d => bs1_phase);

4 phase: phase

5 generic map (phi => phi_mz);

6 port map (a => bs1_phase, b => phase_bs2);

7 BS2: beamsplitter

8 port map (a => phase_bs2, b => bs1_bs2, c => Out1, d => Out2);

9 end structure_MZ;

In the port map, each internal component port is assigned to either an entity port or a

signal. Any instance in (out) port must be connected either to an entity in (out) port or

to a signal that is connected to another instance’s out (in) port.

Listing 3.4: Port map statement

1 port map (a => phase_bs2, b => bs1_bs2, c => Out1, d => Out2);

Each signal therefore connects exactly two ports: one instance input and one instance

output or one instance input (output) and an entity input (output).

3.1.3. Parsing a network

Here we present a simple algorithm to parse a general network into a circuit expression.

We assume that the QHDL file has been preprocessed such that we have the lists of ports,

components, instances, signals and port mappings in native data structures accessible to

our algorithm.

1. We denote the list of internal signals by S. For each instance assignment j = 1, 2 . . . N

in the architecture body:

• Generate the network triplet Qj = (Sj ,Lj , Hj) with the correct parametrization

as specified in the generic map statement.

• Generate the correctly ordered2 list of input port names Ij and the correctly

ordered list of output port names Oj where each portname is entry is of the form

instance-name:port-name.

2. Concatenate all triplets Q = Q1�Q2� · · ·�QN and similarly concatenate the input

and output port lists I = I1 + I2 + · · ·+ IN and O = O1 +O2 + · · ·+ON

3. For each internal signal s ∈ S concatenate the full circuit triplet Q with a single

channel identity system 11 resulting in Q
(0)
f = Q� 1|S|,

2As defined via the the component declaration in the architecture head.
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3.1. Modeling quantum circuitry

4. Now, each element in the full list of output ports O corresponds to an entry of the

form instance-name:port-name. Make copies of O′ = O and S′ = S and iterate over

all output ports in the following fashion:

If the output port is connected to a global output (i.e. an entity output port), continue

to the next entry.

If the output port is connected to the j-th signal in the current signal list S′, let k be

the index of the output port in the current output port O′ list and update the model

triplet Q
(n)
f → Q

(n+1)
f = [Q

(n)
f ]k→M+j , where M = |O′| is the length of the current

output port list. Then, remove the k-th entry from O′, and the j-th entry of S′.

5. Now, let Mf = |S′| and iterate over a copy of the input port list I ′ = I and a new

copy of the signal list S′′ = S:

If the input port is connected to a global input (i.e. an entity input port), continue

to the next entry.

If the input port is connected to the j-th entry of S′′ update Q
(n)
f → Q

(n+1)
f =

[Q
(n)
f ]Mf+j→k where k is the index of the current port in I ′. Then, remove the k-th

entry of I ′ and the j-th entry of S′′.

6. By construction, the only remaining ports of our resulting triplet Qres
f lead to glob-

al/entity ports. Iterating over O′ and the list of entity output ports OE , construct a

suitable permutation σout that maps every output port index from O′ to the correct

index of the entity output port. In a similar fashion, iterate over I ′ and the list of

entity input ports IE to generate a permutation σ−1
in , mapping the indices from I ′ to

the correct indices of the entity input ports within IE . Then, invert this permutation

σin = (σ−1
in )−1 to obtain a mapping from IE to I ′. Finally, the model triplet for the

circuit is given by

Qfinal = Pσout CQ
res
f C Pσin .

If one is interested in working with the actual network expressions as opposed to the

more concrete level of the actual Hilbert space operators, there exist other, more complex,

approaches to parsing a network, which directly yield simpler overall network expression.

Combined with a sufficiently sophisticated set of circuit expression simplification rules, the

above algorithm works just as well.

3.1.4. The QHDL workflow

The circuit design workflow relies heavily on symbolic computer algebra methods. Using

symbolic algebra, rather than working with numerical matrix representations of all the
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3. Specification of photonic circuits using Quantum Hardware Description Language

operators appearing in the component parameter triplets, makes it possible to view the

overall circuit (S,L, H) in analytic form. It also allows the designer to defer choosing the

values of numerical parameters, which could be convenient for optimization scenarios, as

well as details such as the upper photon-number limits to use for truncated Fock spaces in

numerical simulations.

In fact we can define our own algebraic types, operations and simplification rules not just

for Hilbert space operators and scalar coefficients, but also for circuit algebra components.

This approach enables us to extend the hierarchical design principle even to our compiled

QHDL component library, as will become clear in the following outline of the modeling

workflow:

1. Circuit design In step 1, we visually compose the circuit using a schematic capture

tool and then export to QHDL3 or directly describe the circuit in text-based QHDL.

Since QHDL describes the connections between functional entities, it is not necessary

at this stage to specify how referenced components are implemented.

2. Component model specification The QHDL file is then parsed to generate the

circuit expression in which referenced components appear as symbols. This expression

is stored in a library file along with information about model parameters and the

component names of the referenced subcomponents. Note that a library file can be

treated as a standalone entity for future circuit designs. When this file is imported

at runtime, the referenced subcomponent models are dynamically loaded from their

respective library files. Now, the full (S,L, H) parameter triplet can be generated by

explicitly evaluating the circuit algebra operations. By means of the symbolic operator

algebra, the final operator matrices and the Hamiltonian are still in fully symbolic

form, which can be used to generate the quantum master equation or an appropriate

stochastic differential equation in symbolic form. This allows for the application of

analytical model reduction techniques before turning to purely numerical methods.

3. Numerical simulation Define all scalar model parameters and (truncated) Hilbert

space dimensions, and compute the behavior of the circuit.

In Table 3.1 we list the necessary software tools to implement the QHDL circuit design

workflow. We plan to publicly release our custom tools in the near future.

3In our case we have modified the VHDL exporting functionality of the gEDA toolsuite to generate QHDL.
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3.2. An example of the QHDL workflow

In this section, we present a detailed example applying the QHDL workflow to the design,

analysis, and simulation of an all-optical SR-latch as recently proposed in [69, 68]. The

elementary component models {(Sj ,Lj , Hj)} required for this circuit are the following:

1. Beamsplitters

QBS(θ) ≡

((
cos θ − sin θ

sin θ cos θ

)
,0, 0

)
,

2. Phase-delays U(φ) ≡ (eiφ, 0, 0)

3. Coherent displacements W (α) ≡ (1, α, 0) which models a laser source outputting a

coherent field with amplitude α ∈ C,

4. Kerr-nonlinear cavity (here a unidirectional ring cavity with two input/output ports)

QK(∆, χ, {κj}) =

(
12,

(√
κ1a
√
κ2a

)
,∆a†a+ χa†a†aa

)

As the circuits we discuss here are meant to be used as logical gates in larger circuits, we need

not include the laser sources in our circuit schematics. Instead, they can easily be added

at the level of the circuit algebra by feeding a concatenated block of laser displacements

(sources) into the full network Qwith input = QC (Wα1 �Wα2 � · · ·�Wαn).

3.2.1. The two-cavity pseudo-NAND-latch

We have recently proposed [69] several different optical circuits to realize three classical

logic gates: an AND-gate, a NOT-gate with integrated fanout of two and a combined

(but imperfect) NAND-gate (Figure 3.3(a)), which in the following we will call pseudo-

NAND gate as it only works properly when at any given time at least one input is in the

‘on’ state. The first two of these gates used in sequence also realizes a NAND gate, but

the advantage of the pseudo-NAND is that it requires only a single Kerr-nonlinear cavity

component. The QHDL workflow can be readily applied to design the pseudo-NAND circuit

and automatically generate the circuit expression in terms of its components4:(
11 �

(
(11 � ((Φ� 11)CB2))C P(1 3 2) C (K � 11)

))
C
(
B1 �

(
P(2 1) C (W � 11)

))
(3.7)

4Here we represent a permutation σ =

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
just by its image tuple

(σ(1)σ(2) . . . σ(n)).
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3. Specification of photonic circuits using Quantum Hardware Description Language

Table 3.1.: List of software components necessary to realize our QHDL-workflow.

Requirement Our solution Alternatives

Graphical schematic cap-

ture tool with VHDL/QHDL

export capabilities

gschem and gnetlist from the

gEDA suite [119]

Graphical design tool from

system modeling environ-

ments / modeling languages,

such as Modelica [120]

QHDL-Parser that com-

putes the circuit expression

A custom parser written in

Python using the open source

PLY [5] package

A parser for computing a cir-

cuit expression from the Mod-

elica specification, written in,

e.g. Mathematica

Symbolic computer alge-

bra system with support for:

non-commutative operator al-

gebra, commutative scalar al-

gebra coefficient, operator-

valued matrix algebra and the

Gough-James circuit algebra

A custom computer algebra

system written in Python

[122] and interfacing with

SymPy [107] for the scalar co-

efficient algebra

Mathematica [139] plus an im-

plementation of the Gough-

James circuit algebra

Numerical backend to con-

vert symbolic operator ex-

pressions into matrices and

simulate the system

Custom algorithms for solving

the Master equation as well

as quantum stochastic differ-

ential equations implemented

in Python and C using opti-

mized numerical libraries for

linear algebra [3, 54].

The Quantum Optics Tool-

box [110] for MATLAB [72]

or similar library for modeling

the dynamics of open quan-

tum systems, such as QuTIP

[56]
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3.2. An example of the QHDL workflow

Figure 3.3.: Pseudo-NAND circuit schematic (a) as created with gschem and its device symbol

embedded as a component in a SR-NAND-latch circuit (b).

where the beamsplitter symbols are defined by B1 ≡ QBS(π4 ), B2 ≡ QBS(θ), the output

correction phase is Φ ≡ U(φ), the constant coherent displacement component is W ≡W (β)

and the Kerr cavity is given by K ≡ QK(∆, χ, κ1 = κ2 = κ). The network expression

(3.7) looks complicated but can be verified easily by comparing its visual representation

(Fig. 3.4(a))5 with the original circuit schematic. Moreover, since the scattering matrix of

K is in block-diagonal form, it is possible to decompose the cavity component K = K1�K2,

where the Hamiltonian of K can be assigned to either of the two blocks. Upon substituting

this decomposable form into the expression, the automatic expression simplification built

into our circuit algebra implementation yields the following form:{
(11 �K1)CB1

}
�
{

(Φ� 11)CB2 C (W �K2)
}
, (3.8)

which is visually represented in Figure 3.4(b). The numerical model parameters as given in

[69] are θ = 0.891, χ = −5/6, ∆ = 50, κ = 25, φ = 2.546 and the auxiliary constant input

amplitude is given by β = −34.289−11.909i. The coherent input amplitudes corresponding

to the logical signals ‘on’ and ‘off’ are then given by α = 22.6274 and 0, respectively.

As in classical circuit theory, two NAND-gates in a mutual feedback configuration, as

shown in Figure 3.3(b), can be used to realize a latch with inverted inputs S and R. A

latch features controllable bistable behavior and thus realizes a single-bit memory unit. It

has two inputs: S(ET) and R(ESET), which can be activated individually to control the

internal logical state to ‘on’ or ‘off’, respectively. Ideally, when both S and R are ‘off’

(HOLD-condition), the internal state remains stable. In practice, quantum fluctuations

and noisy inputs lead to spontaneous switching between the two internal states. One of

the design goals is thus to decrease the rate at which this spontaneous switching occurs.

The QHDL code as produced by gnetlist [119] (slightly edited to be more concise) can

5These visualizations were automatically generated using another software tool we have implemented.
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K
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Φ

(a) Circuit expression (3.7) as generated by the QHDL-

Parser

B1

K1

W

K2

B2

Φ

(b) Simplified expression (3.8)

Figure 3.4.: Pseudo-NAND circuit expression visualizations. As can easily be verified visually, the

simplified expression follows from decomposing K = K1 � K2 and ‘pulling’ K2 down

into the fourth row. These expression simplifications are automatically performed by

our symbolic circuit algebra software.

be found in Listing 3.5 and the circuit component library file generated by the QHDL-

parser is presented in Listing 3.6 in 3.5. Substituting the individual component models

into the circuit expression yields the full triplet (S0,L0, H0) for the latch. Finally, after

feeding in the coherent input signals S and R into their respective ports: (S,L, H) =

(S0,L0, H0)C (W (S)� 12 �W (R)� 12) the parameters assume the following form

S =

(
S1 0

0 S2

)
, where S1 = S2 =


1√
2
− cos θeiφ√

2
sin θeiφ√

2
1√
2

cos θeiφ√
2

− sin θeiφ√
2

0 sin θ cos θ

 , (3.9)

L =



√
κ
2 sin θeiφ b+ S√

2
− β√

2
cos θeiφ

√
κ a−

√
κ
2 sin θeiφ b+ S√

2
+ β√

2
cos θeiφ

√
κ cos θ b+ β sin θ√

κ
2 sin θeiφ a+ R√

2
− β√

2
cos θeiφ

√
κ b−

√
κ2
sinθe

iφ a+ R√
2

+ β√
2

cos θeiφ

√
κ cos θ a+ β sin θ


, (3.10)

H = ∆
(
a†a+ b†b

)
+ χ

(
a†a†aa+ b†b†bb

)
− κ√

2
sin θ sinφ

(
ab† + a†b

)
(3.11)

+

√
2κ

4
i
[(

S
∗

+ β∗ cos θe−iφ
)
a− h.c.

]
+

√
2κ

4
i
[(

R
∗

+ β∗ cos θe−iφ
)
b− h.c.

]
.
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Listing 3.5: QHDL source for the pseudo-NAND latch.

1 --pseudo-NAND latch

2 ENTITY NS_NR_NAND_LATCH IS

3 PORT (NS, W1, kerr2_extra, NR, W2, kerr1_extra : in fieldmode;

4 BS1_1_out, kerr1_out2, OUT2_2, BS1_2_out, kerr2_out2, OUT2_1 : out fieldmode);

5 END NS_NR_NAND_LATCH;

6

7 ARCHITECTURE netlist OF NS_NR_NAND_LATCH IS

8 COMPONENT nand

9 PORT (A, B, W_in, kerr_in2 : in fieldmode;

10 uo1, kerr_out1, NAND_AB, OUT2 : out fieldmode);

11 END COMPONENT;

12

13 SIGNAL FB12, FB21 : fieldmode; -- feedback signals

14

15 BEGIN

16 NAND2 : nand

17 PORT MAP (

18 A => NR, B => FB12, W_in => W2, kerr_in2 => kerr2_extra,

19 uo1 => BS1_2_out, kerr_out1 => kerr2_out2, NAND_AB => FB21, OUT2 => OUT2_2);

20

21 NAND1 : nand

22 PORT MAP (

23 A => NS, B => FB21, W_in => W1, kerr_in2 => kerr1_extra,

24 uo1 => BS1_2_out, kerr_out1 => kerr1_out2, NAND_AB => FB12, OUT2 => OUT2_1);

25 END netlist;

Due to the symmetry of the underlying circuit model, the model parameters are invariant

under exchange of the two pseudo-NAND gates, which corresponds to simultaneously ex-

changing S↔ R, (a, a†)↔ (b, b†), (L1, L2, L3)↔ (L4, L5, L6) and S1 ↔ S2. This symmetry

suggests that the most likely candidates for the internal logical states ‘on’ and ‘off’ corre-

spond to the case where one internal cavity mode is in a high power state and the other one

in a low power state and the opposite case, obtained by exchanging the cavities states. This

is indeed the case, and in fact it follows from the basic way in which we have designed our

pseudo-NAND gate; ‘on’ ⇔ {NAND1 cavity power is low, NAND2 cavity power is high}
and ‘off’ ⇔ (NAND1 cavity power is high, NAND2 cavity power is low).

To understand our model’s dynamic behavior we turn to numerical methods. The sim-

ulation of this model is carried out by representing the operators as numerical matrices in

a truncated product basis of Fock-states of total dimension N2 = 752 = 56256. We carried

6I.e., each individual cavity basis is given by {|0〉 , |1〉 , . . . |N − 1〉}.
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out a large number of quantum jump trajectory simulations [110, 50] with the following

sequence of alternating input conditions: 0.5 time units of SET, 5 units of HOLD, 0.5 units

of RESET, 5 units of HOLD (repeated twice). The upper plot in Figure 3.5 presents a
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reduced quantum model

Figure 3.5.: Simulated input sequence for the full pseudo-NAND latch model (upper) and our re-

duced model (lower). The red trace (lighter, in grayscale) is given by
〈
a†a
〉

and the

blue trace presents
〈
b†b
〉
. The SET and RESET input conditions, marked by the short

intervals between dashed vertical lines, induce transitions to their respective target latch

states: ‘on’ corresponds to the a-mode being in a high photon number state, while ‘off’

corresponds to a high photon number in mode b.

typical simulated trace where the system is subjected to this sequence of input conditions.

We generally find that the SET and RESET input conditions successfully drive the system

into the desired cavity states, while the cavities remain in their states during the HOLD

condition. Although a simulation of the full master equation is feasible using current HPC

hardware and sparse matrix storage [69], quantum jump simulations exhibit the inherently

bistable nature of our synthesized latch more clearly.

3.2.2. Model reduction in the SLH context

As the latch could readily be used as a component in more complex circuits, such as flip-

flops or even quantum memories [57, 58], it would be highly desirable to reduce the Hilbert

space dimension N2 required to represent it. Since we are working with quantum circuit

models, we are ultimately limited by exponential scaling of the state space with the number

of components (although it may be possible to develop efficient simulation procedures when

components are only weakly entangled, as should be the case in ultra-low power classical
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signal processing). However, there is clearly much to be gained by developing accurate

model reduction procedures that allow us to replace high-dimensional ab initio models

for components within a circuit by much lower-dimensional effective models. Such model-

reduction strategies could presumably be applied hierarchically. As in the classical theory

of signals-and-systems there are many potential strategies for dimensional reduction of

quantum input-output models. For the case of components or sub-circuits whose input-

output behavior admits a simplified description as certain parameter ratios become large,

a recently-derived limit theorem [12, 13, 44] can be utilized as demonstrated in [57, 58].

Here we describe an empirical approach similar to the classical strategy of approximating

Markov chains [61], which utilizes numerical simulation and statistical analysis to derive a

reduced (S,L, H) model for the pseudo-NAND latch (for which no simplifying parameter

limits are known).

Our approach is based on the assumption that the device state can be inferred with rea-

sonable accuracy from a small number of observables. We can then construct a dynamic

model just in terms of these parameters [82]. By generating many quantum jump trajecto-

ries for the full (S,L, H) model, we generated many time series for the expectation values

of the cavity field photon numbers
〈
a†a
〉

and
〈
b†b
〉

under the three valid input conditions

{HOLD,SET,RESET}. We can now coarse-grain the 2-dimensional space of expectation

values and associate an internal model state i ∈ {1, 2, . . . ,M} with each bin that is ac-

tually visited during the trajectory simulations, but due to the high correlations between

the cavity photon numbers, we are actually able to obtain good results by performing this

coarse-graining or ‘binning’ procedure in terms of the single quantity

D ≡
〈
a†a
〉
−
〈
b†b
〉
,

implying that within the two-dimensional configuration space our system always stays fairly

close to a one-dimensional submanifold.

By analyzing the observed transitions between these reduced states for each input condi-

tion ξ ∈ {HOLD, SET,RESET}, we calculate an empirical estimate P̂(ξ) = (p
(ξ)
ij )Mi,j=1 of the

conditional transition probabilities p
(ξ)
ij = P (xn+1 = j|xn = i, ξ) and thus model the system

in terms of a discrete time Markov chain with a set of conditional transition probabilities

for each particular input condition ξ. The time step δt of the discrete Markov chain corre-

sponds to the interval at which we sampled our original continuous-time system. We now

wish to get back to a description that is compatible with our (S,L, H) formalism. In the

following we briefly outline a procedure to do this: For a temporally homogeneous Markov

jump process with an even number of states i ∈ {1, 2, . . . ,M} and transition rate matrix7

Q = (γij)
M
i,j=1 we can define a K-channel (S0,L0, H0) model with states corresponding

7Q is also often referred to as the generator matrix.
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directly to the Markov process states {|1〉 , |2〉 , . . . , |M〉} via

S0 = 1K , (3.12)

L0 = (
√
γi1j1 |j1〉 〈i1| , . . . ,

√
γiKjK |jK〉 〈iK |)

T (3.13)

H0 = 0, (3.14)

where the components of L0 drive transitions {ik → jk, k = 1, 2 . . .K} and K is given

by the number of positive transition rates γij > 0. By construction, as one may verify

by writing down the master equation, this system always collapses into a purely classical

mixture of the coarse-grained states. Equivalently, in a quantum jump trajectory simulation,

after the first quantum jump, the state is always given by a single such state. In fact, in

such a trajectory simulation, this system behaves exactly like the original Markov jump

process. Neglecting for now that our original model has three different input conditions

ξ ∈ {HOLD,SET,RESET} and thus three different conditional transition matrices P̂(ξ),

we first discuss how to move from the discrete time Markov chain model to a continuous

time Markov jump process. Rephrasing this question, we can ask the following: is there a

Markov jump process with conditional transition probability matrix P(t) that ‘looks like’

our Markov chain when stroboscopically probed at fixed time intervals δt? If our Markov

chain has transition matrix P̂, then we need to determine a generator matrix Q such that

P̂ = P(t = δt) ≡ eδtQ ≈ 1 + δtQ +O(δt2). (3.15)

If our sample interval δt is sufficiently small, we may define

Q̂ ≡ 1

δt
(P̂− 1) (3.16)

as an approximation to the conditional rate matrix. We now carry out the procedure

outlined above to create a model (S0,L0, H0) that realizes the HOLD condition. The

transition rates of the HOLD condition alone lead to a system that has two bistable clusters

of states with low state indices and high state indices, respectively.

To account for the input-controlled switching in the SET and RESET conditions, we

extend our model by concatenating it with a second model that explicitly includes the

input fields (SSR,LSR, HSR) = (S1,L1, H1) C (W (S) �W (R) � 12). Hence, in the SET

and RESET conditions, the HOLD transitions continue, but we drive further transitions
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through this additional component. Here, (S1,L1, H1) is given by

S1 = 14 −


Σ†SΣS 0 −Σ†S 0

0 Σ†RΣR 0 −Σ†R

−ΣS 0 ΣSΣ†S 0

0 −ΣR 0 ΣRΣ†R

 (3.17)

L1 = −α(1− Σ†SΣS , 1− Σ†RΣR, ΣS , ΣR)T (3.18)

H1 = 0, (3.19)

where the ‘drift’ operators ΣS and ΣR are defined by

ΣS ≡ |M − 4〉 〈M − 1|+ |M − 6〉 〈M − 3|+ · · ·+ |M/2− 1〉 〈M/2 + 2| ,

ΣR ≡ |5〉 〈2|+ |7〉 〈4|+ · · ·+ |M/2 + 2〉 〈M/2− 1| .

For our simulation we chose M = 38 � N2, but the general ansatz works for a range of

different M = 4k + 2 with sufficiently large k. The drift operators satisfy Σ2
R/S = 0, as

well as the projection relations (Σ†R/SΣR/S)2 = Σ†R/SΣR/S , (Σ†R/SΣR/S)2 = Σ†R/SΣR/S and

ΣR/SΣ†R/SΣR/S = ΣR/S . These relations suffice to show that S1 as defined above is indeed

unitary. To make sense of the effect of this extension to our model, consider now what

happens for the different input conditions: In the HOLD condition S = R = α the input

fields cancel out all elements of the coupling vector L1 and we have (SSR,LSR, HSR) =

(S1,0, 0), i.e. the transition dynamics of our full system (SSR,LSR, HSR)� (S0,L0, H0) are

simply given by those of (S0,L0, H0) alone.

ON# OFF#

Figure 3.6.: Here we schematically visualize the state space and the transitions of the reduced model.

The SET transitions (red, from right to left) introduce a drift that drives the system to

the states on the left, corresponding to the logical ‘ON’ state of the latch. The RESET

transitions (blue, from left to right) have the opposite effect. The HOLD transitions

(depicted in grey) are always active, but in the absence of additional SET and RESET

transitions only very rarely lead to a switch of the logical latch state.

In the SET condition, however, we have S = 0, R = α and thus

(SSR,LSR, HSR) =
(
S1, (−α(1− Σ†SΣS), 0, −αΣS , 0)T , 0

)
.
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The full system (SSR,LSR, HSR) � (S0,L0, H0) now features the drift operator as an ad-

ditional transition operator8 −αΣS which induces transitions {M − 1 → M − 4,M − 3 →
M − 6, . . . ,M/2 + 2 → M/2 − 1} with constant rate |α|2. Together with the HOLD tran-

sitions, these lead to a drift from states with high index (corresponding to the logical ‘off’

state of the latch) to those with low index (‘on’). On the other hand, in the RESET

condition, the situation is reversed. Now the other transition operator of L1 is canceled

out and the non-zero transition operator −αΣR drives transitions in the reverse direction

{2 → 5, 4 → 7, . . . ,M/2 − 1 → M/2 + 2}, again with constant rate |α|2. In Figure 3.6 we

visualize the transition structure of the model schematically.

Note also that we can emulate the state-dependent coherent output field(s) of the latch by

concatenating a triplet (Sout,Lout, Hout) that re-routes bias input fields via state-dependent

scattering into one or more output channels. For example we could use (SSR,LSR, HSR)�

(S0,L0, H0)� (Sout,Lout, 0) where

Sout =
M∑
i=1

|i〉〈i|

(
eiφ1i cos θi −eiφ1i sin θi

eiφ2i sin θi eiφ2i cos θi

)
, Lout = Sout(β

′, 0)T , (3.20)

where β′ is the complex amplitude of a bias field and the parameters {θi, φ1i, φ2i} are chosen

such that the outputs of (Sout,Lout, 0) vary as desired with the internal state |i〉. Having

thus created a reduced model that mimics the desired input-output behavior in (S,L, H)

form, we can use it to replace the full latch model in more complex circuits. If we had

already specified a QHDL file for such a circuit, we could simply replace9 the referenced

latch component with the reduced model component. Re-parsing this modified QHDL-file

would then yield a computationally more tractable model for simulations.

3.3. Conclusion

In this paper we have described the use of QHDL, a quantum hardware description language,

to facilitate the analysis, design, and simulation of complex networks constructed from

interconnected quantum optical components. We have also presented a parsing algorithm

for obtaining quantum equations of motion from the QHDL description. QHDL can be

used as the basis for a schematic capture workflow for designing quantum circuits that

8The second non-zero element of LSR, which is a projection operator, does not affect the transition dynamics

due to the fact that our system is never in a superposition of two states.
9In principle it should be possible to include the reduced model as an alternative architecture for the

latch entity and to select whether or not to use it in place of the full model at compile-time using

a VHDL configuration file. However this would require some enhancements to the QHDL-Parser to

correctly handle the K extra (vacuum) input ports required by the reduced model to drive spontaneous

transitions among the internal states.
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automates many of the conceptually challenging and computationally demanding aspects

of quantum network synthesis. As QHDL inherits the hierarchical structure of VHDL,

its use may facilitate the crucial development of hierarchical model reduction methods for

quantum nonlinear photonics.

Important future directions for QHDL research include simulation strategies for exploit-

ing weak entanglement among components, stability analysis and design optimization of

QHDL-based models [81], and the incorporation of techniques from static program analysis

and formal verification to assist in the design of complex, hierarchically defined photonic

components. While we have emphasized classical photonic logic [69] as a tutorial paradigm

for QHDL in this paper, emerging ideas in quantum information processing and quantum

sensing/metrology may provide even more compelling applications for QHDL as a conve-

nient and extensible modeling framework.

3.4. Reduced parameters in case of signal feedback

where effective parameters are then given by [40]

S̃ = S��[k,l] +



S1l

S2l

...

Sk−1 l

Sk+1 l

...

Snl


(1− Skl)−1

(
Sk1 Sk2 · · · Skl−1 Skl+1 · · · Skn

)
, (3.21)

(3.22)

L̃ = L
��[k] +



S1l

S2l

...

Sk−1 l

Sk+1 l

...

Snl


(1− Skl)−1Lk, H̃ = H + =


 n∑
j=1

L†jSjl

 (1− Skl)−1Lk

 . (3.23)

Here we have written S��[k,l] as a shorthand notation for the matrix S with the k-th row and

l-th column removed and similarly L
��[k] is the vector L with its k-th entry removed. These
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resulting parameters fulfill the conditions10 for circuit components. Moreover, they have

shown that in the case of multiple feedback loops, the result is independent of the order in

which the feedback operation is applied11.

3.5. Latch circuit library file

Listing 3.6: Python[122] source for the pseudo-NAND latch circuit library component.

1 #!/usr/bin/env python

2

3 from qhdl_component_lib.library import retrieve_component, make_namespace_string

4 from qnet.qos_algebra import P_sigma, qid, FB

5 from sympy.core.symbol import symbols

6

7 NCHANNELS = 6

8 GENERIC_DEFAULT_VALUES = {}

9

10 def arch_default(name_space = ’’, **generic_params):

11 """

12 Generate a symbolic LATCH expression using the provided name_space.

13 Return a 2-tuple (netlist_symbolic, var_map)

14 such that calling

15 >>> SLH = netlist_symbolic.substitute(var_map).evalf()

16 will result in an SLH triplet, where the parameters are accessible via

17 >>> SLH.S

18 >>> SLH.L

19 >>> SLH.H

20 """

21 # dictionary that stores the replacement SLH models for

22 # the circuit component symbols

23 var_map = {}

24

25 # load symbolic component expressions as well

26 # as actual SLH model replacements for NAND1...

27 NAND1, NAND1_var_map = retrieve_component(’nand’, 4,

28 make_namespace_string(name_space,’NAND1’))

29 var_map.update(NAND1_var_map)

30

31 #...and NAND2

32 NAND2, NAND2_var_map = retrieve_component(’nand’, 4,

10This is obvious for L̃ and H̃, for a proof that S̃ is indeed unitary see Gough and James’s original paper

[40].
11Note however that some care has to be taken with the indices of the feedback channels when permuting

the feedback operation.
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33 make_namespace_string(name_space,’NAND2’))

34 var_map.update(NAND2_var_map)

35

36 ########## symbolic circuit expression as computed by the parser

37 # the ’+’ operator is overloaded to the concatenation-operation [+]

38 # the ’<<’ operator is overloaded to the series-operation <|

39 # P_sigma(s(0),s(1),...(s(n-1))) is a zero-based channel permutation object

40 # FB(Q, k,l) is the feedback operation [Q]_{k->l} (with zero-based channel indices)

41 # qid(n) is the n-channel identity

42 netlist_symbolic = (P_sigma(0, 2, 3, 4, 5, 1)

43 << FB(

44 (

45 (qid(1) +

46 ((qid(3) + P_sigma(2, 0, 1))

47 << ((P_sigma(1, 2, 3, 0) << NAND2) + qid(2))))

48 << P_sigma(0, 2, 5, 6, 1, 3, 4)

49 << ((P_sigma(0, 3, 1, 2) << NAND1) + qid(3))

50 ), 6, 1)

51 << P_sigma(0, 4, 5, 3, 1, 2))

52

53 return netlist_symbolic, var_map
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4. Ultra-Low-Power All-Optical

Computation

In this chapter we present various useful single device and circuit models for constructing

components for analog or digital computation. Since I joined Hideo Mabuchi’s group, there

has been a shift away from typical cavity QED models towards networks of resonators

featuring some optically nonlinear bulk material.

Although this turns out to be equivalent to cavity QED in the extremely nonlinear limit

[70] – when the rate of interactions between two photons approaches or exceeds the linear

dissipation rate – realistic assumptions of current and near-term feasible nonlinear materials

and fabrication capabilities are very far from this limit.

It thus becomes an interesting question to consider what computational devices in the

intermediate regime where nonlinear effects become apparent for a few tens of photons.

There are some particularly interesting questions here:

1. What is the consequence of optical coherence and interference for designing circuits

for computation?

2. At what energy scale is classical optical computing possible despite the effects of

quantum shot noise?

3. Can even weak quantum effects provide any enhancement to the efficiency of analog

optical computers?

In 2011 Hideo Mabuchi demonstrated how coherent nonlinear feedback can help reduce

the spontaneous switching rate of a bi-stable system [68]. This and the work below provided

some insight into the first of these questions.

In 2014 Charles Santori, Jason Pelc and Ray Beausoleil at HP Labs as well as Ryan

Hamerly, Hideo Mabuchi and I derived a semi-classical coupled mode theory [98] for ultra

low power photonic circuits. The ‘Wigner method’ lately has gained great popularity inside

and outside of our group. It is based on transforming the master equation to a Wigner quasi-

probability representation and approximating the resulting partial differential equation by a

Fokker-Planck equation, thus allowing to stochastically simulate the mode dynamics. This

result generalizes previous methods developed by Carter [16].
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Extending earlier work by Hideo Mabuchi on how to implement optical sequential logic

[69] we were able to simulate some fairly complex digital circuits assuming different ratios of

signal levels to shot noise, or equivalently nonlinear interaction rate to linear dissipation rate.

For a simple bistable Kerr-resonator we compared numerically estimated switching rates

between the equilibria and found good agreement when the intra cavity photon numbers

were at least ∼ 20 − 40. For integrated photonic logic circuits operating on picosecond

timescales the gate error probability could be made sufficiently small < 10−18 at intra-

resonator energy levels of around ∼ 177 photons. Thus, the Wigner method has provided

us with an answer to the second question posed above, at least as far as digital logic is

concerned.

Our group has recently become interested in photonic schemes for neuromorphic com-

putation, probabilistic computation and machine learning both in the low power limit and

even the quantum regime. At least some neuromorphic architectures are very robust to

device imperfections and noise, making them interesting candidates for optical computing.

Furthermore, assuming device nonlinearity and fabrication quality continue to improve, it

is interesting to consider how such circuits might behave in the quantum regime where

entanglement could arise between spatially separated parts of a device. I divide these into

the following broad categories:

1. Optical Reservoir Computers: exploiting the complex dynamics in networks featuring

optical or electro-optical nonlinearity for signal processing [126, 125, 26, 127]

2. Optical Neurons and Neural Networks: the attempt to directly implement neural

networks (with spiking or continuous wave dynamics) using photonic hardware [124,

123, 29, 101, 116]

3. Coherent Ising Machines: for solving graph-based discrete optimization problems [121,

131, 71, 47, 49, 53, 109, 118]

4. Probabilistic computation on sparse graphs: e.g., all optical decoding of Low-Density

Parity Check Codes [88, 86].

The Wigner method allows us to investigate what sort of computational devices, beyond

logic gates, might be constructed from circuits comprising static linear elements and non-

linear optical resonators. Below I describe and analyze a few such ideas. Both Dmitri

Pavlichin ([86], Chapter 3) and Ryan Hamerly ([46], Chapters 7+8) have similar chapters

in their theses that feature additional device models.

In the remainder of this chapter, I will present the semi-classical analysis of a few interest-

ing nonlinear resonator models, as well as, some concrete ways in which they can be used for

all optical computing and signal processing. This chapter is intended a reference, e.g. when
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reading the following chapter, which specifies an end-to-end design of a photonic circuit

implementing one of the simplest machine learning algorithms, the perceptron algorithm

for linear binary classification.

4.1. Basic Single Mode Kerr Model

Let us initially assume an SLH quantum model of the form

S = 1n, L =


√
κ1a
√
κ2a
...

√
κna

 , H = ∆a†a+
χ

2
a†2a2 . (4.1)

The QSDE for the mode operator is given by

da = −
(κT

2
+ i∆ + iχa†a

)
adt−

n∑
j=1

√
κjdAj , (4.2)

where the {dAj , j = 1, 2 . . . , n} are the quantum input noise processes. Each coupling

operator Lj =
√
κja corresponds to an individual loss channel of the cavity with a rate κj .

The total loss rate is equal to the cavity linewidth κT =
∑

j κj . Some of these coupling

operators model the coupling to external waveguide modes while other coupling operators

just represent additional loss sources such as intrinsic (linear) resonator losses due to surface

roughness.

Assume now that we are driving the system (via one or multiple ports) with coherent

(monochromatic) light. Specifically, if each port with coupling operator Lj gets driven by

a coherent amplitude εj then we can represent the overall input as a vector

ε =


ε1

ε2
...

εn

 . (4.3)

Feeding this into the above system and applying the SLH circuit algebra rules leads to

the following changes in our model:

L→ L + w, H → H +
n∑
j=1

√
κj

2i

(
a†εj − aε∗j

)
, (4.4)

leading to the modified equation of motion

da = −
(κT

2
+ i∆ + iχa†a

)
adt−

n∑
j=1

√
κj(εjdt+ dAj). (4.5)
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We see that the coherent displacement was equivalent to simply displacing the noise inputs

as dAj → dAj + εjdt, which is an intuitive result.

4.1.1. Semi-classical steady-state analysis

Transforming now to a semi-classical model, we replace the mode operator a → α with a

semi-classical complex amplitude in (4.5) and the input quantum noise processes by classical

complex valued noise processes dAj → dβj and find

dα = −
(κT

2
+ i∆ + iχ|α|2

)
αdt−

n∑
j=1

√
κj(εjdt+ dβj). (4.6)

Apart from a small shift ∆ → ∆ − χ, we would have obtained this exact same result by

applying the Wigner method [98].

Assuming for simplicity only one coherent drive field ε1 = ε and taking only the deter-

ministic part of Equation (4.6), we can find the following relationship for the steady state

mode amplitude α and the driving field ε:

0 = −
(κT

2
+ i∆ + iχ|α|2

)
α−
√
κ1ε (4.7)

⇒ κ1|ε|2 =
∣∣∣(κT

2
+ i∆ + iχ|α|2

)∣∣∣2 |α|2 (4.8)

=

(
κ2
T

4
+ (∆ + χ|α|2)2

)
|α|2. (4.9)

Defining n := |α|2 as a semi-classical measure of the intra-cavity photon number1, and

F := κ|ε|2 as a measure of power in the coherent driving field, their mutual relationship is

given by

F (n) :=

(
κ2
T

4
+ (∆ + χn)2

)
n =

(
κ2
T

4
+ ∆2

)
n+ 2∆χn2 + χ2n3. (4.10)

We have visualized this relationship between intra-cavity energy and input power in

Figure 4.1.

This third order polynomial can have two extremal points found by setting ∂F
∂n (n) = 0

F ′(n) =

(
κ2
T

4
+ ∆2

)
+ 4∆χn+ 3χ2n2 (4.11)

= 3χ2(n− n+)(n− n−) (4.12)

where n± = −2∆

3χ
±

√
1

9χ2

[
∆2 − 3

4
κ2
T

]
(4.13)

1According to the Wigner moment equivalence, the correct mapping is actually given by
〈
a†a
〉

=
〈
|α|2

〉
W
−

1
2
.
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Figure 4.1.: Here we present the input-output characteristics for a single port κT = κ Kerr cavity.

The axes are normalized by κ/|χ|. Bi-stability occurs when the cavity detuning ∆ from

the laser drive exceeds a threshold value ∆th. The critical case ∆ = ∆th is plotted in

red. For a single port model, the reflected power equals incident power (in steady state)

and it is therefore sufficient to plot only the imparted phase shift.
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4. Ultra-Low-Power All-Optical Computation

For these solutions to be real and positive-valued we need the detuning to be large enough

to satisfy |∆| ≥ ∆th :=
√

3
2 κT , and the detuning needs to have the opposite sign than the

nonlinear coefficient, ∆/χ < 0. We thus find that the extremal points are evenly spaced

about n0 = −2∆
3χ . It is possible to see that the existence of two extremal points in the

input-power photon number characteristic is equivalent to the system being bistable.

If we look at the second derivative of F (n), we find that for ∆/χ < 0 there exists an

inflection point at n0 (regardless of the magnitude of the detuning):

F ′′(n) = 4∆χ+ 6χ2n = 6χ2(n− n0) . (4.14)

The input photon rate at this inflection point is given by

F (n0) = −2∆

3χ

χ2

4

(
κ2
T

χ2
+

4∆2

9χ2

)
. (4.15)

When the system is bi-stable, the inflection point is an unstable solution of the steady-

state relationship, otherwise it is stable. If we introduce the shifted rate characteristic

Q(n) := F (n+ n0)− F (n0), this will have the form

Q(n) = χ2n(n2 − q) , (4.16)

where q is positive-real-valued for |∆| ≥ ∆th and ∆/χ < 0. It turns out that

q =
κ2
T

4χ2

[
∆2

∆2
th

− 1

]
. (4.17)

This implies that if the system is biased with an input rate F (n0), the bistable states are

separated by δn := 2
√
q.

In general, for any complex input amplitude that leads to a steady state photon number

n, the corresponding mode amplitude is given by

α(n) = − ε

|ε|

√
n
κT /2− i∆− iχn
κT /2 + i∆ + iχn

. (4.18)

In the bi-stable regime, the different mode amplitudes in the upper and lower branch can

also be computed. The photon number here is equal to n± = n0 ±
√
q. We then find

α± := a(n±) = −

√
(n0 ±

√
q)
κT /2− i∆/3∓ iχ

√
q

κT /2 + i∆/3± iχ√q
. (4.19)

Finally, for bi-stable conditions, we may ask about the width of the hysteresis curve, i.e.

what differences in input power are necessary to switch. This can be obtained from the

extremal points of F (n), or more simply from Q(n):

Q′(n) = χ2(n2 − q) + 2χ2n2 = 3χ2n2 − χ2q = 0⇔ n = ±
√
q/3 (4.20)
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4.1. Basic Single Mode Kerr Model

At the extremal points, Q(n) takes on the values Q(±
√
q/3) = ∓2χ2

√
q3/27. Thus, if the

input power is biased to F (n0), it takes a change of δF = 2χ2
√
q3/27 in input power (in

either direction) to reliably switch the bi-stable states.

4.1.2. Linear Transfer Function

The ABCD matrices in the complex amplitude representation of the above model, displaced

as a→ a+ α0 and then linearized, are given by

A = ∆̆
(
−κT

2
− i∆− 2iχ|α0|2,−iχα2

0

)
(4.21)

B = −∆̆
(
C†−, 0

)
, (4.22)

C = ∆̆ (C−, 0) , (4.23)

D = 12n, (4.24)

where C− =
(√

κ1 · · · √κn
)T

, and where we are using the double-up notation intro-

duced by [85, 140]

∆̆ (A,B) :=

(
A B

B] A]

)
, (4.25)

with A] being the element-wise complex conjugate of a matrix A.

In terms of these matrices, the linear transfer function relating inputs to outputs is given

as [42, 140]

Ξ(ω) = D − C (iω1 +A)−1B. (4.26)

We can explicitly compute the inverse appearing in the transfer function to be

(iω1 +A)−1 =

(
−κT

2 − i∆− 2iχ|α0|2 + iω −iχα2
0

iχα∗20 −κT
2 + i∆ + 2iχ|α0|2 + iω

)
(4.27)

=
1

D(ω)

(
−κT

2 + i∆ + 2iχ|α0|2 + iω iχα2
0

−iχα∗20 −κT
2 − i∆− 2iχ|α0|2 + iω

)
(4.28)

with the determinant D(ω) =
∣∣(iω1 +A)−1

∣∣ given by

D(ω) =
(κT

2
− iω

)2
+
(
∆ + 2χ|α0|2

)2 − |χ|2|α0|4. (4.29)

Since Im [D(ω)] = −κTω we see that D(ω) cannot be zero for ω 6= 0, showing that a single

mode Kerr-cavity (without feedback) cannot have a conjugate pair of complex poles crossing

the imaginary axis, i.e., it does not admit a Hopf-Bifurcation.
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4. Ultra-Low-Power All-Optical Computation

The transfer function between two ports j, k is given by

Ξ(ω)jk = δjk12 +

√
κjκk

D(ω)

(
−κT

2 + i∆ + 2iχ|α0|2 + iω iχα2
0

−iχα∗20 −κT
2 − i∆− 2iχ|α0|2 + iω

)
(4.30)

For non-zero α0 it is phase/quadrature sensitive and thus needs to be specified as a 2 × 2

matrix.

4.2. Phase Sensitive Amplifier Model

We now consider the special case of a single port κT = κ1 = κ. We furthermore limit

ourselves to analyzing the dc-transfer function, i.e., ω = 0. Assume that we are biasing our

system with an input ε0. Since we assume zero internal loss, in the steady-state the bias

amplitude only receives an intensity dependent phase shift ε′0 = ε0e
iφ0 .

In this case the transfer function is given by

Ξa = 12 +
κ

D(0)

(
−κ

2 + i∆ + 2iχ|α0|2 iχα2
0

−iχα∗20 −κ
2 − i∆− 2iχ|α0|2

)
. (4.31)

The phase sensitive gain values for the maximally and minimally amplified orthogonal

quadratures can be obtained from the singular value decomposition of this matrix. At dc,

the transfer function has the especially simple (doubled up) form

Ξa =

(
U V

V ∗ U∗

)
. (4.32)

A straightforward (but somewhat tedious) calculation reveals that the singular value of such

a matrix is given by(
U V

V ∗ U∗

)
=

1

2

(
η′ iη′

η′∗ −iη′∗

)(
||U |+ |V || 0

0 ||U | − |V ||

)(
η∗ η

−iη∗ iη,

)
(4.33)

where η =
√

U∗V
|U ||V | and η′ =

√
UV
|U ||V | are complex phase factors determining the amplified

and deamplified input quadratures and their respective image.

Furthermore, it can be shown that for fixed κ,∆ and χ, the larger singular value is

maximal when

|α0|2 =

√
∆2 + κ2

4

3χ2
. (4.34)

It turns out that in this case the amplifier acts as a perfect squeezer in that one quadrature

gets amplified by a factor g whereas the orthogonal quadrature gets deamplified with a
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4.2. Phase Sensitive Amplifier Model

factor g−1. This factor can be computed to be

g =

√√
f + κ√
f − κ

, with f = 28∆2 + 4κ2 − 8∆
√

12∆2 + 3κ2 (4.35)

Below the bi-stability threshold |∆| ≤
√

3
2 κ, we find f ≥ κ2. The minimum amplitude gain

achievable in this fashion is
√

3, which is realized in the ∆ → 0 limit. For ∆ → ∆th the

gain diverges, as one would expect. We can invert the relationship in order to compute the

detuning at which a particular amplitude gain g is realized. This yields

∆ =

√
3κ

2

(g −
√

3)(g − 1√
3
)

g2 − 1
. (4.36)

To verify our result, note that for g →∞, we have ∆→ ∆th, as one would expect.

4.2.1. Kerr Amplifier Recipe

Based on the previous results, we have a simple recipe to construct a single port Kerr-

amplifier. Given a desired amplitude gain g, a system bandwidth κ, and an intrinsic non-

linear coefficient χ, proceed as follows.

1. Compute ∆ according to Equation (4.36).

2. Compute the intra-cavity bias amplitude |α0|2 according to (4.34).

3. Compute the necessary input amplitude to achieve that intra-cavity field ε0 =

√
F (|α0|2)

κ

using (4.10).

To actually use the cavity as an amplifier, it is necessary to add the correct bias to any

input signal and subtract the scattered bias downstream. Expressed in the Gough-James

circuit algebra this is

A = W−β0eiφ0 C C CWβ0 . (4.37)

The whole circuit should be wrapped in additional phase shifters to normalize which quadra-

ture is (anti-)squeezed and which output quadrature it maps to.

As we can see in Figure 4.3, the dependence of the gain on the bias power is fairly peaked,

suggesting that it saturates at less than ten percent of the bias power.

The sharpness of the bias-gain characteristic, and therefore the saturation effect, increases

with a higher maximum gain as can be seen in Figure 4.4. A more detailed analysis of this

effect would be interesting but one reasonable explanation would be that the overall possible

output amplitude swings for a cavity with given κ and χ are only weakly dependent on the

maximal gain.
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bias in

signal in

-bias out

signal out

Figure 4.2.: A simple single port Kerr cavity amplifier with bias addition and subtraction elements.

The frequency bandwidth of our amplifier is necessarily bounded by the cavity linewidth

κ, but it turns out to be even smaller than that as can be seen in Figures 4.5 and 4.6. The

bandwidth generally decreases for increasing gain.

As we will see in the next section, there exists a nice construction, that has several

advantages.

4.3. Symmetric amplifier design

A symmetric construction combining two identical Kerr-cavities (and twice the bias power)

leads to a particularly elegant scheme.

The small signal u and a bias amplitude
√

2ε0 (multiplied by
√

2 because we need to bias

both resonators) are mixed on a 50/50 beamsplitter. Each of the outputs ε± = ε0 ± u/
√

2

reflects off one Kerr-cavity and then the reflected beams ε′± ≈ ε0eiφ0 ± g(θ)u√
2

are recombined

in a beamsplitter with inverse scattering matrix. Both amplifiers are biased to the same

intra-cavity photon number, but they receive the signal input with opposite signs. Thus,

the amplified signal can easily be extracted on the output beamsplitter because it is simply

the difference of the scattered beams:

u′ =
ε′+ − ε′−√

2
= g(θ)u, (4.38)

where g(θ) is the signal phase dependent complex gain factor. This argument already

correctly suggests that the overall circuit’s transfer function from u→ u′ is identical to that

of a single cavity, but some obvious advantages of this construction are the following:

1. The bias addition and subtraction happens automatically and without incurring ad-

ditional loss or noise (at least to linear order).

2. The linear relationship u′ = g(θ)u is correct up to third order in u, because the

second order (and thus even) contributions are subtracted. This makes the amplifier
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4.4. Quadrature Filter
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Figure 4.3.: The gain falls off quickly away from the optimal bias input ε0. We see, however, that

the imaginary to real quadrature gain has a zero close to the maximum real to real

gain. The strongly-sloped linear behavior of this gain suggests that the amplifier acts

as a quadratic map for inputs in the imaginary quadrature. The dashed envelope’s

amplitude equals σ1, the largest singular value of the steady-state transfer function at

each bias amplitude. It equals the maximally achievable input-output gain between

any two input and output quadratures. We have wrapped the amplifier in phase shifts

ensuring that the maximal gain is between the real input and output quadratures at the

optimal bias.

response completely symmetric under u → −u. This design principle is similar to

what is often done in electronics where complementary pairs of transistors are used

to increase overall linearity.

3. As we discuss below, this amplifier’s gain can dynamically be tuned by reducing the

bias input. The clean separation of bias and signal inputs makes this very easy to do.

4. This construction should work just as well for any other amplifier model that requires

bias and signal to enter the cavity through the same physical port.

4.4. Quadrature Filter

A very similar model to the symmetric amplifier discussed in Section 4.3 allows us to con-

struct a circuit that transmits only a single quadrature of the input and subtracts the other

quadrature by transmitting it to an additional drop port. This situation is characterized by

a non-full rank transfer function, or equivalently a zero determinant. This already suggests
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4. Ultra-Low-Power All-Optical Computation

0.0 0.2 0.4 0.6 0.8 1.0

Input photon rate |ε|2  in units of [4 2 /|χ|]

0

5

10

15

20

A
m

p
lit

u
d
e
 g

a
in

 f
ro

m
 r

e
a
l 
to

 r
e
a
l 
q
u
a
d
ra

tu
re

Phase sensitive linear amplitude gain Ξrr vs. bias power

g=5.0

g=10.0

g=20.0

Figure 4.4.: The dc real-to-real quadrature amplitude gain for different chosen gain factors g (and

therefore different detunings ∆, but constant κ, χ). We see that the peaks become

narrower for increasing maximal gain suggesting stronger saturation effects.

that at minimum, a two port model is necessary, because in our formalism single input/out-

put transfer functions are always of full rank. This is a consequence of the requirement to

preserve the canonical commutation relationship of the scattered quantum field operators.

The condition for the reflection transfer function off a port with coupling κ to be of rank

one can be expressed as[
D(0)− κκT

2

]2
+ κ2

[
∆ + 2χ|α0|2

]2
= κ2χ2|α0|4. (4.39)

For a two port model with matching coupling/loss rates κ = κT /2 this is equivalent to

0 =
[(

∆ + 2χ|α0|2
)2 − |χ|2|α0|4

]2
+ κ2

[(
∆ + 2χ|α0|2

)2 − χ2|α0|4
]

(4.40)

=
[(

∆ + 2χ|α0|2
)2 − |χ|2|α0|4

] [
κ2 +

(
∆ + 2χ|α0|2

)2 − |χ|2|α0|4
]
. (4.41)

Introducing x := χ|α0|2, this can be further factored as:

0 = [∆2 + 4∆x+ 3x2][κ2 + ∆2 + 4∆x+ 3x2] (4.42)

= 9

[(
x+

2

3
∆

)2

− ∆2

9

][(
x+

2

3
∆

)2

− ∆2 − 9κ2

9

]
(4.43)

= 9

[
x+

∆

3

]
[x+ ∆]

[
x+

2

3
∆ +

√
∆2 − 9κ2

3

][
x+

2

3
∆−

√
∆2 − 9κ2

3

]
(4.44)

The first two solutions always exist when χ and ∆ have opposite signs. The other pair

of solutions only exist for |∆| ≥ 3κ, which is far in the bi-stable regime and should thus

be avoided. The case x = χ|α0|2 = −∆ equivalent to |α0|2 = −∆
χ , will from here on be
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Figure 4.5.: When the input amplitude ε differs slightly from the optimal bias input ε0 the gain

decreases, but the bandwidth increases.

called the ‘dynamic resonance condition’, because it implies an overall ‘dynamic’ detuning

of ∆(|α0|2) = ∆ + χ|α0|2 = 0. There is a second solution x = χ|α0|2 = −∆
3 , but it leads to

a less than unity gain on the non-filtered quadrature. We will thus limit our discussion to

the dynamically resonant model.

4.4.1. Dynamically Resonant Quadrature Filter

In the dynamically resonant case the steady-state reflection transfer function is given by

ΞR(0) = − i∆
κ

(
1 1

−1 −1

)
(4.45)

which shows that an input field in the imaginary quadrature will be fully subtracted from

the input mirror. A real quadrature input, on the other hand, will be reflected with an

amplitude gain of |g| =
√

2∆
κ and receive a −π/2 phaseshift. Keeping in mind that for

the system to have a unique steady state for all given input powers, the gain can at most

be
√

2∆th
κ =

√
6 (where it is important to remember that κ = κT /2). Furthermore, the

necessary bias power to achieve the correct intra-cavity bias field can be computed to be

|ε|2 = κ−1F

(
−∆

χ

)
= −∆κ

χ
=
|g|κT
4
√

2

κT
|χ|

. (4.46)

In the last expression we can see that the necessary bias power (or more correctly input

rate of bias photons) scales linearly with the achieved amplitude gain, the cavity linewidth

and the number of photons required to shift the cavity resonance by one linewidth.
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Figure 4.6.: The bandwidth of the amplifier decreases with increasing maximal gain g.

4.4.2. Noise properties of the dynamically resonant quadrature filter

Since we have designed the filter to have matching port couplings κ1 = κ2 we need not

consider additional internal losses unless they exceed our chosen value for κ. Otherwise we

can group all other losses (internal losses as well as additional waveguide couplings) in the

second port and engineer them to have equal total coupling rate κ. The additional input

port will only be driven by a vacuum but the noise from this input can be transmitted

through the cavity to the port that we are reflecting our signal off of. We should therefore

also compute the steady state transfer function for transmission from one port to the other.

This turns out to just be

ΞT (0) = ΞR(0)− 1 =

(
− i∆

κ − 1 − i∆
κ

i∆
κ

i∆
κ − 1

)
. (4.47)

Therefore, if we pick our gain to be unity, the primary signal output port will consist of the

reflected real input quadrature (rotated by −π/2 into the imaginary quadrature) as well as

transmitted (and amplified) shot noise from the other input port. The real quadrature of

the signal output will only contain a vacuum noise level, while the imaginary quadrature

contains the filtered real input quadrature with unit gain, its shot noise and the sum of

the real and imaginary quadrature shot noise contributions from the other input port.

Therefore, if the quadrature filter input’s noise exceeds the shot noise level by much more

than a factor of two (in power,
√

2 in amplitude), then the additional noise due to the filter

should not play a huge role. In Figure 4.8 we show a simulated trace for this system with
|χ|
κ = 1

10,000 and unit gain.
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bias in
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Figure 4.7.: A Kerr cavity based quadrature filter comprising a pair of two-port cavities biased to

dynamic resonance.

4.5. Two-mode Kerr-models

The two-mode Kerr-model is quite similar to two copies of a single mode model but features

an additional cross-Kerr-coupling term. For simplicity, we restrict ourselves to a single

input-output coupling per mode. This yields a two-port, two-mode model

S = 12, L =

(√
κaa
√
κbb

)
, H = ∆aa

†a+ ∆bb
†b+

χa
2
a†2a2 +

χb
2
b†2b2 + χaba

†ab†b. (4.48)

The QSDE’s for a and b are then given by

da = −
(κa

2
+ i∆a + iχaa

†a+ iχabb
†b
)
adt−

√
κadAa, (4.49)

db = −
(κb

2
+ i∆b + iχaba

†a+ iχbb
†b
)
bdt−

√
κbdAb. (4.50)

Thus we see that, as before, the modes experience a power dependent detuning, which now

depends on the photon numbers in both modes. We can carry out a similar steady state

analysis of the input output behavior as in the single mode case. Assuming constant input

amplitudes εa, εb to each mode we quickly find the semiclassical steady state relationship

between internal mode amplitudes α↔ 〈a〉 , β ↔ 〈b〉:

0 = −
(κa

2
+ i∆a + iχa|α|2 + iχab|β|2

)
α−
√
κaεa , (4.51)

0 = −
(κb

2
+ i∆b + iχab|α|2 + iχb|β|2

)
β −
√
κbεb (4.52)

⇒ κa|εa|2 =

[
κ2
a

4
+
(
∆a + χa|α|2 + χab|β|2

)2] |α|2, (4.53)

κb|εb|2 =

[
κ2
b

4
+
(
∆b + χab|α|2 + χb|β|2

)2] |β|2 . (4.54)
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Figure 4.8.: Stochastically simulated input and output signals of a quadrature filter. For a constant

amplitude input with slowly varying phase, the output contains only the real quadrature

of the input (with unit gain) plus a somewhat increased noise in the imaginary output

quadrature. The noise in this figure is effectively low-passed at the finite simulation

stepsize ∆t−1 = 10κ. Input noise at frequencies far off resonance is not affected by the

system and simply sees a unit gain.
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Defining again n := |α|2,m := |β|2 as semi-classical measures of the intra-cavity photon

number, and F := κa|εa|2, G := κb|εb|2 as measures of power in the coherent driving fields,

their mutual relationship is given by

F (n,m) :=

(
κ2
a

4
+ (∆a + χan+ χabm)2

)
n (4.55)

=

(
κ2
a

4
+ ∆2

a

)
n+ 2∆aχan

2 + 2∆aχabnm+ 2χaχabn
2m+ χ2

abnm
2 + χ2

an
3,

(4.56)

G(n,m) =

(
κ2
b

4
+ ∆2

b

)
m+ 2∆bχbm

2 + 2∆bχabnm+ 2χbχabnm
2 + χ2

abmn
2 + χ2

bm
3

(4.57)

A full discussion of when the system becomes bi-stable would exceed the scope of this

work. However, we note that the cases m = 0 or n = 0 reduce exactly to the single mode

problem, as one would expect. This implies that the single mode results are certainly still

necessary conditions for uni-stability (if all χ coefficients have the same sign, opposite to

∆)

|∆a/b| ≤
√

3κa/b

2
. (4.58)

In the following, we will usually designate a to be the signal mode, which may take on

continuous values, centered around a constant offset. We take b to be the control mode,

usually with only two different input conditions.

4.5.1. Cross-Kerr-effect phase modulator

Using a two-mode cross-Kerr modulation allows us to get a phase insensitive device and for

small/negligible losses we can reuse the scattered control signal to drive a whole array of

these devices. The easiest way to understand the general principle is as follows. If there

is no direct linear coupling between the two-modes (this is if they are not degenerate in

frequency or counter-propagating degenerate modes with negligible cross-scattering), then

their interaction is phase insensitive and can be understood intuitively as each mode’s

excitation leading to an additional detuning for itself and the respective other mode ∆′a =

∆′a(n,m) = ∆a + χan+ χabm and ∆′b = ∆′b(n,m) = ∆b + χabn+ χbm.

If there is just a single port per mode, no cross-scattering, and we neglect internal losses,

then a reflected beam coupling to either mode will receive no attenuation, but just a phase

shift that depends on both modes excitation energy. The overall phase factor of a scattered

signal mode field in steady state is given by

ε′a/εa = eiφa(n,m) = −
κa
2 − i∆

′
a(n,m)

κa
2 + i∆′a(n,m)

. (4.59)
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The device works if for a low control input the signal mode is detuned half a linewidth

above the laser driving frequency ∆′a = κa/2 and for a high control input the signal mode’s

detuning is shifted negatively by one linewidth to ∆′a = −κa/2 via the cross-Kerr interaction.

From the above expression we can see that this leads to a phase factors of i and −i for the

two control input conditions, respectively.

Things are simplified (and made maximally energy efficient) by choosing the control

mode’s detuning such that the high power state corresponds to dynamic resonance ∆′b ≈ 0

which gives the maximum build up of control photons in the cavity per input power.

Let’s assume that the control input takes on the values 0 and ξ. And let’s assume that

the average amplitude in the signal is ε and that any signals are given by small modulations

around this constant value (usually we will chose ε = 0).

Then, we have the following steady state relationships

√
κaεa = −

[κa
2

+ i (∆a + χan+ χabm)
]
α , (4.60)

√
κbεb = −

[κb
2

+ i (∆b + χabn+ χbm)
]
β . (4.61)

with n(εa, εb) = |α(εa, εb)|2 and m(εa, εb) = |β(εa, εb)|2 implicitly defined by the steady state

relationships.

We now demand that for a zero input on the control mode, the effective detuning for the

signal mode be +κa/2 and for a high input on the control mode it should shift to −κa/2
such that the relative phase difference in the transfer function for the signal (linearized

about that average input amplitude) is given by π. These conditions are equivalent to

∆a + χan(ε, 0) = κa/2 (4.62)

∆a + χan(ε, ξ) + χabm(ε, ξ) = −κa/2 (4.63)

Furthermore, we would like the control mode’s effective detuning to be zero at high control

power. This leads us to

∆b + χbm(ε, ξ) + χabn(ε, ξ) = 0. (4.64)

Since, by construction, the effective detuning for the signal mode is of the same magnitude

for either control mode state, we can assume that na(ε, 0) = na(ε, ξ) =: nε.

The control photon number is non-zero only for the high power input and we call its value

at that point mξ = m(ε, ξ) In this case we can write the above relations as

∆a = κa/2− χanε , (4.65)

∆b = −χbmξ − χabnε , (4.66)

mξ =
−κa/2−∆a − χanε

χab
. (4.67)
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Inserting the first into the third equation yields

mξ = − κa
χab

=
κa
|χab|

, (4.68)

and inserting this into the second we find

∆b =
χbκa
χab

− χabnε . (4.69)

Finally, since we determined everything such that the effective signal detuning is ∓κa/2,

we can express nε in terms of the average driving amplitude: nε = 2|ε|2
κa

, and similarly, since

the control mode is at dynamic resonance, we know that mξ = 4|ξ|2
κb

and consequently must

have |ξ| =
√
κaκb

2
√
|χab|

.

So we finally have

∆a =
κa
2
− 2χa|ε|2

κa
, (4.70)

∆b =
κaχb
χab

− 2χab|ε|2

κa
, (4.71)

ξ =

√
κaκb

2
√
|χab|

. (4.72)

In order to fulfill our single mode stability conditions we need to ensure that

∆a =
κa
2
− 2χa|ε|2

κa
≤
√

3
κa
2

(4.73)

⇔ κa ≥

√
4|χa||ε|2√

3− 1
(4.74)

as well as

∆b =
κaχb
χab

− 2χab|ε|2

κa
≤
√

3
κb
2

(4.75)

⇔ κb ≥
2√
3

(
κaχb
χab

+
2|χab||ε|2

κa

)
. (4.76)

Adhering to these conditions has generally yielded stable models in numerical simulations.

For zero signal offset ε = 0 we can first pick κa and then choose a κb such that κb ≥ 2√
3

κaχb
χab

.

For non-zero signal offset we can fix ra, rb > 1 and choose

κa = ra

√
4|χa||ε|2√

3− 1
, (4.77)

κb = rbra
2√
3

√
4|χa||ε|2√

3− 1

χb
χab

(
1 +

(
√

3− 1)χ2
ab

2r2
aχaχb

)
. (4.78)

and then proceed to compute ∆a,∆b and the high control input amplitude ξ from these

using Equations (4.70) to (4.72).
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If we combine this two-mode cavity with an additional −π/2 phase shift for the signal

input, then for a low control input εb = 0 any signal with amplitude close to ε in magnitude

will just be scattered without a phase shift. For a high control input εb = ξ that same

input would pick up a π phase shift. We can wrap this phase shifter in an interferometer

to realize an all-optical router equivalent to a so called ‘Fredkin gate’.

4.5.2. An all-optical Fredkin gate

As mentioned above, we wrap the two-mode cavity with parameters chosen according to

the previous subsection 4.5.1 with ε = 0 and a subsequent −π/2 phase shifting element in

a Mach-Zehnder interferometer. In Figure 4.10 we show some numerical simulation results

control out 

signal in 2

signal out1

signal out 2

multiplexer de-multiplexer

phase
modulator

control in

signal in 1

Fredkin gate circuit symbol

Figure 4.9.: An optical Fredkin gate based on having two non-degenerate modes cross phase

modulate in a doubly resonant Kerr-cavity. Based on the control input, the Kerr-

cavity imparts a phase shift of 0 or π. The control and signal inputs are combined by

multiplexing and demultiplexing elements and the overall signal input/output path is

wrapped in a Mach-Zehnder interferometer to enable controlled switching.

for a switch constructed with the above scheme.

4.5.3. Two-mode-thresholder

The modified Fredkin-gate (with a non-zero ε) can act as a thresholding device. It turns

out that the switching behavior is relatively robust to slight deviations in the control input

power, and, more importantly, the threshold for switching is actually larger than at half the

high input amplitude. This enables us to use the Fredkin gate with a single constant signal

input (now acting more like a logical/binary value) and a continuously variable control input

as a thresholder with two inverted signal outputs (εb > εthb ) and ¬(εb > εthb ) = (εb ≤ εthb ).
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Figure 4.10.: When the control input (green trace) switches from zero to its ‘on’ state, the signal

inputs (second plot) are switched on the outputs (last plot).

For a thresholder we may wish to bias the control input with an amplitude ξbias such that

the overall circuit acts as a 50% beamsplitter for the signal ports. This marks the halfway

point between the two switch states. This is the case when the signal mode is dynamically

resonant with in the two-mode cavity:

0 = ∆a + χan(ε, ξbias) + χabm(ε, ξbias) ⇒ n(ε, ξbias) =
4|ε|2

κa
(4.79)

⇒ m(ε, ξbias) = −
∆a + 4χa|ε|2

κa

χab
(4.80)

⇒ |ξbias|2 =

[
κ2
b

4
+ (∆b + χbm(ε, ξbias) + χabn(ε, ξbias))

2

]
m(ε, ξbias)

κb
. (4.81)

4.6. Non-degenerate optical parametric oscillators

Both degenerate and non-degenerate optical parametric oscillators (DOPOs and NOPOs,

respectively) are very interesting systems to study as they exhibit critical dynamical points

and multi-stability making them useful candidates for applications in signal processing and

creating optical memories. We focus here on the non-degenerate case, as this will turn

out to be useful in the next chapter where we construct a device with continuous memory.

The math of the DOPO is very similar to the NOPO case, but it only exhibits a discrete

bi-stability.

The basic model we are considering here is given by a cavity with three modes, a pump

field c, a signal a and an idler mode b. The signal and idler resonance frequencies add up to
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the pump frequency ωc = ωa+ωb and there is a χ2- non-linearity that allows for conversion

of a pump photon into a pair of signal and idler photons and vice versa.

A basic SLH model would then be

S = 1, La = (
√
κaa,

√
κbb,
√
κcc)

T , (4.82)

H = ∆aa
†a+ ∆bb

†b+ i
(
χa†b†c− χ∗abc†

)
. (4.83)

Going to a semi-classical description we introduce the complex mode amplitudes (α, β, σ)↔
( 〈a〉 , 〈b〉 , 〈c〉). The drift component of their generally stochastic dynamics is then given by:

α̇ = −
(κa

2
+ i∆a

)
α+ χβ∗σ , (4.84)

β̇ = −
(κb

2
+ i∆b

)
β + χα∗σ , (4.85)

σ̇ = −κc
2
σ − χ∗ab . (4.86)

As they are, the equations of motion are invariant under any simultaneous transformation

of modes and the χ parameter:

α→ αeiφ, β → βeiθ, σ → σeiν , χ→ χei(φ+θ−ν) . (4.87)

We can fix φ + θ = − argχ to enforce χ ∈ R≥0 and still retain the original U(1) × U(1)

symmetry for the modes:

α→ αeiφ+iν , β → βe−iφ+iν , σ → σeiν . (4.88)

Finally, we will want to include an external driving term for the pump. This changes

Lc → Lc + ε and H → H +
√
κc

2i

(
εc† − ε∗c

)
. The equation of motion for the pump is

modified as

σ̇ → σ̇ −
√
κcε . (4.89)

We can now use the symmetry of the problem to fix the phase of σ such that ε ∈ R≥0. With

this the model becomes

α̇ = −
(κa

2
+ i∆a

)
α+ χβ∗σ , (4.90)

β̇ = −
(κb

2
+ i∆b

)
β + χα∗σ , (4.91)

σ̇ = −κc
2
σ − χ∗ab−

√
κcε , (4.92)

where we are free to choose the phase of χ and ε as we want to and we still retain a single

U(1) symmetry

α→ αeiφ, β → βe−iφ. (4.93)
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4.6.1. Eliminated pump model

Often, we will consider a case in which the pump decay rate is much larger than the signal

and idler decay rates κc � κa/b. In this case we can adiabatically eliminate the pump

dynamics (as it becomes “slaved” to the signal and idler) and fix:

σ ≈ − 2

κc
(χ∗ab+

√
κcε) . (4.94)

The reduced model in this case (and treating the mode variables as commutative) is given

by

α̇ = −
(
κa
2

+
2|χ|2

κc
β∗β + i∆a

)
α− 2χε√

κ′c
β∗ , (4.95)

β̇ = −
(
κb
2

+
2|χ|2

κc
α∗α+ i∆b

)
β − 2χε√

κ′c
α∗ . (4.96)

This model retains the above remaining U(1) symmetry. For convenience, we will rewrite

this model as

α̇ = −
(κa

2
+ γβ∗β + i∆a

)
α− ηβ∗ (4.97)

β̇ = −
(κb

2
+ γα∗α+ i∆b

)
β − ηα∗ (4.98)

4.6.2. Fixpoints and stability

The general Jacobian of the full model is given by

J(α, α∗, β, β∗, σ, σ∗) =



−
(
κa
2 + i∆a

)
0 0 χσ χβ∗ 0

0 −
(
κa
2 − i∆a

)
χ∗σ∗ 0 0 χ∗β

0 χσ −
(
κb
2 + i∆b

)
0 χα∗ 0

χ∗σ∗ 0 0 −
(
κb
2 − i∆b

)
0 χ∗α

−χ∗β 0 −χ∗α 0 −κc
2 0

0 −χβ∗ 0 −χα∗ 0 −κc
2


(4.99)

The reduced model Jacobian is given by

J(α, α∗, β, β∗) =
−
(
κa
2 + γ|β|2 + i∆a

)
0 −γαβ∗ −η − γab

0 −
(
κa
2 + γ|β|2 − i∆a

)
−η∗ − γα∗β∗ −γα∗β

−γα∗β −η − γab −
(
κb
2 + γ|α|2 + i∆b

)
0

−η∗ − γα∗β∗ −γαβ∗ 0 −
(
κb
2 + γ|α|2 − i∆b

)

 .

(4.100)
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4.6.3. Below threshold

Full model

A fixpoint that always exists is given by α = β = 0, σ = − 2ε√
κc

. Inserting this into the

Jacobian, find that if we arrange the variables in pairs as (δα, δβ∗), (δα∗, δβ), (δσ, δσ∗)

there is no cross-coupling between them in the sub-threshold Jacobian. The pump mode

has a trivial Eigenspace with a single degenerate eigenvalue −κc
2 . The Eigenvalues of the

first pair are complex conjugates of the second, so it suffices to just look at one case:

J(α, β∗) =

(
A C

C∗ B

)
(4.101)

with A = −
(
κa
2 + i∆a

)
, B = −

(
κb
2 − i∆b

)
and C = χσ. Then the eigenvalues are given

by

λ± =
1

2

(
A+B ±

√
(A−B)2 + 4|C|2

)
(4.102)

Now the real parts of A and B and it can be shown that only λ− can cross into the right

half plane. This happens when

κa + κb ≤ 2Re

√
(κa − κb)2

4
− (∆a + ∆b)2 + 4|χσ|2 +

i

2
(∆a + ∆b)(κa − κb) (4.103)

Since σ is directly proportional to the pump drive, we see that there always exists a

critical pump driving strength at which this Eigenvalue becomes unstable. On resonance

∆a = ∆b = 0 and for equal decay rates κa = κb = κ this simplifies to |σ| ≥ κ
2|χ| ⇔ |ε| ≥

κ
√
κc

4|χ| .

Off resonance and for a less symmetric model, the condition is modified.

Below we will derive a much simpler expression for the threshold.

Reduced model

The reduced model also has a fixpoint at α = β = 0 and if we insert this into the reduced

model Jacobian we end up with an equivalent threshold condition as above, now in terms

of the effective pump parameter |η| ∝ |ε|.

4.6.4. Above threshold

In steady state we must have
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0 = −
(κa

2
+ i∆a

)
α+ χβ∗σ (4.104)

0 = −
(κb

2
+ i∆b

)
β + χα∗σ (4.105)

0 = −κc
2
σ − χ∗ab−

√
κcε (4.106)

From the first two equations we find

α =
|χσ|2

(κa/2 + i∆a)(κb/2− i∆b)
α (4.107)

This is either solved by setting α = 0 which leads to the above sub-threshold solution or

by requiring that the coefficient on the RHS is one:

α 6= 0⇒ |χσ|2 = (κa/2 + i∆a)(κb/2− i∆b) (4.108)

=
κaκb

4
+ ∆a∆b +

i

2
(∆aκb −∆bκa) (4.109)

The first thing to note is that this equation can only be solved if the imaginary part of

the RHS is set to zero. This poses a constraint on the model parameters:

∆aκb = ∆bκa (4.110)

If the constraint is satisfied, the real part of the equation gives a more precise threshold

condition

|χσ|2 =
κaκb

4
+ ∆a∆b. (4.111)

Note that this equality holds at and above threshold. Any additional pump driving power

is reflected or converted to signal and idler photons.

If the constraint isn’t satisfied, then note that we can always transform into a rotating

frame where it is: Applying a tranformation U(φ) = exp(−iφ(a†a − b†b)) to the mode

operators realizes the transformation

U(φ)aU †(φ) = a− iφ[a†a, a] + · · · = aeiφ, U(φ)bU †(φ) = be−iφ (4.112)

If we now substitute a time dependent angle φ = ωt then this modifies the effective

detunings of a and b as
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∆a/b → ∆a/b ± ω (4.113)

Inserting this into the constraint, we can solve for the angular frequency to find the

transformation that will take us in the correct rotating frame

(∆a + ω)κb = (∆b − ω)κa (4.114)

⇔ ω = −∆aκb −∆bκa
κa + κb

. (4.115)

The new effective detunings are then

∆′a/b = ∆a/b ∓
∆aκb −∆bκa
κa + κb

= κa/b
∆a −∆b

κa + κb
(4.116)

and it’s easy to see that they satisfy the constraints.

Plugging this in above gives us the threshold in terms of the original detunings:

|χσ|2 =
κaκb

4
+ ∆′a∆

′
b (4.117)

=
κaκb

4

[
1 + 4

(
∆a −∆b

κa + κb

)2
]

(4.118)

Or, reexpressing this in terms of the pump driving amplitude we find that to be at or

above threshold we need

|ε|2 ≥ κaκbκc
16|χ|2

[
1 + 4

(
∆a −∆b

κa + κb

)2
]
. (4.119)

In general the detuning constraint is not satisfied and thus the system will start oscillating

at frequency ω = −∆aκb−∆bκa
κa+κb

, but with a constant amplitude for signal and idler. The case

ω = 0 always corresponds to looking at the system within the appropriate rotating frame.

This frame is ideally suited to studying phase locking because all explicit time dependence

has been removed by the transformation.

The above threshold condition does not just mark where the oscillating solution starts to

exist, but also where the sub-threshold solution becomes unstable. The oscillating solution

bifurcates from this sub-threshold solution as we will now show by explicitly computing the

signal/idler mode amplitudes as a function of the pump drive.

To do this, assume again that the detuning constraint is again satisfied ∆aκb = ∆bκa,

then we can derive the following closed set of relation ship between α and β∗:
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0 = − (Γa + i∆a)α− ηβ∗ (4.120)

0 = − (Γb − i∆b)β
∗ − η∗α (4.121)

where we have introduced the power dependent decay rates Γa = κa
2 + γ|β|2 and Γb =

κb
2 + γ|α|2. Combining these two equations we find

α =
|η|2

(Γa + i∆a)(Γb − i∆b)
α, (4.122)

which for non-zero α 6= 0 leads us to to find

∆aΓb = ∆bΓa (4.123)

ΓaΓb = |η|2 −∆a∆b (4.124)

Using the constraint on the detunings we find

Γa/b = κa/b

√
|η|2 −∆a∆b

κaκb
(4.125)

Using the relationship between the decay rates and the intra-cavity amplitudes we finally

find

|α|2 =
Γb − κb/2

γ
=
κb
γ

√ |η|2 −∆a∆b

κaκb
− 1

2

 (4.126)

|β|2 =
Γa − κa/2

γ
=
κa
γ

√ |η|2 −∆a∆b

κaκb
− 1

2

 . (4.127)

This implies that |α|
2

|β|2 = κb
κa

which can be rewritten as κa|α|2 = κb|β|2 in which form it

shows that the output power from signal and idler is equal.

The phases of α and β

The only thing left to determine are the phases of signal and idler. Due to the symmetry

α → αeiφ, β → β−iφ we will compute the phase of an invariant under this transformation

given by ab. This can be obtained from
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β∗ = − η∗

Γb − i∆b
α (4.128)

⇔ |β|2 = − η∗

Γb − i∆b
ab (4.129)

If we restrict ourselves to the special (but still quite general) case η ∈ R<0, then we must

have

⇒ arg ab = arg

(
1− i∆a

Γa

)
= arg

(
1− i∆b

Γb

)
(4.130)

= arctan
∆a/b

κa/b

√
κaκb

η2 −∆a∆b
(4.131)

This shows that for η < 0 and on resonance, we will always have ab ∈ R>0, i.e., the

two-mode amplitudes are of opposite complex phase.

The resonant case ∆a/b = 0, η, ε < 0, χ > 0

As we’ve already seen, the phases of the modes are not only perfectly correlated but also

exactly opposite each other. Moreover, the mode amplitudes in this case can be expressed

as:

|α|2 =
κb
γ

(
|η|
√
κaκb

− 1

2

)
(4.132)

|β|2 =
κa
γ

(
|η|
√
κaκb

− 1

2

)
. (4.133)

Furthermore, we know that σ =
√
κaκb
2χ .

4.7. A Bifurcating Kerr Amplifier

There has rececently been a lot of interest in realizing Coherent Ising Machines (CIM)

[121, 131] in which discrete Ising ‘spins’ are encoded in individual phase-bistable modes

or competing polarization modes of a nonlinear photonic network. The problem of find-

ing the ground state of an Ising problem can then be related to finding the ‘least stable’

or ‘maximum gain’ collective supermode of such a network, as some gain mechanism is

continuously turned on [121, 131]. Existing proposals and experiments have so far either

focused on free-space networks of injection locked lasers or networks of parametric oscilla-

tors [121, 131, 71, 47, 49, 53, 109]. The most scalable approaches to date have been realized

using time-multiplexed pulsed degenerate parametric oscillators with delay line coupled or

measurement based feedback induced interactions.
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During my work in Ray Beausoleil’s Large Scale Integrated Photonics (LSIP) group at

Hewlett Packard Labs, I proposed a different physical design for realizing a single ‘spin’ de-

gree of freedom that I will outline in this section. The full Ising circuit model, an evaluation

of its performance and a discussion of its expected robustness to fabrication error will be

published in [118].

To make an Ising machine truly portable and mass-manufacturable, it would be con-

venient to have a realization as an integrated photonic system. Furthermore, it would be

desirable (at least in initial devices) to require only a single optical wavelength for operating

the Ising machine. As silicon features relatively strong dispersive nonlinearity (thermo-optic

nonlinearity, free-carrier dispersion and Kerr-nonlinearity) we will here describe how to use

dispersively nonlinear circuit elements for creating the individual Ising ‘spin’ devices. Like

a degenerate parametric oscillator our design features a continuous bifurcation below which

the bifurcating mode is very sensitive to external perturbing fields.

We construct our spin from an extended version of the above described symmetric am-

plifier (cf. Section 4.3) with an additional lossy self-feedback path on the bias input and

output ports. As we will describe below, the bias feedback ensures that only two symmetric

states exist above this bias power threshold with anti-correlated internal resonator states.

In the absence of fabrication errors, such a device would in principle exhibit a pure pitchfork

bifurcation as the pump drive increases above its threshold level. This is analogous to the

bifurcation occurring in a degenerate optical parametric oscillator. Thus, our design mimics

that of [131], but with the advantage that the ‘pump’ input field is of the same wavelength

as the ‘signal’.

If the resonators are detuned beyond the bi-stability threshold detuning |∆| > ∆th =
√

3κT
2 the linear gain diverges at a specific bias power threshold beyond which the res-

onators exhibit bi-stability. We label the low and high power bi-stable resonator states

as |αj | ∈ {αlo, αhi}, j = 1, 2. The amplifier MZI is modified by an additional feed-

back path connecting the bias output back to bias input. Without feedback, an inde-

pendent pair of bi-stable resonators would exhibit 2 × 2 = 4 different meta-stable states

(|α1|, |α2|) ∈ {(αlo, αlo), (αhi, αlo), (αlo, αhi), (αhi, αhi)},. By an appropriately chosen bias

feedback phase, two of the meta-stable states are removed such that the two resonators can

only assume anti-correlated internal states (|α1|, |α2|) ∈ {(αhi, αlo), (αlo, αhi)}, Figure 4.11

has a schematic visualizing its construction.

We assume the symmetric open loop amplifier model with ODE’s given by

α̇1 = −
[
κT /2 + i

(
∆ + χ|α1|2

)]
α1 −

√
κ/2 (β1 + β2)−

√
κLη1 (4.134)

α̇2 = −
[
κT /2 + i

(
∆ + χ|α2|2

)]
α2 −

√
κ/2 (β1 − β2)−

√
κLη2, (4.135)
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Figure 4.11.: Schematic for a tunable optical amplifier with self-feedback (TAFB): Two identical

microring resonators with dispersive optical non-linearity are placed in the arms of

a Mach-Zehnder interferometer formed by waveguides and either directional couplers

(DCs) or multimode interference devices (MMIs). One of the interferometer’s outputs

is fed back to the input to selectively modify the resonance properties of the symmetric

and asymmetric supermodes of the resonator pair. Additional couplers on the second

input and output allow injecting bias fields for the spin variable as well as measure the

current spin amplitude.

and the input-output relationship given by

β′1 = β1 +
√
κ/2 (α1 + α2) (4.136)

β′2 = β2 +
√
κ/2 (α1 − α2) , (4.137)

where we have assumed that the first MMI’s scattering matrix is given by S1 = 1√
2

(
1 1

1 −1

)
and the second MMI’s scattering matrix is given by S2 = S−1

1 . For theoretical simplicity

we assume no scattering losses in the MMIs but in our numerical analysis we allow for such

losses as well.

We do assume internal resonator losses κL and summarize the total decay rate as the sum

of the internal loss and the waveguide coupling κT = κ + κL. The η1/2 are pure vacuum

noise inputs whereas β1/2 are a constant bias and time varying signal input to the system.

We see that dβ1 couples to the common mode α+ = α1+α2√
2

and dβ2 couples to the
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difference mode α− = α1−α2√
2

. We can re-express the SDEs in terms of these supermodes as

α̇+ = −
[
κT /2 + i∆ + iχ/2

(
|α+|2 + |α−|2

)]
α+

− iχRe (α+α
∗
−)α−dt−

√
κβ1 −

√
κLη+ (4.138)

α̇− = −
[
κT /2 + i∆ + iχ/2

(
|α+|2 + |α−|2

)]
α−

− iχRe (α+α
∗
−)α+ −

√
κβ2 −

√
κLη− (4.139)

and the input-output relationship given by

β′1 = β1 +
√
κα+ (4.140)

β′2 = β2 +
√
κα−. (4.141)

We now apply feedback of the common mode to itself by imposing β1 = r
(√
κα+ + β1

)︸ ︷︷ ︸
β′1

+
√

1− |r|2β,

this corresponds to inserting a beamsplitter with unitary mixing matrix

(
r

√
1− |r|2

−
√

1− |r|2 r∗

)
(with r ∈ C, |r| < 1) in the feedback and adding an input dβ to the second beamsplitter

input.

Solving this for the in-loop field amplitude we find

β1 =
r
√
κα+ +

√
1− |r|2β

1− r
. (4.142)

and inserting this into the SDE for α+ yields

α̇+ = −
[
κT /2 +

κr

1− r
+ i∆ + iχ/2

(
|α+|2 + |α−|2

)]
α+

− iχRe (α+α
∗
−)α− −

√
κ
√

1− |r|2β
1− r

−
√
κLη+ (4.143)

Thus, the feedback can be understood as modifying the input coupling rate and detuning

of the common mode as

κ→ κ

(
1 + 2Re

r

1− r

)
= κRe

1 + r

1− r
= κ′ (4.144)

∆→ ∆ + κIm
r

1− r
= ∆′ (4.145)

We see that for a real scattering parameter r the detuning is unmodified. Furthermore, the

effective coupling rate of the cavity can be made arbitrarily large or small.

Assuming a vanishing signal input β2 = 0 and constant bias input β = β0, if the system

is stable with a unique fixpoint, then the symmetry of (4.143) requires that α− = 0.

We can then solve for the steady state common mode amplitude via

0 = −
[
κ′T /2 + i∆′ + iχ|α+|2/2

]
α+ −

√
κ′ β0 (4.146)
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which is identical to the steady state relationship of a single Kerr-cavity with somewhat

modified parameters. We express bias amplitudes relative to the amplitude at which the

inflection point of the common mode photon number vs. drive amplitude occurs:

βmax =

√
κ′T

2/4 + (∆′ + χ/2n+,0)2)n+,0

κ′
, (4.147)

where n+,0 = 4|∆|
3|χ| .

A fixpoint with α− = 0 solving the above relations always exists, but it is not necessarily

stable. The linearization α+ → α+ + δα+, α− → δα− of the ODE yields the decoupled

equations (
˙δα+

˙δα−

)
=

(
−
[
κ′T /2 + i∆′ + iχ|α+|2

]
δα+ − iχα+

2/2δα∗+

−
[
κT /2 + i∆ + iχ|α+|2

]
δα− − iχα+

2/2δα∗−

)
(4.148)

Comparing these with the single Kerr cavity case we see that the fixpoint is stable at all

input amplitudes if either ∆/χ ≥ 0 or if we have both |∆| <
√

3κT /2 and |∆′| <
√

3κ′T /2.

When these conditions are violated, there generally exists a range of input amplitudes in

which the symmetric fix point is unstable, but it is always stable for sufficiently small or

large input amplitudes |β0|.
Let now investigate fixpoints where α+ is constant and α− is bi-stable. From the sym-

metry of the steady state equations we can infer that (α+, α−) is a fixpoint iff (α+,−α−)

is a fixpoint. Furthermore, we can assume that α+ ∈ R>0 since we can always adjust the

bias input phase to achieve this. We then find that

0 =
[
κT /2 + i∆ + iχ/2

(
2|α+|2 + |α−|2

)]
α− + iχ/2α2

+α
∗
−

Using this relationship we can show that a solution with non-zero α− exists for
∣∣∣|α+|2 − 4|∆|

3|χ|

∣∣∣ ≤
√

4∆2−3κ2
T

3|χ| . For the RHS to be real we furthermore need that ∆/χ ≤ 0 and |∆| ≥
√

3κT /2.

If these conditions are met, then we have

|α−|2 = 2

∣∣∣∣∆χ
∣∣∣∣+

√
|α+|4 −

κ2
T

χ2
− 2|α+|2. (4.149)

We already know that |∆| ≥
√

3κT /2 guarantees that the α− = 0 solution becomes

unstable. In principle we could also expect α+ to have multiple possible solutions with

potentially different stability, but we intuitively expect that this is not the case as long as

|∆′| <
√

3κ′T /2.

In Figures 4.12 (a) and (b) I have plotted the bi-stable steady state amplitudes as well

as the magnitude and phase of the coefficients of the steady state signal-signal transfer

function of our device. In particular, the output signal mode satisfies |β2|′ = |Uβ2 + V β∗2 |
and thus exhibits phase sensitive gain that diverges at a specific pump amplitude.
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Figure 4.12.: The steady states of the tunable amplifier with self-feedback exhibits a bifurcation in

which the differential mode becomes unstable. The blue and green curves show the

upper and lower power state that exists in each respective resonator. The linear gain

diverges at the bifurcation points. The TAFB is wrapped in phase shifters such that

the real signal input quadrature is scattered (and amplified) to the real signal output

quadrature right at the first bifurcation point.
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4.8. Final remarks on optical computing

In this chapter we have studied a variety of optical components and circuits and provided

some insight into their dynamical behavior. A popular design pattern for engineering com-

putational devices is to synthesize a system with certain dynamical attractors that then

play a computational role, e.g., linear or non-linear (saturable) amplification or discrete

or continuous memory. Obviously this strategy has been around since the early days of

engineering, but there are good reasons to assume that biological computational systems

behave quite similarly. Computational studies of neural networks trained for specific tasks

have revealed a rich variety of dynamical behavior featuring separated timescales with fast

(computational) dynamics and slow (memory) dynamics [106].

In the final chapter of this thesis I present a method for deriving coupled quantum-

classical equations of motion between such oscillator mode amplitudes and a particular

representation of quantum system’s quantum state. In the presence of dissipation (and

thus decoherence), many of the dynamical features of the semi-classical version of a given

system are still present though certainly modified by the coupling to the quantum state.
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learning

This chapter was also published as [116].

Recent progress in integrated nanophotonic engineering [60, 25, 65, 95, 27, 32, 83, 20,

127, 98] has motivated follow-up proposals [69, 87] of nanophotonic circuits for all-optical

information processing. While most of these focus on implementations of digital logic, we

present here an approach to all-optical analog, neuromorphic computation and propose

design schemes for a set of devices to be used as building blocks for large scale circuits.

Optical computation has been a long-time goal [1, 102], with research interest surging

regularly after new engineering capabilities are attained [76, 77], but so far the parallel

progress and momentum of CMOS based integrated electronics has outperformed all-optical

devices.

In recent years we have seen rapid progress in the domain of machine learning, and arti-

ficial intelligence in general. Although most current ‘big data’-applications are realized on

digital computing architectures, there is now an increasing amount of computation done in

specialized hardware such as GPUs. Specialized analog computational devices for solving

specific subproblems more efficiently than possible with either GPUs or general purpose

computers are being considered or already implemented by companies such as IBM, Google

and HP and in academia, as well. [2, 80, 104, 131] Specifically in the field of neuromor-

phic computation, there has been impressive progress on CMOS based analog computation

platforms [19, 17].

Several neuromorphic approaches to use complex nonlinear optical systems for machine

learning applications have recently been proposed [26, 125, 124, 24] and some initial schemes

have been implemented [62, 127]. So far, however, all of these ‘optical reservoir computers’

have still required digital computers to prepare the inputs and process the output of these

devices with the optical systems only being employed as static nonlinear mappings for

dimensional lifting to a high dimensional feature space [22], in which one then applies

straightforward linear regression or classification for learning an input-output map. [129]

In this work, we address how the final stage of such a system, i.e., the linear classifier

could be realized all-optically. We provide a universal scheme, i.e., independent of which
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particular kind of optical nonlinearity is employed, for constructing tunable all-optical,

phase-sensitive amplifiers and then outline how these can be combined with self-oscillating

systems to realize an optical amplifier with programmable gain, i.e., where the gain can be

set once and is then fixed subsequently.

Using these as building blocks we construct an all-optical perceptron [96, 97], a system

that can classify multi-dimensional input data and, using pre-classified training data learn

the correct classification boundary ‘on-line’, i.e., incrementally. The perceptron can be seen

as a highly simplified model of a neuron. While the idea of all-optical neural networks has

been proposed before [75] and an impressive scheme using electronic, measurement-based

feedback for spiking optical signals has been realized [30], to our knowledge, we offer the

first complete description for how the synaptic weights can be stored in an optical memory

and programmed via feedback.

The physical models underlying the employed circuit components are high intrinsic-Q

optical resonators with strong optical nonlinearities. For theoretical simplicity we assume

resonators with either a χ2 or a χ3 nonlinearity, but the design can be adapted to depend

on only one of these two or alternative nonlinearities such as those based on free carrier

effects or optomechanical interactions.

The strength of the optical nonlinearity and the achievable Q-factors of the optical res-

onators determine the overall power scale and rate at which a real physical device could

operate. Both a stronger nonlinearity and higher Q allow operating at lower overall power.

We present numerical simulations of the system dynamics based on the semi-classical

Wigner-approximation to the full coherent quantum dynamics presented in [98]. For photon

numbers as low as (∼ 10− 20) this approximation allows us to accurately model the effect

of optical quantum shot noise even in large-scale circuits.

In the limit of both very high Q and very strong nonlinearity, we expect quantum effects to

become significant as entanglement can arise between the field modes of physically separated

resonators. In the appendix, we provide full quantum models for all basic components of our

circuit. The possibility of a quantum speedup is being addressed in ongoing work. Recently,

D-Wave Systems has generated a lot of interest in their own superconducting qubit based

quantum annealer. Although the exact benefits of quantum dynamics in their machines

has not been conclusively established [8], recent results analyzing the role of tunneling in a

quantum annealer [9] are intriguing and suggest that quantum effects can be harnessed in

computational devices that are not unitary quantum computers.
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5.1. The Perceptron algorithm

5.1. The Perceptron algorithm

The perceptron is a machine learning algorithm that maps an input x ∈ Rn to a single

binary class label ŷw[x] ∈ {0, 1}. Binary classifiers generally operate by dividing the input

space into two disjoint sets and identifying these with the class labels. The perceptron is a

linear classifier, meaning that the surface separating the two class label sets is a linear space,

a hyperplane, and its output is computed simply by applying a step function θ(u) := 1u≥0

to the inner product of a single data point x with a fixed weight vector w:

ŷw[x] := θ(wTx) =

1 for wTx ≥ 0,

0 otherwise.
(5.1)

Geometrically, the weight vector w parametrizes the hyperplane {z ∈ Rn : wT z = 0} that

forms the decision boundary.

In the above parametrization the decision boundary always contains the origin z = 0, but

the more general case of an affine decision boundary {z̃ ∈ Rn : w̃T z̃ = b} can be obtained

by extending the input vector by a constant z = (z̃T , 1)T ∈ Rn+1 and similarly defining an

extended weight vector w = (w̃T ,−b)T .

The perceptron converges in a finite number of steps for all linearly separable problems

[96] by randomly iterating over a set of pre-classified training data {(y(j), x(j)) ∈ {0, 1} ⊗
Rn, j = 1, 2, . . . ,M} and imparting a small weight correction w → w+ ∆w for each falsely

classified training example x(j)

∆w = α̃
(
y(j) − ŷw[x(j)]

)
x(j). (5.2)

The learning rate α̃ > 0 determines the magnitude of the correction applied for each training

example. The expression in parentheses can only take on the values {0,−1, 1} with the zero

corresponding to a correctly classified example and the non-zero values corresponding to

the two different possible classification errors.

Usually there exist many separating hyperplanes for a given linear binary classification

problem. The standard perceptron is only guaranteed to find one that works for the training

set. It is possible to introduce a notion of optimality to this problem by considering the

minimal distance (“margin”) of the training data to the found separating hyperplane. Max-

imization of this margin naturally leads to the “support vector machine” (SVM) algorithm

[21]. Although the SVM outperforms the perceptron in many classification tasks it does

not lend itself to a hardware implementation as readily because it cannot be trained incre-

mentally. It is this that makes the perceptron algorithm especially suited for a hardware

implementation: We can convert the discrete update rule (5.2) to a differential equation

ẇ(t) = α
{
y(t)− ŷw(t)(t)

}
x(t), (5.3)
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and then construct a physical system that realizes these dynamics. In this continuous-time

version the inputs are piece-wise constant x(t) = x(jt), y(t) = y(jt) and take on the same

discrete values as above indexed by jt := d t∆te ∈ {1, 2, . . . ,M = T
∆t}.

5.1.1. The circuit modeling framework

Circuits are fully described via Quantum Hardware Description Language (QHDL) [117]

based on Gough and James’ SLH-framework [41, 40]. To carry out numerical simulations

for large scale networks, we derive a system of semi-classical Langevin equations based

on the Wigner-transformation as described in [98]. Note that there is a perfect one-to-one

correspondence between nonlinear cavity models expressed via SLH and the Wigner method

as long as the nonlinearities involve only oscillator degrees of freedom. There is ongoing

research in our group to establish similar results for more general nonlinearities [48].

Both the Wigner method and the more general SLH framework can be used to model net-

works of quantum systems where the interconnections are realized through bosonic quantum

fields. The SLH framework describes a system interacting with n independent input fields

in terms of a unitary scattering matrix S parametrizing direct field scattering, a coupling

vector L = (L1, L2, . . . , Ln)T parametrizing how external fields couple into the system and

how the system variables couple to the output and a Hamilton operator inducing the inter-

nal dynamics. We summarize these objects in a triplet (S,L,H). L and H are sufficient to

parametrize any Schrödinger picture simulation of the quantum dynamics, e.g., the master

equation for a mixed system state ρ is given by

ρ̇ = −i[H, ρ] +
n∑
j=1

(
LjρL

†
j −

1

2
{L†jLj , ρ}

)
. (5.4)

The scattering matrix S is important when composing components into a network. In

particular, the input-output relation in the SLH framework is given by

dAout = S dAin + Ldt, (5.5)

where the dAin/out,j , j = 1, 2, . . . , n are to be understood as quantum stochastic processes

whose differentials can be manipulated via a quantum Ito calculus [41]. The Wigner method

provides a simplified, approximate description which is valid when all non-linear resonator

modes are in strongly displaced states [98]. The simulations presented here were carried out

exclusively at energy scales for which the Wigner method is valid, allowing us to scale to

much larger system sizes than we could in a full SLH-based quantum simulation. This is

because the computational complexity of the Wigner method scales at most quadratically

(and in sparsely interconnected systems nearly linearly) with the number of components as

opposed to the exponential state space scaling of a quantum mechanical Hilbert space. We
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nonetheless provide our models in both Wigner-method form and SLH form in anticipation

that our component models will also be extremely useful in the full quantum regime.

In the Wigner-based formalism, a system is described in terms of time-dependent complex

coherent amplitudes α(t) = (α1(t), α2(t), . . . , αm(t))T for the internal cavity modes and ex-

ternal inputs βin(t) = (βin,1(t), βin,2(t), . . . , βin,n(t))T . These amplitudes relate to quantum

mechanical expectations as 〈αj〉 ≈ 〈aj〉QM , where 〈·〉 denotes the expectation with respect

to the Wigner quasi distribution and 〈·〉QM a quantum mechanical expectation value. See

[98] for the corresponding relations of higher order moments.

To simplify the analysis, we exclusively work in a rotating frame with respect to all driving

fields. As in the SLH case we define output modes βout(t) that are algebraically related to

the inputs and the internal modes. The full dynamics of the internal and external modes

are then governed by a multi-dimensional Langevin equation

α̇(t) = [Aα(t) + a +ANL(α, t)] + Bβin(t), (5.6)

as well as a purely algebraic, linear input-output relationship

βout(t) = [Cα(t) + c] + Dβin(t). (5.7)

The complex matrices A,B,C,D as well as the constant bias input vectors a and c

parametrize the linear dynamics, whereas the function ANL(α, t) gives the nonlinear con-

tribution to the dynamics of the internal cavity modes.

Each input consists of a coherent, deterministic part and a stochastic contribution βin,j(t) =

β̄in,j(t) + ηj(t). The stochastic terms ηj(t) = ηj,1(t) + iηj,2(t) are assumed to be indepen-

dent complex Gaussian white noise processes with correlation function 〈ηj,s(t)ηk,r(t′)〉 =
1
4δjkδsrδ(t− t

′).

The linearity of the input-output relationship in either framework (5.5) and (5.7) in the

external degrees of freedom leads to algebraic rules for deriving reduced models for whole cir-

cuits of nonlinear optical resonators by concatenating component models and algebraically

solving for their interconnections. [40, 98] To see the basic component models used in this

work see Appendix 5.5. Netlists for composite components and the whole circuit will be

made available at [111].

5.2. The Coherent Perceptron Circuit

The full perceptron’s circuit is visualized in Figure 5.1. The input data x to the perceptron

circuit is encoded in the real quadrature ofN coherent optical inputs. Equation (5.3) informs

us what circuit elements are required for a hardware implementation by decomposing the

necessary operations:
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+

Quadrature Filter

Thresholder

Figure 5.1.: An example perceptron circuit consisting of N = 4 programmable amplifiers for the

coherent input vector x = (x1, x2, x3, x4)T , a static mixing element that sums their

output, a quadrature filter to remove the imaginary quadrature and a final thresholding

element to generate the estimated binary class label ŷ. The additional binary input T

controls whether the system is in training mode, in which case the estimated class label

ŷ is compared to the true class label Y which is provided as an additional input. When

they differ, the programmable amplifiers receive a feedback signal to adjust their internal

weights.

1. Each input xj is multiplied by a weight wj .

2. The weighted inputs are coherently added.

3. The sum drives a thresholding element to generate the estimated class label ŷ.

4. In the training phase (input T = 1) the estimated class label ŷ is compared with the

true class label (input Y ) and based on the outcome, feedback is applied to modify

the weights {wj}.

The most crucial element for this circuit is the system that multiplies an input xj with a

programmable weight wj . This not only requires having a linear amplifier with tunable gain,

but also a way to encode and store the continuous weights wj . In the following we outline

one way how such systems can be constructed from basic nonlinear optical cavity models:

Section 5.2.1 presents an elegant way to construct a phase sensitive linear optical amplifier

80



5.2. The Coherent Perceptron Circuit

where the gain can be tuned by changing the amplitude of a bias input. In Section 5.2.2

we propose using an above threshold non-degenerate optical parametric amplifier to store

a continuous variable in the output phase of the signal (or idler) mode. In Section 5.2.3

these systems are combined to realize an optical amplifier with programmable gain, i.e., a

control input can program its gain, which then stays constant even after the control has

been turned off. Finally, we present a simple model for all-optical switches based on a cavity

with two modes that interact via a cross-Kerr-effect in Section 5.2.4. This element is used

both for the feedback logic as well as the thresholding function to generate the class label

ŷ.

5.2.1. Tunable Gain Kerr-amplifier

A single mode Kerr-nonlinear resonator driven by an appropriately detuned coherent drive

ε can have a strongly nonlinear dependence of the intra-cavity energy on the drive power.

When the drive of a single resonator is given by the sum of a constant large bias amplitude

and a small signal ε = 1√
2
(ε0 + δε), the steady state reflected amplitude is ε′ = 1√

2
(ηε0 +

g−(ε0)δε + g+(ε0)δε∗) + O(δε2), where |η| ≤ 1 with equality for the ideal case of negligible

intrinsic cavity losses. The small signal thus experiences phase sensitive gain dependent on

the bias amplitude and phase. We provide analytic expressions for the gain in Appendix

5.5.2.

Placing two identical resonators in the arms of an interferometer allows for isolating the

signal and bias outputs even if their amplitudes vary by canceling the scattered bias in

one output and the scattered signal in the other (cf. Figure 5.2). This highly symmetric

construction, which generalizes to any other optical nonlinearity, ensures that the the signal

output is linear in δε up to third order1. If the system parameters are well-chosen, the

amplifier gain depends very strongly on small variations of the bias amplitude. This allows

to tune the gain from close to unity to its maximum value, which, for a given waveguide

coupling κ and Kerr coefficient χ depends on the drive detuning from cavity. For Kerr-

nonlinear resonators there exists a critical detuning beyond which the system becomes

bi-stable and exhibits hysteresis. This can be used for thresholding type behavior though

as shown in [108] in this case it may be advantageous to reduce the symmetry of the circuit.

It is convenient to engineer the relative propagation phases such that at maximum gain,

a real quadrature input signal x ∈ R leads to an amplified output signal x′ = gmax
rr x with

no imaginary quadrature component (other than noise and higher order contributions).

However, for different bias input amplitudes and consequently lower gain values the output

will generally feature a linear imaginary quadrature component x′ = [grr(ε0) + igir(ε0)]x as

1One can easily convince oneself that all even order contributions are scattered into the bias output.
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Ampli�er circuit symbol

(a) Amplifier circuit
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(b) Gain vs. bias

Figure 5.2.: (a) shows two identical single mode Kerr-nonlinear optical resonators symmetrically

placed in the two arms of an interferometer. (b) gives the phase sensitive amplifier

gain grr(ε0) (green, solid) and the gir(ε0) (red, dashed) as a function of the bias photon

input rate normalized by the drive power at which dynamic resonance occurs. For

completeness we also provide gri (black X’s) and gii (black dots). The detuning has

been chosen such that gmax
rr = grr(ε

max
0 ) = 20. The dashed blue envelope gives the

maximal input output gain achievable between any two signal quadratures at that bias.

Note that grr vanishes at ε0/ε
max
0 ≈ 0.8.

well. Figure 5.2(b) demonstrates this for a particular choice of maximal gain. We note that

there exist previous proposals of using nonlinear resonator pairs inside interferometers to

achieve desirable input-output behavior [108], but to our knowledge, no one has proposed

using these for signal/bias isolation and tunable gain. To first order the linearized Kerr

model is actually identical to a sub-threshold degenerate OPO model. This implies that it

can be used to generate squeezed light and also that one could replace the Kerr-model by

an OPO model.

An almost identical circuit, but featuring resonators with additional internal loss equal

to the wave-guide coupling2 and constantly biased to dynamic resonance 〈|α|2〉ss = −∆/χ

can be used to realize a quadrature filter, i.e., an element that has unity gain for the real

quadrature and zero for the imaginary one. Now the quadrature filtered signal still has an

imaginary component, but to linear order this only consists of transmitted noise from the

additional internal loss. While it would be possible to add one of these downstream of every

tunable Kerr amplifier, in our specific application it is more efficient to add just a single

one downstream of where the individual amplifier outputs are summed (cf. Section 5.2.5).

This also reduces the total amount of additional noise introduced to the system.

2In the photonics community this is referred to as critically coupled, whereas the amplifier circuit would

ideally be strongly overcoupled such that additional internal losses are negligible.
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5.2. The Coherent Perceptron Circuit

5.2.2. Encoding and Storing the Gain

In the preceding section we have seen how to realize a tunable gain amplifier, but for

programming and storing this gain (or equivalently its bias amplitude) an additional com-

ponent is needed. Although it is straightforward to design a multi-stable system capable of

outputting a discrete set of different output powers to be used as the amplifier bias, such

schemes would likely require multiple nonlinear resonators and it would be more cumber-

some to drive transitions between the output states.

An alternative to such schemes is given by systems that have a continuous set of stable

states. Recent analysis of continuous time recurrent neural network models trained for com-

plex temporal information processing tasks has revealed multi-dimensional stable attractors

in the internal network dynamics that are used to store information over time. [106]

A simple semi-classical nonlinear resonator model to exhibit this is given by a non-

degenerate optical parametric oscillator (NOPO) pumped above threshold; for low pump

input powers this system allows for parametric amplification of a weak coherent signal (or

idler) input. In this case vacuum inputs for the signal and idler lead to outputs with zero

expected photon number. Above a critical threshold pump power, however, the system

down-converts pump photons into pairs of signal and idler photons.

Due to an internal U(1) symmetry of the underlying Hamiltonian (cf. Appendix 5.5.2),

the signal and idler modes spontaneously select phases that are dependent on each other

but independent of the pump phase. This implies that there exists a whole manifold of

fix-points related to each other via the symmetry transformation (αs, αi)→ (αse
iφ, αie

−iφ),

where αs and αi are the rotating frame signal and idler mode amplitudes, respectively.

Consequently the signal output of an above threshold NOPO lives on a circular manifold

(cf Figure 5.3).

Vacuum shot noise on the inputs leads to phase diffusion with a rate of γΦ = κ
8n0

, where

κ is the signal and idler line width and n0 is the steady state intra cavity photon number in

either mode. We point out that this diffusion rate does not directly depend on the strength

of the nonlinearity which only determines how strongly the system must be pumped to

achieve a given intra cavity photon number n0.

A weak external signal input breaks the symmetry and biases the signal output phase

towards the external signal’s phase. This allows for changing the programmed phase value.

Finally, we note that parametric oscillators can also be realized in materials with vanishing

χ2 nonlinearity. They have been successfully realized via four-wave mixing (i.e., exploiting

a χ3 nonlinearity) in [60, 99, 25] and even in opto-mechanical systems [20] in which case

the idler mode is given by a mechanical degree of freedom.

In principle any nonlinear optical system that has a stable limit cycle could be used to
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(a) Combined bias
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Figure 5.3.: The NOPO’s signal output ξ =
√
καs lives on a circular manifold parametrized by Φ

(a, upper figure). Vacuum input shot noise leads to small fluctuations perpendicular

to the manifold and diffusion along it. Mixing this signal output with a constant bias

offset on a beamsplitter produces two outputs with anti-correlated total amplitude (a,

lower figure). When both outputs are used to drive a complementary pair of tunable

amplifiers whose outputs are subtracted, the overall real-to-real quadrature gain (green)

of the system varies from positive to negative values (b). We can also see that the

real-to-imaginary gain (dashed red) stays small for all NOPO phases, which allows us to

efficiently subtract it downstream by the quadrature filter. The imaginary to real and

imaginary gains are also plotted.

store and encode a continuous value in its oscillation phase. Non-degenerate parametric

oscillators stand out because of their theoretical simplicity allowing for a ‘static’ analysis

inside a rotating frame.

5.2.3. Programmable Gain Amplifier

Combining the circuits described in the preceding sections allows us to construct a fully

programmable phase sensitive amplifier. In Figure 5.2(b) we see that there exists a partic-

ular bias amplitude at which the real to real quadrature gain vanishes grr(ε
min
0 ) = 0. We

combine the NOPO signal output ξ = reiΦ with a constant phase bias input ξ0 (cf. Figure

5.3(a)) on a beamsplitter such that the outputs vary between zero gain and the maximal

gain bias values
∣∣∣ ξ0±reiΦ√

2

∣∣∣ ∈ [εmin
0 , εmax

0 ]. To realize both positive and negative gain, we use

the second output of that beamsplitter to bias another tunable amplifier. The two amplifiers

are always biased oppositely meaning that one will have maximal gain when the other’s gain
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5.2. The Coherent Perceptron Circuit

vanishes and vice versa. The overall input signal is split and sent through both amplifiers

and then re-combined with a relative π phase shift. This complementary setup leads to an

overall effective gain tunable within Grr(Φ) ∈ [−gmax
rr
2 , g

max
rr
2 ] (cf. Figure 5.3(b)).

In Figure 5.4 we present both the complementary pair of amplifiers and the NOPO used

for storing the bias as well as some logic elements (described in Section 5.2.4) used for

implementing conditional training feedback. We call the full circuit a synapse because it

features programmable gain and implements the perceptron’s conditional weight update

rule.

controlled training logic

programmable gain ampli�er

OPO
signal in

learning 
feedback

signal out

Synapse circuit symbol

Figure 5.4.: Synapse circuit composed of a programmable amplifier and feedback logic (cf. Section

5.2.4) that implements the perceptron learning feedback (5.3) for a single weight. The

upper amplifier when biased optimally leads to positive gain whereas the lower amplifier

leads to negative gain due to the additional π phase shift.

The resulting synapse model is quite complex and certainly not optimized for a minimal

component number but rather the ease of theoretical analysis. A more resource efficient

programmable amplifier could easily be implemented using just two or three nonlinear

resonators. E.g., inspecting the the real to imaginary quadrature gain gir(ε0) in Figure

5.2(b) we see that close to εmax
0 it passes through zero fairly linearly and with an almost

symmetric range. This indicates that we could use a single tunable amplifier to realize both

positive and negative gain. Using only a single resonator for the tunable amplifier could

work as well, but it would require careful interferometric bias cancellation and more tedious

upfront analysis. We do not think it is feasible to use just a single resonator for both the

parametric oscillator and the amplifier because any amplified input signal would have an

undesirable back-action on the oscillator phase.
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5. A coherent perceptron for all-optical learning

5.2.4. Optical Switches

The feedback to the perceptron weights (cf. Equation (5.3)) is conditional on the binary

values of the given and estimated class labels y and ŷ, respectively. The logic necessary

for implementing this can be realized by means of all-optical switches. There have been

various proposals and demonstrations [92, 83] of all-optical gates/switches and quantum

optical switches [74].

control out 

signal in 2

signal out1

signal out 2

multiplexer

pre-Thresholder

de-multiplexer

phase
modulator

control in

signal in 1

Fredkin gate circuit symbol

Fredkin based thresholder circuit

(a) Fredkin gate and thresholder

1 0 1
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√

2c−s0  a.u.
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0.5

|c
′ |,

 a
.u

.

Pre-Thresholder

0.0 0.5 1.0

|c′|, a.u.

0

1

ŷ

Fredkin

1 0 1

Thresholder input s=
√

2c−s0  a.u.

0

1

ŷ
Combined

(b) Thresholder input/output

Figure 5.5.: In the upper graphic of (a) we present a schematic for Fredkin gate based on a two

mode cross-Kerr-nonlinear resonator. The lower graphic shows how this circuit can be

pre-pended with a single mode nonlinear resonator to better approximate a thresholding

response. In (b) we present the input output characteristic of the prepended resonator

(upper left), the Fredkin gate (upper right) and the combined input output relationship

between the inner product amplitude s and the estimated state label ŷ.

The model that we assume here (cf. Figure 5.5) is to use two different modes of a

resonator that interact via a cross-Kerr-effect, i.e., power in the control mode leads to a

refractive index shift (or detuning) for the signal mode. The index shift translates to a

control mode dependent phase shift of a scattered signal field yielding a controlled optical

phase modulator. Wrapping this phase modulator in a Mach-Zehnder interferometer then

realizes a controlled switch: If the control mode input is in one of two different states

|ξ| ∈ 0, ξ0, the signal inputs are either passed through or switched. This operation is often

referred to as a controlled swap or Fredkin gate [31] which was originally proposed for

realizing reversible computation. This dispersive model has the advantage that the control

input signal can be reused.
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5.2. The Coherent Perceptron Circuit

Note that at control input amplitudes significantly different from the two control levels

the outputs are coherent mixtures of the inputs, i.e., the switch then realizes a tunable

beamsplitter.

Finally, we point out that using two different (frequency non-degenerate) resonator modes

has the advantage that the interaction between control and signal inputs is phase insensitive

which greatly simplifies the design and analysis of cascaded networks of such switches.

5.2.5. Generation of the Estimated Label

The estimated classifier label ŷ should be a step function applied to the inner product of

the weight vector and the input. In the preceding sections we have shown how individual

inputs xj can be amplified with programmable gain to give s̃j = G̃(Φj)xj , thus realizing the

individual contributions to the inner product. These are then summed on an n-port beam-

splitter that has an output which gives the uniformly weighted sum s̃ := 1√
N

∑N
k=1 G̃(Φk)xk.

The gain factors G̃(Φk) = Grr(Φk)+iGir(Φk) generally have an unwanted imaginary part

which we subtract by passing the summed output through a quadrature filter circuit (cf. the

last paragraph of Section 5.2.1), which has unit gain for the real quadrature and zero gain

for the imaginary quadrature leading to an overall output s = Re s̃ = 1√
N

∑N
k=1Grr(Φk)xk.

The thresholding circuit should now produce a high output if s > 0 and a zero output if

s ≤ 0.

It turns out that the optical Fredkin gate described in the previous section already works

almost as a two mode thresholder, where the control input leads to a step-like response in

the signal outputs: A constant signal input amplitude which encodes the logical ‘1’ state is

applied to one of the signal inputs. When the control input amplitude is varied from zero

to ξ0, the signal output turns on fairly abruptly at some threshold ξth < ξ0. To make the

thresholding phase sensitive, the control input is given by the sum of s and a constant offset

s0 that provides a phase reference: c = 1√
2
(s+ s0).

For a Fredkin gate operated with continuous control inputs the signal output is almost

zero for a considerable range of small control inputs. However, for very high control inputs,

i.e., significantly above ξ0, the signal output decreases instead of staying constant as would

be desirable for a step-function like profile. We found that this issue can be addressed by

transmitting the control input through a single mode Kerr-nonlinear cavity, with resonance

frequency chosen such that the transmission gain |c′/c| is peaked close to c′ = ξ0. For

input amplitudes larger than c, the transmission gain is lower (although |c′| still grows

monotonically with |c|) which extends the input range over which the subsequent Fredkin

gate stays in the on-state.
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5. A coherent perceptron for all-optical learning

5.3. Results

The perceptron’s SDEs where simulated using a newly developed custom software package

named QHDLJ [112] implemented in Julia [7] which allows allows for dynamic compilation

of circuit models to LLVM [63] bytecode that runs at speed comparable to C/C++. All

individual simulations can be carried out on a laptop, but the results in Figure 5.8 were

obtained by averaging over the results of 100 stochastic simulation run on an HP ProLiant

server with 80 cores. The current version of QHDLJ uses one process per trajectory, but

the code could easily be vectorized.

In Figure 5.6 we present an example of a single application of an N = 8 perceptron

including both a learning stage with pre-labeled training data and a classification testing

stage in which the perceptron’s estimated class labels are compared with their correct

values. The data to be classified here are sampled from a different 8− dimensional Gaussian

distribution for each class label with their mean vectors separated by a distance ‖µ1 −
µ0‖2/σ = 2 relative to the standard deviation of both individual clusters. For each sample

the input was held constant for a duration ∆t = 2κ−1 where κ is the NOPO signal and

idler line width. The perceptron was first trained with Mtrain = 100 training examples and

subsequently tested on Mtest = 100 test examples with the learning feedback turned off.

In Figure 5.7 we visualize linear projections of the testing data as well as the estimated

classification boundaries. We can see that the classifier performs very well far away from

the decision boundary. Close to the decision boundary there are some misclassified exam-

ples. We proceed to compare the performance of the classifier to the theoretically optimal

performance achievable by any classifier and with the optimal classifier for this scenario,

Gaussian Discriminant Analysis (GDA) [28, 73], implemented in software. Using the iden-

tical perceptron model as above and an identical training/testing procedure, we estimate

the error rate perr = P[y 6= ŷ] of the trained perceptron as a function of the cluster sep-

aration ‖µ1 − µ0‖2/σ. The results are presented in Figure 5.8(a). Identically distributed

training and testing data was used to evaluate the performance of the GDA algorithm

and both results are compared to the theoretically optimal error rate for this discrimina-

tion task, which can be computed analytically to be perr, optim. = 1
2erfc

(
‖µ1−µ0‖2√

8σ

)
, where

erfc(x) = 2√
π

∫∞
x e−u

2
du is the complementary error function. We see that the all-optical

perceptron’s performance is comparable to GDA’s performance for this problem and both

algorithms attain performance close to the theoretical optimum.

The learning rate of the perceptron is determined by two things, the overall strength of

the learning feedback as well as the time for which each example is presented to the circuit.

In Figure 5.8(b) we plot the estimated error rate for varying feedback strength and duration.

As can be expected intuitively, we find that there are trade-offs between speed (smaller ∆t
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Figure 5.6.: Single trajectory divided into a training interval 0 ≤ t ≤ Mtrain∆t during which the

learning feedback is active and a test interval Mtrain∆t < t ≤Mtest∆t. During training

and testing, respectively, the system is driven by Mtrain = Mtest = 100 separate input

states which are held constant for an interval ∆t = 2κ−1. The estimated class label is

discretized by averaging the output intensity over each input interval, dividing the result

by the intensity |ζ|2 corresponding to the logical ‘1’ output state and rounding. The

upper panel compares the correct class label y (green) with the estimated class label

ŷ (black) during training and testing, respectively. The area between them indicates

errors or at least lag of the estimator and is shaded in light red. The second panel

shows occurrences of classification errors (red vertical bars). The slight shading near

the beginning and the end of the trajectory in the second panel visualizes the segments

corresponding to the upper left and right panel, respectively. The third panel shows the

learned linear amplitude gains for each synapse. After the learning feedback is turned

off at t = Mtrain∆t, they diffuse slightly due to optical shot noise.
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Figure 5.7.: Projection of training data and classification boundaries. The data has been rotated

such that the s1 coordinate lines up with the learned normal vector of the separating

hyperplane. Incorrectly classified data are plotted in red. The faint blue (red) lines

visualize the evolution of the classifier boundary during training (testing).

preferable) and energy consumption (smaller α preferable).

5.3.1. Time scales and power budget

Here we roughly estimate the power consumption of the whole device and discuss how to

scale it up to a higher input dimension.

Any real-world implementation will depend strongly on the engineering paradigm, i.e., the

choice of material/nonlinearity as well as the engineering precision, but based on recently

achieved progress in nonlinear optics we will estimate an order of magnitude range for the

input power.

The signal and feedback input power to the circuit will scale linearly in the number of

synapses N .

The bias inputs for the amplifiers has to be larger than the signal to ensure linearly

operation, but it should be expected that some of the scattered bias amplitudes can be

reused to power multiple synapses.

In our models we have defined all rates relative to the line width of the signal and idler

mode of the NOPO, because this is the component that should necessarily have the smallest

decay rate to ensure a long lifetime for the memory.

All other resonators are employed as nonlinear input-output transformation devices and
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Figure 5.8.: The perceptron’s error rate vs the difficulty of the classification task and as a function of

the parameters determining the learning rate. In Figure (a) we compare the unoptimized

performance of the perceptron circuit (red diamonds) to the optimal performance bound

(solid, green) as well as a GDA (blue X’s) trained on the same number of training

examples. We show averages over 100 trials at each cluster separation. The GDA data

was similarly averaged over 100 trials. The transparent envelopes indicate the sample

standard deviation. The black dots show the perceptron performance when simulated

without shot noise. We see that the shot noise has very little effect. In Figure (b) we plot

the average error rate (averaged over 50 trials) at fixed cluster separation ‖µ1−µ0‖2/σ =

2 for various values of the time interval ∆t for which each data sample is presented to

the circuit as well as the strength of the training feedback α. The total number of

feedback photons Nfb = |α|2∆t per sample is constant along the faint dashed lines and

the actual value is indicated on the right. A good choice of parameters is characterized

both by low feedback power (small |α|2) and high input rate (low sample time ∆t) while

still resulting in a low classification error rate. The X marks the parameters used for

the results in (a) and the previous Figures.

therefore a high bandwidth (corresponding to much lower loaded quality factor) is necessary

for achieving a high bit rate. For our simulations we typically assumed quality factors that

were lower than the NOPO’s by 1-2 orders of magnitude.

Based on self-oscillation threshold powers reported in [60, 25, 64, 95] and the switching

powers of [83] we estimate the necessary power per synapse to be in the range of ∼ 10 −
100µWatt. By re-using the scattered pump and bias fields it should be possible to reduce

the power consumption per amplifier even further. Even for the continuous wave signal

paradigm we have assumed (as opposed to pulsed/spiking signals such as considered in

[124]) the devices proposed here could be competitive with the current state of the art

CMOS-based neuromorphic electrical circuits [17].

In the simulations for the 8−dimensional perceptron our input rate for training data was
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5. A coherent perceptron for all-optical learning

set to ∆t−1 = κ
2 . This value corresponds to roughly ten times the average feedback delay

time between arrival of an input pattern and the conditional switching of the feedback

logic upon arrival of the generated estimated state label ŷ. This time can be estimated as

τfb(n) ≈ Gmaxκ
−1
A +κ−1

QF +κ−1
thresh+nκ−1

F , where n is the index of the synaptic weight, Gmax

is the amplifier gain range and κA, κQF , κthresh and κF are the line widths of the amplifier,

quadrature filter, the combined thresholding circuit (cf. Figure 5.5) and the feedback Fredkin

gates. There is a contribution scaling with n because the feedback traverses the individual

weights sequentially to save power.

When scaling up the perceptron to a higher dimension while retaining approximately the

same input signal powers, it is intuitively clear that the combined ‘inner product’ signal

amplitude s scales as s ∝
√
Ns1, where s1 is the signal amplitude for a single input.

This allows to similarly scale up the amplitude ζ0 of the signal encoding the generated

estimated state label ŷ and consequently the bandwidth of the feedback Fredkin gates that

it drives. A detailed analysis reveals that the Fredkin gate threshold scales as
√
N , in

particular we find that
√
|χ|ζ0 ∝ κF ∝

√
|χ|ξ0 ∝ κthresh ∝

√
|χ|s ∝

√
N |χ|s1. The

first two scaling relationships are due to the constraints on the Fredkin gate construction

(cf. Appendix 5.5.2), the next two scaling relationships follow from demanding that the

additional thresholding resonator be approximately dynamically resonant at the highest

input level (cf. Appendices 5.5.2 and 5.5.2). The last proportionality is simply due to the

amplitude summation at the N -port beamsplitter.

This reveals that when increasing N the perceptron as constructed here would have to

be driven at a lower input bit rate scaling as ∆t−1 ∝ N−
1
2 or alternatively be driven with

higher signal input powers. A possible solution that could greatly reduce the difference

in arrival time ∼ κ−1
F at each synapse could be to increase the waveguide-coupling to the

control signal and thus decrease the delay per synapse. The resulting increase in the required

control amplitude ζ0 can be counter-acted with feedback, i.e., by effectively creating a large

cavity around the control loop. When even this strategy fails one could add fan-out stages

for ŷ which introduce a delay that grows only logarithmically with N .

Finally, we note that the bias power of all the Kerr-effect based models considered here

scales inversely with the respective nonlinear coefficient {|ζ0|2, |s|2} × |χ| ∼ const when

keeping the bandwidth fixed. This implies that improvements in the non-linear coefficient

translate to lower power requirements or alternatively a faster speed of operation.

5.4. Conclusion and Outlook

In conclusion we have shown how to design an all-optical device that is capable of super-

vised learning from input data, by describing how tunable gain amplifiers with signal/bias

92



5.5. Basic Component Models

isolation can be constructed from nonlinear resonators and subsequently combined with self-

oscillating resonators to encode the programmed amplifier gain in their oscillation phase.

By considering a few additional nonlinear devices for thresholding and all-optical switching

we then show how to construct a perceptron, including the perceptron feedback rule. To

our knowledge this is the first end-to-end description of an all-optical circuit capable of

learning from data. We have furthermore demonstrated that despite optical shot-noise it

nearly attains the performance of the optimal software algorithm for the classification task

that we considered. Finally, we have discussed the relevant time-scales and pointed out

how to scale the circuit up to large input dimensions while retaining the signal processing

bandwidth and a low power consumption per input.

Possible applications of an all-optical perceptron are as the trainable output filter of an

optical reservoir computer or as a building block in a multi-layer all-optical neural network.

The programmable amplifier could be used as a building block to construct other learning

models that rely on continuously tunable gain such as Boltzmann machines and hardware

implementations of message passing algorithms.

An interesting next step would be to design a perceptron that can handle inputs at

different carrier frequencies. In this case wavelength division multiplexing (WDM) might

allow to significantly reduce the physical footprint of the device.

A simple modification of the perceptron circuit could autonomously learn to invert linear

transformations that were applied to its input signals. This could be used for implementing

a circuit capable of solving linear regression problems. In combination with a multi-mode

optical fibers such a device could also have applications for all-optical sensing.

Finally, an extremely interesting question is whether harnessing quantum dynamics could

lead to a performance increase. We hope to address these ideas in future work.

5.5. Basic Component Models

Here we present the component models used to build the perceptron circuit. We will first

describe the static components such as beamsplitters, phase shifts and coherent displace-

ments, then proceed to describe the different Kerr-nonlinear models and finally the NOPO

model.

5.5.1. Static, Linear Circuit Components

All of these components have in common that they have no internal dynamics, implying

that the A,B and C matrices and the a-vector have zero elements, and ANL is not defined.
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5. A coherent perceptron for all-optical learning

Constant Laser Source

The simplest possible static component is given by single input/output coherent displace-

ment with coherent amplitude η. This model is employed to realize static coherent input

amplitudes. The D matrix is trivially given by D = (1) and the coherent amplitude is

encoded in c = (η). This leads to the desired input-output relationship βout = η + βin. For

completeness we also provide the SLH [41] model ((1), (η), 0).

Static Phase Shifter

The static single input/outputs phase shifter has D = (eiφ) and c = (0), leading to an input

output relationship of βout = eiφβin. Its SLH model is ((eiφ), (0), 0).

Beamsplitter

The static beamsplitter mixes (at least) two input fields and can be parametrized by a

mixing angle θ. It has D =

(
cos θ − sin θ

sin θ cos θ

)
and c = (0, 0)T . This leads to an input output

relationship (
βout,1

βout,2

)
=

(
cos θ − sin θ

sin θ cos θ

)(
βin,1

βin,2

)
(5.8)

Its SLH model is

((
cos θ − sin θ

sin θ cos θ

)
,

(
0

0

)
, 0

)
.

5.5.2. Resonator Models

We consider resonator models with m internal modes and n external inputs and outputs.

We assume for simplicity that a = 0 and c = 0 meaning that we will model all coherent

displacements explicitly in the fashion described above. We also assume that their scattering

matrices are trivially given by D = 1n which means that far off-resonant input fields are

simply reflected without a phase shift. Furthermore, none of our assumed models feature

linear coupling between the internal cavity modes. This implies that the A-matrix is always

diagonal. We are always working in a rotating frame.

Single mode Kerr-nonlinear Resonator

A Kerr-nonlinearity is modeled by the nonlinear term AKerr
NL (α) = −iχ|α|2α which can be

understood as an intensity dependent detuning. The A-matrix is given by (−κT
2 − i∆), its

B-matrix is −(
√
κ1,
√
κ2, . . . ,

√
κn), where the total line width is given by

∑n
j=1 κj = κT
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and the cavity detuning from any external drive is given by ∆. The C-matrix is given by

C = −BT . The corresponding SLH model is1n,


√
κ1a
...

√
κna

 , ∆̃a†a+
χ

2
a2†a2

 , (5.9)

where the detuning differs slightly ∆̃ = ∆ + χ as can be shown in the derivation of the

Wigner-formalism. [98]

The special case of a single mirror with coupling rate κ and negligible internal losses is of

interest for constructing the phase sensitive amplifier described in Section 5.2.1. Considering

again an input given by a large static bias and a small signal ε = 1√
2
(ε0 + δε), the steady

state reflected amplitude is to first order

ε′ ≈ 1√
2

[ηε0 + g−(ε0)δε+ g+(ε0)δε∗] . (5.10)

For negligible internal losses we can give provide exact expressions for η, g+ and g−.

Rather than parametrizing these by the bias ε0 we parametrize them by the mean coherent

intra-cavity amplitude α0. When the system is not bi-stable (see below) relationship (5.14)

defines a one-to-one map between ε0 and α0.

η = −κ/2− i(∆ + χ|α0|2)

κ/2 + i(∆ + χ|α0|2)
⇒ |η| = 1, (5.11)

g− = 1 +
κ
[
−κ

2 + i∆ + 2iχ|α0|2
](

κ
2

)2
+ (∆ + 2χ|α0|2)2 − |χ|2|α0|4

, (5.12)

g+ =
iκχα2

0(
κ
2

)2
+ (∆ + 2χ|α0|2)2 − |χ|2|α0|4

, (5.13)

ε0 = − 1√
κ

[κ
2

+ i(∆ + iχ|α0|2)
]
α0. (5.14)

The Kerr cavity exhibits bistability for a particular interval of bias amplitudes if and only

if ∆/χ < 0 and |∆| ≥
√

3κ
2 = ∆th.

At any fixed bias amplitude and corresponding internal steady state mode amplitude

the maximal gain experienced by a small signal is given by gmax = |g−| + |g+|. Here

maximal means that we maximize over all possible signal input phases relative to the bias

input. To experience this gain, the signal has to be in an appropriate quadrature defined

by arg δε = arg g−−arg g+

2 . The orthogonal quadrature is then maximally de-amplified by a

gain of ||g−|− |g+|| and it is possible to show that for negligible losses the perfect squeezing

relationship (|g−|+ |g+|) ||g−| − |g+|| =
∣∣|g−|2 − |g+|2

∣∣ = 1 holds for any bias amplitude.

Furthermore, for fixed cavity parameters gmax is maximized at a particular non-zero intra-
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5. A coherent perceptron for all-optical learning

cavity photon amplitude

|αmax
0 |2 =

√
∆2 + κ2

4

3χ2
(5.15)

⇒ gmax =

√√
f + κ√
f − κ

, with f = 28∆2 + 4κ2 − 8∆
√

12∆2 + 3κ2. (5.16)

Note that the maximal gain does not depend on the strength of the non-linearity. The

relationship between gmax and ∆ can be inverted:

∆ =

√
3κ

2

(
gmax −

√
3
) (
gmax − 1√

3

)
gmax2 − 1

(5.17)

Using all this it is straightforward to construct a tunable Kerr-amplifier. The symmetric

construction proposed in Section 5.2.1 provides the additional advantage that one does not

have to cancel the scattered bias. It is also convenient to prepend and append phase shifters

to the signal input and output that ensure g−, g+ > 0 at maximum gain, implying that the

maximally amplified quadrature is the real one.

The quadrature filter construction relies on the presence of additional cavity losses that

are equal to the input coupler κ2 = κ1 = κ. In this case the gain coefficients for reflection

of the first port are given by

g− = 1 +
κ
[
−κ+ i∆ + 2iχ|α0|2

]
κ2 + (∆ + 2χ|α0|2)2 − |χ|2|α0|4

, (5.18)

g+ =
iκχα2

0

κ2 + (∆ + 2χ|α0|2)2 − |χ|2|α0|4
, (5.19)

ε0 = − 1√
κ

[
κ+ i(∆ + iχ|α0|2)

]
α0. (5.20)

and one may easily verify that for dynamic resonance, i.e., χ|α0|2 = −∆, the gain coefficients

are equal in magnitude |g−| = |g+| which implies that there exists an input phase for which

the reflected signal vanishes.

Two mode Kerr-nonlinear resonator

We label the mode amplitudes as α1 and α2. In this case the nonlinearity includes a cross-

mode induced detuning

AKerr2
NL (α) =

(
−iχa|α1|2α1 − iχab|α2|2α1

−iχab|α1|2α2 − iχb|α2|2α2

)
(5.21)
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The model matrices are

A =

(
−κa,T

2 − i∆a 0

0 −κb,T
2 − i∆b

)
, (5.22)

B = −

(√
κa,1

√
κa,2 . . .

√
κa,na 0 . . . 0

0 0 . . . 0
√
κb,1

√
κb,2 . . .

√
κb,nb

)
, (5.23)

C = −BT , (5.24)

and the corresponding SLH model is(
1na+nb , C

(
a

b

)
, ∆̃aa

†a+ ∆̃bb
†b+

χa
2
a2†a2 +

χb
2
b2†b2 + χaba

†ab†b

)
, (5.25)

with ∆̃a/b = ∆a/b + χa/b + χab
2 and where the Wigner-correspondence3 is 〈α1〉W = 〈a〉,

〈α2〉W = 〈b〉.
We briefly summarize how to construct a controlled phase shifter using an ideal two-mode

Kerr cavity with a single input coupling to each mode and negligible additional internal

losses. We exploit that in this case the reflected steady state signal amplitude ζ ′ is identical

to the input amplitude ζ up to a power dependent phase shift

ζ ′ = −
κa
2 − i

(
∆a + iχa|α0|2 + iχab|β0|2

)
κa
2 + i (∆a + iχa|α0|2 + iχab|β0|2)

ζ ⇒ |ζ ′| = |ζ|. (5.26)

We assume that the control input amplitude takes on two discrete values ξ = 0 or ξ = ξ0

and that variations of the signal input amplitude are small |ζ| ≈ |ζ0|. In this case a good

choice of detunings and coupling rates is given by

∆a =
κa
2
− 2χa|ζ0|2

κa
(5.27)

∆b =
κaχb
χab

− 2χab|ζ0|2

κa
(5.28)

ξ0 =

√
κaκb

2
√
|χab|

(5.29)

in addition to two inequality constraints

∆a ≤
√

3
κa
2

(5.30)

∆b ≤
√

3
κb
2

(5.31)

that ensure that the system is stable. This construction ensures that
ζ′|ξ=ξ0
ζ′|ξ=0

= −1 and in

fact it can easily be generalized to the more realistic case of non-negligible internal losses.

3In this appendix we denote expectations with respect to the Wigner function as 〈·〉W and quantum

mechanical expectations as 〈·〉.
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Finally note that the inequality constraints imply that the lower bounds for the input

couplings scale as κmin
a , κmin

b ∝ |ζ0| which is important for our power analysis in Section

5.3.1. This, in turn implies that ξ0 ∝ |ζ0| which is a fairly intuitive result.

The controlled phase shifter can now be included in one arm of a Mach-Zehnder interfer-

ometer to create a Fredkin gate (cf. Section 5.2.4).

To realize a thresholder, the control mode input is prepended with a two port Kerr-

cavity with parameters chosen such that it becomes dynamically resonant with maximal

differential transmission gain close to where its output gives the correct high control input

ξ0.

Overall, we remark that even when we account for the prepended cavity, the relationship

c ∝ |ζ0| still holds, where c is the input to the thresholder. To see how the total decay

rate of the thresholding cavity κthresh scales consider first that to get maximum differential

gain or contrast, we ought pick a detuning right at or below the Kerr stability threshold

∆ ≈ ∆th =
√

3κthresh/2.

We choose the maximum input amplitude such that it approximately achieves dynamic

resonance within the prepended thresholding cavity. This occurs when ∆ = −χ|α0|2 (cf. Ap-

pendix 5.5.2) and at an input amplitude of c ∝
√
κthresh

∣∣∣∆χ ∣∣∣ ∝ κthresh.

NOPO model

The NOPO model has consists of three modes, the signal and idler modes αs, αi and the

pump mode αp. We assume a triply resonant model4 and that ωs + ωi = ωp, allowing for

resonant conversion of pump photons into pairs of signal and idler photons and vice versa.

The nonlinearity is given by

ANOPO
NL (α) =


χα∗iαp

χα∗sαp

−χαsαi

 (5.32)

and the model matrices are

A =


−κ

2 0 0

0 −κ
2 0

0 0 −κp
2

 , B = −


√
κ 0 0

0
√
κ 0

0 0
√
κp

 , (5.33)

C = −BT . (5.34)

4It is possible to drop this resonance assumption for the pump.
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Here, the SLH model is given by13, C


a

b

c

 , iχ
(
abc† − a†b†c

) (5.35)

where now a, b and c correspond to αs, αi and αp.

A steady state analysis of the system driven only by a pump input amplitude ε reveals

that below a critical threshold |ε| < εth =
κ
√
κp

4χ the system as a unique fixpoint with

αs = αi = 0 and αp = − 2ε√
κp
. Above threshold |ε| ≥ εth, the intra-cavity pump amplitude

stays constant at the threshold value αp = −2εthε/|ε|√
κp

= −κε/|ε|
2χ and the signal and idler mode

obtain non-zero magnitude

|αs| = |αi| =
√

4εth
κ

(|ε| − εth). (5.36)

As an interesting consequence of the model’s symmetry there exists not a single above

threshold state but a whole manifold of fixpoints parametrized by a correlated signal and

idler phase

αs =

√
4εth
κ

(|ε| − εth)eiφ+iφ0 (5.37)

αi =

√
4εth
κ

(|ε| − εth)e−iφ+iφ0 (5.38)

where the common phase φ0 is fixed by the pump input phase via

αsαi = −4εth
κ

(|ε| − εth)
ε

|ε|
. (5.39)

In particular, for ε < 0 we have αi = α∗s. Above threshold the system will rapidly converge

to a fixpoint of well-defined phase φ. Without quantum shot noise φ would remain constant.

With noise, however, the system can freely diffuse along the manifold. When the pump bias

input is sufficiently large compared to threshold and consequently there are many signal

and idler photons present in the cavity at any given time (|αs/i|2 � 1) one can analyze

the dynamics along the manifold and of small orthogonal deviations from the manifold.

In the symmetric case considered here where signal and idler have equal decay rates, the

differential phase degree of freedom φ = argαi−argαs
2 decouples from all other variables and

approximately obeys the SDE

dφ =
√
γφdWt, dW 2

t = dt (5.40)

with γφ =
κ

8|αs|2
=

κ2

32εth (|ε| − εth)
. (5.41)
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It is relatively straightforward to generalize these results to a less symmetric model with

different signal and idler couplings and even non-zero detunings, but for a given nonlinearity

the model considered here provides the smallest phase diffusion and thus the best analog

memory. For a very thorough analysis of this model we refer to [45].
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6. Exact co-simulation of semi-classical

and quantum dynamics

The following work is as of yet unpublished and was partially done in collaboration with

Nina Hadis Amini. It will be published soon [114].

6.1. Motivation

A given quantum mechanical system can be described in more than one way. Our choice of

description is usually motivated by the insight it provides, its economy and, when dealing

with sufficient complexity, the accuracy and efficiency with which it can be numerically

simulated and analyzed.

The description in terms of a full quantum state |ψt〉 (or more generally a mixed state

ρt) is the most complete because it allows for predicting arbitrary expectation values and

correlations. On the other hand, the exponential scaling of the state space severely limits the

kind of systems one may study numerically. For highly ordered systems such as one- or even

two-dimensional lattices with local interactions, Matrix Product States (MPS) and more

generally Projected Entangled Pair States (PEPS) [128] have proven immensely useful in

accurately representing ground states as well as the low-lying excitations that are accessible

in the dynamicsof such systems. The numerical representation of MPS and PEPS scales

only polynomially in the number of degrees of freedom at the expense of losing the nice

linear structure of a full Hilbert space vector representation.

In this work we propose a method that even works for systems that are unconstrained in

the symmetry of their interactions and that may even be strongly excited as long as they

remain fairly close to a set of near-classical states.

Quantum quasi-probability distributions [132, 52, 105] can be used to derive semi-classical

stochastic dynamics suitable for sampling operator expectation values. These, however, are

are sometimes numerically unstable and in general require approximations that can lead to

significant discrepancies with simulations based on a full quantum state description [59].

Furthermore, there does not exist a general approach to incrementally increase the accuracy

of these methods. Both our approach and the semi-classical methods based on quasi-
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6. Exact co-simulation of semi-classical and quantum dynamics

probabilities are most useful for systems in which some observables become well localized.

Open quantum systems such as linear or non-linear optical resonators that arise in the

context of cavity QED often feature dissipative dynamics that lead to localization of certain

operators. This enables the description and simulation of systems containing, e.g., n coupled

oscillators in a moving basis [90, 103] parametrized by coherent displacement coordinates

α ∈ Cn. This approach and the quantum state diffusion (QSD) software package [100]

published by the same authors is very useful for simulating quantum optical models, but

as it is, the method does not easily generalize to non-bosonic degrees of freedom (such as

ensembles of spins or fermions), it does not yield equations of motion of the coordinates, and

as we demonstrate it can actually lead to higher computational complexity when applied

to certain problems.

In this work we introduce a set of methods that significantly generalizes the QSD method

in multiple ways. It can also be applied to non-bosonic physical degrees of freedom and

even for oscillator modes it allows exploiting more general transformations than coherent

displacements. By reformulating the problem of finding good basis coordinates as an opti-

mization problem, we can derive improved update rules for the adaptive basis coordinates

and even derive a system of combined stochastic differential equations for the basis coordi-

nates and the quantum state.

6.2. Quantum state compression

Before turning to the problem of simulating a quantum system in an adaptive basis, we

discuss different options for quantifying the efficiency of representing a given state in a

particular basis and we introduce a corresponding optimization problem. We will always

assume that our adaptive Hilbert Space bases are related to the original fixed basis by means

of a unitary transformation Uθ, UθU
†
θ = 1 smoothly parametrized by a set of coordinates

θ. Although our method allows for arbitrary unitary representations of Lie groups some

Lie group manifolds cannot be fully parametrized by a single coordinate patch. This can

lead to additional technical difficulties which we will usually avoid by limiting ourselves to

a single open coordinate patch θ ∈ D ⊂ Rn that includes the origin 0 which we always

assume to map to the identity U0 = 1. This poses no serious limitation as closure under

group multiplication is not generally required for our scheme. For any θ ∈ D the partial

derivatives of the transform with respect to the coordinates are given by ∂Uθ
∂θj

= −iUθF>j (θt)

which implicitly defines the right generators F>j (θt) := iU †θ
∂Uθ
∂θj

that locally describe the
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Figure 6.1.: Cartoon visualizing how a unitary Lie group representation can induce a coordinate

manifold with a localized orthonormal basis set defined at each point. The group coor-

dinates correspond to semi-classical phase space variables. If the group representation

is irreducible and the group semi-simple, then the ‘ground state’ attached to each man-

ifold point can be understood as a (generalized) coherent state [91]. For open, diffusive

quantum dynamics, quantum states often localize in the vicinity of such generalized

coherent states.

transformation

Uθ+dθ = Uθ

1− i
n∑
j=1

F>j (θt)dθ
j

 . (6.1)

The right generators are hermitian elements of the group’s Lie algebra and their explicit

form depends on the choice of parametrization of the transform. We present several exam-

ples and alternate constructions in the Appendix 6.7.1. We note that any such parametriza-

tion is not unique. We can smoothly re-parametrize the coordinates and then derive the

transformed generators via the chain rule. Our use of upper indices for the coordinates

and lower indices for the generators is thus motivated by their covariant and contravariant

transformation under such re-parametrizations.

If our state in the original, fixed basis is |ψt〉 we assume that it can be related to a reduced

complexity state |φt〉 via

|ψt〉 = Uθt |φt〉 ⇔ |φt〉 = U †θt |ψt〉 (6.2)
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By itself, equation (6.2) gives an over-parametrization of the original state |ψt〉 in terms

of (|φt〉 , θt). We now outline how to remove this redundancy by specifying additional

constraints on |φt〉 (and thus θt). In doing this we attempt to make the description of

|φt〉 less complex, in the very simple sense that for a given numerical accuracy, it can be

represented in as small a basis as possible.

6.2.1. The complexity functional

Consider first a canonical example: for a single bosonic degree of freedom with lowering op-

erator a, and a transformation group given by coherent displacements Uθ = D(θ) = eθa
†−θ∗a,

an intuitive constraint would be to demand that 〈a〉φt = 0, or equivalently 〈a〉ψt = θ. This

fully fixes the coordinates and removes the redundancy. This is precisely the constraint

which the QSD software package implements. As we demonstrate later, this method works

very well for nearly coherent states |ψt〉 but can actually increase the complexity when |ψt〉
has significant non-Gaussian features.

Below we re-derive this as the result of an optimization problem, which will allow us to

generalize and improve the approach. To formulate the problem, we introduce a complexity

functional C(θ;ψ) which, given a state ψ, attains a unique global minimum, i.e., we define

our coordinates at all times to be

θt := θ
(C)
∗ (ψt) = argminθ C(θ;ψ). (6.3)

Excitation minimization

The simplest choice of complexity functional is obtained by evaluating the expectation

of a lower bounded operator N that penalizes population of undesired basis levels in the

transformed basis.

CN (θ;ψ) :=
〈
UθNU

†
θ

〉
ψ︸ ︷︷ ︸

〈N〉φ

. (6.4)

For a bosonic degree of freedom, N could simply be the canonical number operator a†a. As

we will see below, this particular choice leads to the QSD scheme θ∗ = 〈a〉ψt .
The example of a counting operator suggests that we might generally introduce a partial

order for our basis levels and that according to such an order, a lower complexity state is

characterized by being confined to a subspace spanned by basis states of very low order.

While in principle any full enumeration |s0〉 , |s1〉 , . . . of the basis implies such an ordering,

it turns out that given some specific physical degrees of freedom there exist certain canonical

orderings related to the existence of counting operators and associated raising and lowering
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operators. We will generally refer to this class of optimization problems, i.e., minimizing

the expectation of counting operators, as excitation minimization.

As it turns out, excitation minimization can also be interpreted as minimizing the quan-

tum relative entropy between |ψt〉 and a transformed thermal state χθt,β := UθtρβU
†
θt

where

ρβ := Z(β)−1e−βN and Z(β) = Tr
(
e−βN

)
. The quantum relative entropy between |ψt〉 〈ψt|

and χθt,β is given by

S (|ψt〉 〈ψt| ‖χθt,β) = Tr (|ψt〉 〈ψt| [log |ψt〉 〈ψt| − logχθt,β]) = −〈ψt| logχθt,β |ψt〉 (6.5)

= −〈ψt| log e
−βUθtNU

†
θt |ψt〉+ logZ(β) (6.6)

= β
〈
UθtNU

†
θt

〉
ψt

+ logZ(β) (6.7)

Here the last term logZ(β) does not depend on θ and therefore minimizing the quantum

relative entropy is exactly equivalent to excitation minimization as discussed above. In the

second equality we exploited that pure states have zero entropy, but even in the mixed

state case, its entropy would not depend on θt and thus not play a role in the optimization

problem.

CGF minimization

A useful alternative is to more generally minimize the following cumulant generating func-

tion (CGF) of any such counting operator

Ccgf
N (θ;ψ, λ) := log


〈
Uθe

λNU †θ

〉
ψ︸ ︷︷ ︸

〈eλN〉
φ

 , (6.8)

which, for very small 0 < λ� 1 reduces to

Ccgf
N (θ;ψ, λ) ≈ λ 〈N〉φ +

λ2

2
var (N)φ +O(λ3). (6.9)

Note that when N is unbounded there may generally exist normalizable states |φ〉 for

which
〈
eλN

〉
φ

diverges for any λ > 0, but this is true even for the unexponentiated counting

operator1. We will assume here without proof that such states do not actually arise in the

dynamical evolution of open quantum systems if one starts from a well behaved initial state.

In general if there exists an N0 ∈ N and a constant 0 ≤ α < 1 such that ∀n ≥ N0 we find
|φn+1|2
|φn|2 ≤ α, then

〈
eλN

〉
φ

exists if λ < log 1/α.

1Consider N = a†a and φn =
√

6
nπ
, n ∈ N then 1 =

∑
n |φn|

2, but 〈N〉φ =∞.
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This objective yields a Chernoff bound2 on the population of highly excited levels:

Pφ [N ≥ N0] ≤

〈
eλN

〉
φ

eλN0
= eC

cgf
N (λ)−λN0 . (6.10)

Since the equality is satisfied for any λ we can minimize the right hand side over λ to achieve

the most restrictive bound:

logPφ [N ≥ N0] ≤ ˜Ccgf
N (N0) := min

λ
Ccgf
N (λ)− λN0. (6.11)

The negated left hand side in the equation above is proportional to the digits of relative

accuracy obtained when truncating the basis at the level N0. Given N0 the optimal λ(N0)

leading to the lowest bound is given via a Legendre transformation

∂Ccgf
N (λ)

∂λ

∣∣∣∣∣
λ(N0)

= N0. (6.12)

We thus see that for a fixed N0 our complexity functional specifies with what accuracy a

given quantum state can be represented in a low-dimensional subspace of the overall state

space. This is visualized in Figure 6.2.

We will generally refer to this family of optimization problems as CGF minimization.

Given a sufficiently smooth functional, we may expand it as

C(θt + δθ;ψt) = C(θt;ψt) +
n∑
j=1

yj(θt;ψt)δθ
j (6.13)

+
1

2

n∑
j,k=1

mjk(θt;ψt)δθ
jδθk +O

(
δθ3
)

(6.14)

If the complexity functional is strictly convex then the Hessian m(θt) = (mjk(θt))
n
j,k=1 is

positive definite everywhere and an appropriate variant of Newton’s method can be applied

to find the optimal coordinates which are implicitly defined by requiring the gradient to

vanish yj(θt;ψt) = 0, j = 1, 2, . . . , n.

For the case of expectation minimization, the explicit expressions for the gradient and

Hessian are

yj(θt) =
〈
−i[F>j (θt), N ]

〉
φt

(6.15)

mjk(θt) = mkj(θt) =

〈[
F>j (θt),

[
N,F>k (θt)

]]
− i
[
∂F>k (θt)

∂θj
, N

]〉
φt

. (6.16)

2This follows from Markov’s inequality and the convexity of expx.
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6.2. Quantum state compression

...
...
...

Figure 6.2.: Many physically relevant Lie groups admit unitary representations in which there exists

a natural ordering of the basis states according to the spectrum of some generalized

energy or counting operator. Here we visualize such basis levels by black dots and

suggest that they are (partially) ordered from left to right. The black arrows represent

coherent transitions induced by a Hamilton operator, while the red arrows indicate

dissipation induced transitions. Transforming the dynamics to a parametrized basis

induces a mapping from this graph to one with potentially more transitions, e.g., under

a squeezing transformation a → cosh ra + sinh ra† which generally increases the terms

of the Hamilton operator, but if the transformation coordinates are chosen wisely, the

system state can be kept close to the left side of this graph, i.e., it is trapped in a

low-dimensional subspace of the overall transformed basis.
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6. Exact co-simulation of semi-classical and quantum dynamics

In the case of cgf minimization one finds

Ccgf
N (θt;ψt, λ) = log

〈
eλN

〉
φt

(6.17)

yj(θt) =
〈
−i[F>j (θt), e

λN−Ccgf
N (θt;ψt,λ)]

〉
φt

(6.18)

mjk(θt) = mkj(θt) =

〈[
F>j (θt),

[
eλN−C

cgf
N (θt;ψt,λ), F>k (θt)

]]
− i
[
∂F>k (θt)

∂θj
, eλN−C

cgf
N (θt;ψt,λ)

]〉
φt

− yj(θt)yk(θt), (6.19)

However, since cgf minimization is fully equivalent to minimizing exp Ccgf
N (θt;ψt, λ) =〈

eλN
〉
φt
, one could also use

yj(θt) =
〈
−i[F>j (θt), e

λN ]
〉
φt

(6.20)

mjk(θt) = mkj(θt) =

〈[
F>j (θt),

[
eλN , F>k (θt)

]]
− i
[
∂F>k (θt)

∂θj
, eλN

]〉
φt

, (6.21)

though in either case some care must be taken to avoid numerical overflow errors.

When |ψt〉 evolves with time we can now either solve the minimization problem (6.3) at

each time and use this to obtain the coordinates θt or alternatively derive explicit (stochas-

tic) differential equations for the coordinates. While the former will allow us to adapt our

scheme to arbitrary stochastic dynamics (jump equations and Ito or Stratonovich diffu-

sions) the latter method can provide us with more insight into the dynamics and open up

interesting opportunities for designing control schemes.

6.2.2. Example application: The degenerate parametric oscillator

Before we describe how to co-simulate the quantum state and the manifold coordinates

we illustrate the above principles by applying to one of the simplest yet highly nontrivial

nonlinear oscillator models: the degenerate parametric oscillator which describes a resonator

in which a high-Q resonant signal mode couples to a strongly driven pump mode at twice the

frequency through a χ2 non-linear parametric interaction that allows conversion of signal

photon pairs to pump photons and vice versa. In the limit of strong nonlinearity and a

small pump mode quality factor, the pump mode can be adiabatically eliminated yielding

the following SLH model (
12,

(√
κa

√
βa2

)
, i
ε

2

[
a†2 − a2

])
. (6.22)

For positive ε > 0 the dynamics are primarily captured by the evolution of the signal mode’s

real quadrature q = (a + a†)/2. A semi-classical differential equation for the quadrature
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6.2. Quantum state compression

amplitude Q = 〈q〉 is approximately given by

Q̇ ≈ −
(κ

2
− ε+ β|Q|2

)
Q (6.23)

where we have assumed factorizing moments
〈
a†a2

〉
≈ 〈a〉∗ 〈a〉2 as well as Im [ 〈a〉] = 0.

Equation (6.23) is actually identical to the normal form of a pitchfork bifurcation up to

some re-scaling. We visualize the bifurcation diagram in Figure 6.3. The bifurcation exists
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DOPO bifurcation diagram

Figure 6.3.: When the linear loss is larger than the gain κ/2 < ε the real quadrature Q remains stably

at 0, above a critical pump ε ≥ κ/2 this fixpoint bifurcates into two stable symmetric

solutions and an unstable solution that is the continuation of the below threshold Q = 0

solution.

for any non-zero two-photon loss rate β > 0, however the magnitude of the two-photon

strongly affects how non-classical (which in this context we take to mean non-Gaussian)

the state of the signal mode becomes. When the system is pumped only slightly above

the threshold, random switching or tunneling between the two equilibria is possible. We

present such a trajectory in Figure 6.4. The switching rate strongly depends on the ratio of

linear to two-photon loss. Additionally, in the strongly non-linear case β ≥ κ, the system

can spontaneously evolve into cat-like states that feature exhibit significant simultaneous

overlap with coherent states centered at either equilibrium.

In the limit of vanishing linear loss κ/β → 0, the system has a decoherence-free sub-

manifold spanned by the two equilibrium amplitude coherent states. In [78] Mirrahimi et
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6. Exact co-simulation of semi-classical and quantum dynamics
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(a) β/κ = 1/12
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(b) β/κ = 1

Figure 6.4.: Stochastic switching dynamics of a DOPO above threshold. Figure (a) shows an example

with very weak non-linear loss β � κ whereas (b) shows the strongly nonlinear case

β = κ. In both cases we have chosen the parameters β, κ, χ such that the bi-stable

mode amplitude equals approximately αr,ss = ±1/
√

2. There is a visible reduction in

the switching rate and we can also see quite clearly that the magnitude of fluctuations

in either bi-stable state is strongly reduced in the case of very strong nonlinearity.

Specifically, the simulation parameters were β = κ, χ = 5κ/2 and β = κ/12, χ = 2κ/3

for the strongly and weakly nonlinear case, respectively.
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6.2. Quantum state compression

al. outline a scheme to encode quantum information in such a system. A detailed study of

the switching dynamics was carried out in [59].

In Figure 6.2.2 we compare how each basis level contributes to a whole trajectory of

states when represented in the original fixed basis to the excitation minimization when

using either a coherently displaced basis or a displaced and squeezed basis. We see that

the adaptive schemes perform well in the case of strong linear dissipation but not so well

in the case of strong two-photon loss. We can understand this better by inspecting typical
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(b) β/κ = 1

a̧ptionFor the weakly nonlinear case (a) both the displaced basis and the displaced and

squeezed basis perform fairly well, although the displaced basis truncation error falls off

less rapidly than either the static or the displaced, squeezed basis. For strongly nonlinear

case (b), however, we find that the static basis outperforms both the displaced and the

displaced, squeezed basis. This indicates that the system dynamics depart significantly

from the squeezed and displaced coherent state manifold.

states that occur in each evolution. In Figure 6.5 we present snapshots of the signal mode’s

Wigner function. For strong linear dissipation, the Wigner function of the signal mode

typically appears quite Gaussian in shape, whereas in the strong two-photon loss case we

see significant non-Gaussian features both in the transition states and when the mode is

at one of the equilibria. The bad performance of the excitation minimization functional in

the non-Gaussian case is much improved by the cgf minimization approach. In Figure 6.6

we compare the efficiency of the fixed basis with a coherently displaced basis where the

coordinates are determined either by excitation minimization or by cgf minimization. We

find that the cgf minimization (for λ = 3/2) outperforms both the fixed basis and the
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6. Exact co-simulation of semi-classical and quantum dynamics
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Figure 6.5.: Comparing the Wigner functions of either system in typical transitions states and typical

meta-stable states we see clearly that the Wigner functions of the strongly nonlinear

system (b) appear much less Gaussian in shape than for the system dominated by linear

dissipation. We have furthermore indicated the support set of different bases. The blue

circles correspond to the fixed basis, the red circles to a coherently displaced basis and

the black ellipses to a displaced and squeezed basis.
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6.2. Quantum state compression

excitation minimization method (which is equivalent to the QSD package’s approach). Here

we have not even exploited the additional advantages that a displaced and squeezed basis

may yield.
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Figure 6.6.: When changing the optimization problem to CGF minimization, we see that achieve

higher representation efficiency (but not by very much!) than the static basis while so

far only using a displaced, non-squeezed basis.

While excitation minimization will always enforce 〈a〉φt ≡ 0 ⇔ 〈a〉ψt = Q+iP√
2

CGF

optimization generally does not lead to such a linear relationship as can be seen in Figure

6.7. We can also see that different regions in phase space lead to different complexity

as measured by the CGF (cf Figure 6.8). This motivates using a simulation method in

which even the basis size is adapted to the inherent complexity of the current dynamics.

Finally, we note that even in the displaced basis there appear to be additional attractors

for |φt〉. In Figure 6.9 we have visualized the distribution of the first three moving basis

level populations when transforming to the CGF optimal basis.
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Figure 6.7.: The optimal manifold coordinate Q(t) under CGF minimization appears mostly mono-

tonically but not linearly related to the mode expectation 〈a〉ψt
.
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Figure 6.8.: When the system state localizes near the ‘origin’ i.e., Q = 0, the complexity increases,

i.e., more basis levels are necessary for accurate representation.
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Figure 6.9.: The probability simplex spanned by the excitation probability of the first three basis

levels. For the optimal CGF trajectory the basis level populations remain nearly confined

to this simplex, but diverge slightly from it, especially when the first and second excited

basis levels are nontrivially populated. The points are color coded according to their

‘missing-probability-distance’ d from the simplex, i.e. d := 1− 〈Π0 + Π1 + Π2〉φt

6.3. Dynamics in a moving basis

Assume now that the fixed basis state vector |ψt〉 evolves according to |dψt〉 = −idG |ψt〉 .
For a closed system and deterministic dynamics we simply have dG = ~−1Hdt, for an open

system evolving according to an unnormalized stochastic Schrödinger equation (SSE) we

might have

dG =

[
~−1H − i

2

∑
k

L†kLk

]
dt+ i

∑
k

dMk∗ ◦ Lk, (6.24)

where the Lk are the Lindblad collapse operators. This particular complex diffusive stochas-

tic unraveling of the open system dynamics can be interpreted as a system whose output

bath modes are all measured using heterodyne detection with perfect fidelity. The associ-

ated complex heterodyne measurement processes are given by dMk = 〈Lk〉 dt+ dWk, with

complex Wiener processes dWkdWl = 0, dW ∗k dWl = δkldt. Note that our method natu-

rally generalizes to mixed quantum states and deterministic or stochastic Lindblad master

equations.

We take the SSE to be in Stratonovich form to ensure that the normal chain and product

rules of calculus can be applied. Above, we write X ◦ dY to indicate a Stratonovich type

SDE whereas XdY indicates an Ito SDE. For deterministic differentials the distinction is

unnecessary X ◦ (Y dt) = XY dt.

A slightly different definition of dG can be given for modeling homodyne measurements
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6. Exact co-simulation of semi-classical and quantum dynamics

and while it is possible to extend our approach to discontinuous quantum jump equations

we limit ourselves to diffusive unravellings here. For the heterodyne SSE, we actually find

that the SDE assumes identical form in both the Ito and Stratonovich formalism, but this

is not generally true. In the following we will assume all SDEs to be in Stratonovich form

and simply write X ◦ dY as XdY to simplify the expressions.

As outlined in the previous section the state vector |ψt〉 in the fixed basis is related to

the reduced complexity state vector |φt〉 via

|ψt〉 = Uθt |φt〉 ⇔ |φt〉 = U †θt |ψt〉 . (6.25)

It then follows that the transformed state evolves according to a modified SSE

|dφt〉 = −idKθ |φt〉 , (6.26)

with dKθ := U †θdGUθ︸ ︷︷ ︸
=:dGθ

−
∑
j

F>j (θt)dθ
j .

We see that the transformed state has dynamics generated not only by the transformed SSE

generator dGθ = U †θdGUθ but also by the explicit time dependence of the unitary mapping

−
∑

j F
>
j (θt)dθ

j . This is similar to the extra terms that arise when transforming a given

system to an interaction picture.

6.4. Optimal coordinate dynamics

Assume that at a given time t we are starting at optimal coordinates, i.e., we have already

solved for θt such that the complexity gradient yj(θt) = 0, j = 1, 2, . . . , n. Then we can

determine the coordinate increments dθjt by requiring yj(θt+dt) = 0, j = 1, 2, . . . , n. We may

then derive the coordinate dynamics by computing the differential change of the gradient

coefficients dyj(θt) as a function of dψt and dθ solve for dθ such that dyj(θt) = 0.

More generally, if we assume that we are not starting exactly at optimal coordinates but

close to the optimum, then we can instead choose a gain parameter η > 0 and solve for dθ

such that

dyj(θt) = −η yj(θt) dt, j = 1, 2, . . . , n. (6.27)

This reduces to the above case when we are already at the optimum coordinates, but for a

good choice of η it leads to robustness to slight deviations as they are exponentially damped

over time.
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The expectation value of any hermitian observable X = X† in φt evolves as

d 〈X〉φt = −2 Im
[
σ (dKθt , X)φt

]
(6.28)

= −2 Im
[
σ
(
dG′θt , X

)
φt

]
− i

n∑
j=1

〈[
F>j (θt), X

]〉
φt
dθj (6.29)

Note that if X explicitly depends on time or θ one needs to add additional terms accordingly.

Here we have used Percival’s notation [90] for the quantum correlation

σ (A,B)φt :=
〈
A†B

〉
φt
− 〈A〉∗φt 〈B〉φt ,

which defines a semi-definite inner product on the space of operators (cf. Appendix 6.7.2).

Combining Equations (6.27) and (6.28) we find

n∑
k=1

mjk(θt)dθ
k = dqj + η yj(θt) dt, j = 1, 2, . . . , n, (6.30)

(6.31)

where we have defined the bias flow

dqj := −2 Im

[
σ
(
dG′θt , Y

>
j (θt)

)
φt

]
. (6.32)

Assuming a positive definite Hessian m(θt) = (mjk(θt))
n
j,k=1 this relationship can be solved

for the coordinate differentials

dθk =
n∑
j=1

[
m(θt)

−1
]kj

[dqj + η yj(θt) dt] , (6.33)

for k = 1, 2, . . . , n.

6.4.1. Gradient coupled fiducial state dynamics

When it is known that the system state will remain localized near a semi-classical manifold

of generalized coherent states Uθ |Ω〉 , then it may be advantageous to evaluate the Hessian

(mjk(θt)) and the drift term (dqj) not in the actual moving basis state |φt〉 but in the

reference state |Ω〉 instead. In this case, Equation (6.33) becomes

dθk =
n∑
j=1

[m(Ω)(θt)
−1]kj

[
dq

(Ω)
j + η yj(θt) dt

]
, (6.34)

for k = 1, 2, . . . , n. The advantage of this is that [m(Ω)(θt)
−1]kj and dq

(Ω)
j are purely

functions of θ and any other model parameters and they can be understood as semi-classical

equations of motion for the coordinates. Their dynamics are still coupled to the true

quantum state via the gradient η yj(θt) dt.
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6. Exact co-simulation of semi-classical and quantum dynamics

Interestingly enough, for oscillator modes and excitation minimization, this approach

yields the same equations of motion as the manifold projection method proposed by Hideo

Mabuchi in [67]. We have some evidence that this generalizes to other cases in which |Ω〉 is

a minimum uncertainty state for the generators of Uθ but so far this is only a conjecture.

6.4.2. Computational results

We have created a software package QMANIFOLD [113] that allows simulating in various

parametrized bases. It interfaces with QNET [115] and can automate various tedious cal-

culations related to deriving the adjoint group representation and thus the derivation of the

right generators F>j (θt). Thus, given a particular transformation Uθ (cf Section 6.7.1) and

complexity functional it can compute the minimum complexity state |φt〉 and coordinates

θt for any input state |ψt〉 . Furthermore, given a dynamical open system model in form of

an (S,L, H) object, it can carry out stochastic complex quantum diffusion simulations in

the optimal basis or using the fiducial state dynamics coupled to the gradient variables.

In Figure 6.10 we have simulated the gradient coupled fiducial state dynamics for the

previously introduced DOPO system above threshold for different values of the coupling

gain η. All stochastic simulations were carried out with the same random seed and thus

the same realization of the innovation process. Figure 6.10 (c) shows some discrepancies

between states reconstructed from simulations with lower η and η0 = 200. Specifically we

compute d2
FS(ψ(η), ψ(η0)), where the fixed basis representation states are obtained from the

respective moving bases representation states via
∣∣ψ(η)(t)

〉
= Uθ(η)

∣∣φ(η)(t)
〉

and the Fubini-

Study distance is defined as:

dFS(φ, φ′) := arccos
(
|
〈
φ|φ′

〉
|
)

(6.35)

The errors decrease with increasing η suggesting that a strong gradient coupling gain η =

O(100) is preferable. We intend to investigate this more systematically in [114]. We note

that the errors appear to stay constant over time, which is encouraging.

Furthermore, we have simulated our system with different sizes of the basis (cf Figure

6.11) and evaluated the error relative to the most accurate simulation. Surprisingly, we find

that the truncation error remains roughly constant, i.e., even for this randomly switching

system, the low-dimensional approximations to the system state track the actual system

state very well.

6.5. Examples

Here we present some examples of transformation groups, counting operators and the cor-

responding generators and sensitivity variables. A given transformation is characterized by
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Figure 6.10.: Gradient coupled fiducial state dynamics (simulated with K = 30 basis levels) for

varying coupling strength η ∈ [1, 10, 100, 200]. In (a) we compare the Q coordinate

trajectories and find that they agree very well for large η and appear somewhat ‘low-

passed’ for η = 1. The mode expectation values (shown in (b)) agree very well for all

values of η. Finally, in (c) we present the Fubini-Study distance between each trajectory

and the η = 200 trajectory.
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Figure 6.11.: Error due to basis truncation in the moving basis. We compare the Fubini-Study

distance between a trajectory simulated with K = 40 moving basis levels to trajectories

carried out with K = 5, 10, 20. Unsurprisingly, a larger basis decreases the error, but

the errors do not appear to accumulate over time. All simulations were carried out

with η = 10.

its differential form, its adjoint action onto its Lie-Algebra and the sensitivity operators

whose expectations form the gradient and Hessian of a particular excititation minimization

problem.

6.5.1. Coherent displacement

The simplest example is that of coherent displacements. Working in a real representation

we have

Uθ = exp(−iθ1p+ iθ2q), U †θaUθ = a+
θ1 + iθ2

√
2

(6.36)

where q =
a+ a†√

2
, p =

a− a†√
2i

, (6.37)

F>1 (θt) = p+ θ2/2, F>2 (θt) = −q − θ1/2. (6.38)

For the canonical complexity functional N = a†a the sensitivity operators are

Y >
1 (θt) = −i[F>1 (θt), N ] = −q, Y >

2 (θt) = −i[F>2 (θt), N ] = p (6.39)

M>
11(θt) = [F>1 (θt), [N,F

>
1 (θt)]] = 1 M>

12(θt) = [F>1 (θt), [N,F
>
2 (θt)]] = 0 (6.40)

M>
21(θt) = [F>2 (θt), [N,F

>
1 (θt)]] = 0 M>

22(θt) = [F>2 (θt), [N,F
>
2 (θt)]] = 1. (6.41)
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Thus we see that the Hessian is constant and positive definite, ensuring that we always have

a unique optimum. In fact, the fiducial state equations of motion will be exactly those of a

classical dissipative oscillator.

6.5.2. Squeezing and displacement

Our next example will be a mixture of squeezing and displacing albeit both only parame-

terized by a single variable, which does not allow to realize the most general pure Gaussian

state.

Uθ = exp(−iθ1p) exp(iθ2s), U †θaUθ = θ1/
√

2 + cosh θ2a− sinh θ2a† (6.42)

where p =
a− a†√

2i
, s =

a2 − a†2

2i
, (6.43)

F>1 (θt) = eθ
2
q, F>2 (θt) = −s. (6.44)

For the canonical complexity functional N = a†a the sensitivity operators are

Y >
1 (θt) = −i[F>1 (θt), N ] = −eθ2

q, Y >
2 (θt) = −i[F>2 (θt), N ] = 2r = a2 + a†2 (6.45)

M>
11(θt) = e2θ2

M>
12(θt) = −eθ2

q (6.46)

M>
21(θt) = −eθ2

q M>
22(θt) = 2 + 4a†a. (6.47)

This still leads to a positive definite Hessian, but it is now dependent on the coordinates

and the state.

6.5.3. Spin coherent states

Our final example here is for a different degree of freedom, namely spin coherent states as

introduced by Radcliffe [94]. We work in a single irreducible representation labeled by J

such that J2 = J(J + 1) and the spectrum of Jz is given by −J,−J + 1, . . . , J − 1, J. The

commutator relationships are [Jz, J±] = ±J± and [J+, J−] = 2Jz.

Uθ = e−µJ+e− log(1+|µ|2)Jzeµ
∗J− , (6.48)

U †θJ−Uθ =
J− − µ2J+ − 2µJz

1 + |µ|2
, U †θJzUθ =

µ∗J− + µJ+ + (1− |µ|2)Jz
1 + |µ|2

(6.49)

where µ = θ1 + iθ2 (6.50)

F>1 (θt) =
−iJ− + iJ+ − 2θ2Jz

1 + |µ|2
F>2 (θt) =

−J− − J+ + 2θ1Jz
1 + |µ|2

. (6.51)
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6. Exact co-simulation of semi-classical and quantum dynamics

For the canonical spin complexity functional N = Jz the sensitivity operators are

Y >
1 (θt) =

−J− − J+

1 + |µ|2
, Y >

2 (θt) =
iJ− − iJ+

1 + |µ|2
(6.52)

M>
11(θt) =

2µJ− + 2µ∗J+ − 4Jz
1 + |µ|2

M>
12(θt) =

−2iµJ− + 2iµ∗J+

1 + |µ|2
(6.53)

M>
21(θt) =

−2iµJ− + 2iµ∗J+

1 + |µ|2
M>

22(θt) =
−2µJ− − 2µ∗J+ − 4Jz

1 + |µ|2
. (6.54)

This does not generally lead to a positive definite Hessian, e.g., for integral J consider the

jz = 0 eigenstate of Jz for which the Hessian vanishes.

6.6. Conclusion and Outlook

So far we have only discussed single degree of freedom transformations, but it is possible

to apply the formalism to collective transformations that transform to a supermode or

quasi-particle picture. There exist a rich variety of semi-simple Lie groups [37] for which

these methods could work. For high-dimensional group manifolds is is likely advisable

to forego any symbolic solution to the differential transformation and work in a purely

numerical representation of the group’s adjoint representation. This can lead to considerable

complexity (collective mode transformations typically haveO(N2) dimensional Lie-algebras)

but it will usually still be polynomial in the number of degrees of freedom N. A drawback

of collective transformations is that they can blow up the number of terms appearing in

the Hamilton operator (and the collapse operators), making the problem less sparse than

typical problems often are. In that case we are literally trading off between overall state

space dimension and the density of our numerical representation matrices. It may also

be possible to extend the formalism to quantum fields, though this can only make sense

when the underlying physical theory leads to localization of those fields in their generalized

configuration space.

6.7. Useful additional material

6.7.1. General construction of the coordinate transformation

In this section we outline how to construct complex transformations and derive the right

generators. The simplest construction for the unitary transformation is by chaining single

parameter transformations

Uη := V
(1)
η1 V

(2)
η2 · · ·V

(n)
ηn , (6.55)

where V
(j)

ηj
:= exp(−ηjXj), j = 1, 2, . . . , n (6.56)
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6.7. Useful additional material

Thus far we allow for complex coordinates {ηj} and arbitrary, i.e., not necessarily hermitian,

generators {Xj}. We assume that the generators Xj are elements of a finite dimensional Lie

algebra g. Given a basis {Y1, Y2, . . . , Yq} ⊂ g for the Lie algebra with structure constants

cljk ∈ R implicitly defined via

[Yj , Yk] =

q∑
l=1

cljkYl, (6.57)

we represent each transformation generator in this basis as Xj =
∑q

k=1R
k
jYk. Using the

structure constants, it is straightforward to compute the conjugation of any basis element

by a single parameter transformation [93] to be

V
(j)−1

ηj
YkV

(j)

ηj
=

q∑
l=1

[exp(A
(j)

θj
)︸ ︷︷ ︸

=:S
(j)

ηj

]lkYl (6.58)

with [A
(j)

ηj
]lk = ηj

q∑
h=1

Rhj c
l
hk. (6.59)

The matrices A
(j)

ηj
are typically very sparse and can be exponentiated symbolically using a

tool such as Mathematica [139] the SymPy package [107]. The resulting matrices S
(j)

ηj
∈

Rn×n are elements of the adjoint representation of the transformation group and can be

used to directly transform the generators. As they each depend on only a single coordinate,

they satisfy S
(j)

−ηj =
(
S

(j)

ηj

)−1
. With this, it is straightforward to see that

dUη = Uη

n∑
j=1

X>
j (η)dηj (6.60)

with X>
j (η) := V

(n)−1
ηn · · ·V (j+1)−1

ηj+1 XjV
(j+1)

ηj+1 · · ·V
(n)
ηn (6.61)

=

n∑
l=1

q∑
k=1

Rlj [S
(j+1)

ηj+1 · · ·S
(n)
ηn ]kl Yk. (6.62)

We see that by requiring the differential form of Uη with all generators on the right hand side,

each generator needs to be additionally transformed Xj → X>
j (η) by all single parameter

transformations that appear to its right.

The differential transformation can be equivalently expressed with the differential gener-
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6. Exact co-simulation of semi-classical and quantum dynamics

ators on the left side of Uθt :

dUη =

 n∑
j=1

X<
j (η)dηj

Uη (6.63)

with X<
j (η) = UηX

>
j (η)U−1

η (6.64)

= V
(1)
η1 · · ·V

(j−1)

ηj−1 XjV
(j−1)−1

ηj−1 · · ·V (1)−1
η1 (6.65)

=

n∑
k=1

[S
(j−1)

−ηj−1 · · ·S
(1)
−η1 ]kjXk. (6.66)

To transform any operator M from the basis associated with |ψt〉 to the moving basis

|φt〉 one first needs to express it exclusively in terms of functions of the generators M =

f(F1, F2, . . . , Fn) where f : Cn → C is analytic in all variables, typically f is a polynomial.

We then have

M ′θ := U †θMUθ

= f(F ′1(θ), F ′2(θ), . . . , F ′n(θ)), (6.67)

with F ′j(θ) :=
∑
k

[S
(1)
θ1 · · ·S

(n)
θn︸ ︷︷ ︸

=:Sθ

]kjFk. (6.68)

We see that having the adjoint representation single parameter transformation matrices

{S(j)

θj
, j = 1, 2, . . . , n} allows us to do all necessary computations. We remark that rep-

resenting M = f(F1, F2, . . . , Fn) generally does not yield a unique function f as some

generators may themselves be polynomials of the other generators.

Finally, note that there exist alternate ways [133] of parametrizing groups and deriving

partial derivatives that may come in useful in more complex cases. For very complex

parametrizations, analytical/symbolic methods may fail but in that case it should still be

possible to work in a purely numerical representation that stores and integrates both θ and

elements of the adjoint representation of Uθ.

6.7.2. Properties of the quantum correlation

The quantum correlation is not a strictly positive definite inner product because the quan-

tum self-correlation of an operator A vanishes in any eigenstate

A |φt〉 = λa |φt〉 ⇔ σ (A,A)φt = 0. (6.69)

The sufficiency “⇒” of this condition is obvious, the necessity “⇐” follows from the Cauchy-

Schwarz inequality for the regular Hilbert space inner product.
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6.7. Useful additional material

Restricted to hermitian operators A† = A,B† = B the quantum correlation can be

decomposed into its real and imaginary part as

σ (A,B)φt = cov (A,B)φt + i

〈
[A,B]

2i

〉
φt

,

with the symmetrized covariance function

cov (A,B)φt =
1

2
〈{A,B}〉φt − 〈A〉φt 〈B〉φt .
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7. Conclusion and Outlook

In this thesis I hope to have shown you a number of tools and projects that enable the

computational modeling of quantum feedback networks as well as provide some basic in-

tuition for how useful computational operations could be mapped to (quantum-) photonic

hardware.

The thesis summarizes most of the work done during the past 5.5 years though there are

also important gaps, ‘failed projects’ or sometimes projects that I was not ready for yet or

that the time was not right for yet. In hindsight, however, I was often surprised at how

some incomplete earlier work could become very useful later on.

Unfortunately there was not enough time for me to properly describe the various software

packages ([115, 112, 113] and more) I developed during my PhD, but they mostly contain

documentation and examples. Despite the availability of great open source software such as

QuTiP [56] I there is a never-ending need for novel computational research tools and I hope

to keep contributing to this field beyond my PhD. It is an exciting time for being a com-

putational researcher as novel languages [7] and frameworks (e.g., [6]) allow programming

at an increasingly high level of mathematical abstraction.

If there is a single common underlying thread to my PhD research it is that of attempting

to generate tools and intuition for myself and hopefully others to design and model useful

quantum systems that may be helped by – but perhaps not totally rely on – some magic

material or engineering breakthrough. I believe that very interesting devices ought to be

possible with current or very near future capabilities.

Very exciting work is being done on quantum annealers and analog quantum simulators

but the question of what – if any – enhancement to the computational capacity is intrinsic

to just weakly quantum coherent systems is – I would argue – wide open. Although there

is research to analyze what kinds of quantum operations or what quantum communication

capacity a given physical process may allow for, these issues still appear quite targeted at

conventional unitary gate based quantum computation or ‘mere’ secure communication.

It appears that there is a great potential for insight into how the high intrinsic dimension-

ality of quantum dynamics could enable even classical signal processing at a very high phys-

ical hardware efficiency and I therefore believe that alternative computational paradigms

to that of gate based quantum computing need to be explored more.
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A. Simplification rules for the circuit

algebra

A.1. Simplifying algebraic circuit expressions

A.1.1. Basic algebraic properties

By observing that we can define for a general system Q = (S,L, H) its series inverse system

QC−1 := (S†,−S†L,−H)

(S,L, H)C (S†,−S†L,−H) = (S†,−S†L,−H)C (S,L, H) = (1n, 0, 0) =: idn, (A.1)

we see that the series product induces a group structure on the set of n-channel circuit

components for any n ≥ 1. It can easily be verified that the series inverse of the basic

operations is calculated as follows

(Q1 CQ2)C−1 = QC−1
2 CQC−1

1 (A.2)

(Q1 �Q2)C−1 = QC−1
1 �QC−1

2 (A.3)

([Q]k→l)
C−1 =

[
QC−1

]
l→k . (A.4)

In the following, we denote the number of channels of any given system Q = (S,L, H) by

cdim (Q) := n. The most obvious expression simplification is the associative expansion of

concatenations and series:

(A1 CA2)C (B1 CB2) = A1 CA2 CB1 CB2 (A.5)

(C1 � C2)� (D1 �D2) = C1 � C2 �D1 �D2 (A.6)

A further interesting property that follows intuitively from the graphical representation

(cf. Fig. A.1) is the following tensor decomposition law

(A�B)C (C �D) = (AC C)� (B CD), (A.7)

which is valid for cdim (A) = cdim (C) and cdim (B) = cdim (D). As mentioned in the

caption to Figure A.1, it will most often be preferable to use the RHS expression of Equa-

tion (A.7) as this enables us to understand the flow of optical channels more easily from
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A. Simplification rules for the circuit algebra

(a) (A�B)C (C �D) (b) (AC C)� (B CD)

Figure A.1.: Equivalent circuits, where a red box marks a series product and a blue box marks a

concatenation. The second version A.1(b) has the advantage of making more explicit

that the overall circuit consists of two channels without direct optical scattering.

the algebraic expression. In [41] Gough and James denote a system that can be expressed

as a concatenation as reducible. A system that cannot be further decomposed into con-

catenated subsystems is accordingly called irreducible. As follows intuitively from a graph-

ical representation any given complex system Q = (S,L, H) admits a decomposition into

1 ≤ N ≤ cdim (Q) irreducible subsystems Q = Q1 � Q2 � · · · � QN , where their channel

dimensions satisfy cdim (Qj) ≥ 1, j = 1, 2, . . . N and
∑N

j=1 cdim (Qj) = cdim (Q). While

their individual parameter triplets themselves are not uniquely determined1, the sequence

of their channel dimensions (cdim (Q1) , cdim (Q2) , . . . cdim (QN )) =: bls (Q) clearly is. We

denote this tuple as the block structure of Q. We are now able to generalize the decom-

position law in the following way: Given two systems of n channels with the same block

structure bls (A) = bls (B) = (n1, ...nN ), there exist decompositions of A and B such that

ACB = (A1 CB1)� · · ·� (AN CBN ) (A.8)

with cdim (Aj) = cdim (Bj) = nj , j = 1, . . . N . However, even in the case that the two block

structures are not equal, there may still exist non-trivial compatible block decompositions

that at least allow a partial application of the decomposition law. Consider the example

presented in Figure A.2.

(a) Series ”(1, 2, 1)C (2, 1, 1)” (b) Optimal decomposition into (3, 1)

Figure A.2.: Even in the case of a series between systems with unequal block structures, there often

exists a non-trivial common block decomposition that simplifies the overall expression.

1Actually the scattering matrices {Sj} and the coupling vectors {Lj} are uniquely determined, but the

Hamiltonian parameters {Hj} must only obey the constraint
∑N
j=1 Hj = H.
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A.1. Simplifying algebraic circuit expressions

An irrelevant mathematical excursion

This can be proven rigorously by defining a relation � on the set of all possible block struc-

tures with a total number of n channels: We write (n1, n2, . . . nN ) � (m1,m2, . . .mM ),
∑
nj =∑

mk = n iff it is possible to group themj : ((m1, . . .mk1−1), (mk1 , . . .mk2−1), . . . (mkN , . . .mM )),

such that
∑kl+1−1

k=kl
mk = nl, where k1 := 1 and kN+1 := M + 1. It can then be shown that

this relation induces a partial order (i.e., it is transitive, reflexive and anti-symmetric)

on the set of all block structures of n channels. Since there exist a minimal element

(n) and a maximal element (

n︷ ︸︸ ︷
1, 1, . . . , 1) it also follows from this that for any two block

structures (q1, . . . qN1) and (p1, . . . pN2) there exists a unique maximal common block struc-

ture (n1, . . . nN ) � (q1, . . . qN1), (p1, . . . pN2). Hence, given a system with block structure

(m1,m2, . . .mM ) we can also express it is as a concatenation of N subsystems with channel

dimensions n1, n2, . . . , nN as long as (n1, n2, . . . nN ) � (m1,m2, . . .mM ). This implies that

there always exists a maximal common block decomposition of two complex systems such

that their series product can be accordingly simplified by the decomposition law. This can

be visualized as in Figure A.3, where we have illustrated the relation � between all block

structures for the case of n = 4. As as curious side-note, Figure A.3 seems to suggest that

(2)

(1,1)

(a) n = 2

(3)

(1,2) (2,1)

(1,1,1)

(b) n = 3

(4)

(1,3) (2,2) (3,1)

(1,1,2) (1,2,1) (2,1,1)

(1,1,1,1)

(c) n = 4

Figure A.3.: A directed vertex between two nodes a → b represents the relation a � b. Note

that we have omitted all edges that would follow from the transitivity of the relation,

e.g. (4) → (1, 1, 2) is implied by the (alternative) paths via the intermediate nodes

(1, 3) or (2, 2).

the graphs for arbitrary n follow a simple geometrical pattern: For n total channels the

graph assumes the form of a hypercube in n − 1 dimensions. This hypothesis is further

strengthened by the coincidence of the number of different block structures for n with the

number of vertices of a hypercube: 2(n−1). However, these considerations are completely

irrelevant to our original topic.

Even without the above considerations it is straightforward to create a recursive algorithm

to find the maximal common block structure for two given, differing block structures. A

131



A. Simplification rules for the circuit algebra

sample implementation in Python can be found in Listing A.1.

Listing A.1: Recursively obtain the maximal common block structure

1 def common_block_structure ( bs1 , bs2 ):

2 if len ( bs1 ) == len ( bs2 ) == 0:

3 return () # empty tuple

4 i = j = 1

5 # the strategy is to find the minimal first i elements of bs1

6 # and j elements of bs2 such that their sums are equal

7 while( True ):

8 lsum = sum ( bs1 [: i ]) # this is sort of inefficient , but more pedagogical

9 rsum = sum ( bs2 [: j ]) # and these sums are usually very small

10 if( lsum < rsum ):

11 i +=1

12 elif ( rsum < lsum ):

13 j += 1

14 else: # lsum == rsum

15 break

16 # upon success the first element of the common block structure

17 # is given by that equal sum , proceed to calculate the rest recursively

18 return ( lsum , ) + common_block_structure ( bs1 [i :] , bs2 [j :])

A.1.2. Permutation objects

The algebraic representation of complex circuits often requires systems that only permute

channels without actual scattering. The group of permutation matrices is simply a subgroup

of the unitary (operator) matrices. For any permutation matrix P, the system described by

(P,0, 0) represents a pure permutation of the optical fields (cf. Fig. A.4). A permutation σ

Figure A.4.: A graphical representation of Pσ where σ ≡ (4, 1, 5, 2, 3) in image tuple notation.

of n elements (σ ∈ Σn) is often represented in the following form

(
1 2 . . . n

σ(1) σ(2) . . . σ(n)

)
,

but obviously it is also sufficient to specify the tuple of images (σ(1), σ(2), . . . , σ(n)). We

132



A.1. Simplifying algebraic circuit expressions

now define the permutation matrix via its matrix elements

(Pσ)kl = δkσ(l) = δσ−1(k)l. (A.9)

Such a matrix then maps the j-th unit vector onto the σ(j)-th unit vector or equivalently

the j-th incoming optical channel is mapped to the σ(j)-th outgoing channel. In contrast

to a definition often found in mathematical literature this definition ensures that the rep-

resentation matrix for a composition of permutations σ2 ◦ σ1 results from a product of the

individual representation matrices in the same order Pσ2◦σ1 = Pσ2Pσ1 . This can be shown

directly on the order of the matrix elements

(Pσ2◦σ1)kl = δk(σ2◦σ1)(l) =
∑
j

δkjδj(σ2◦σ1)(l) =
∑
j

δkσ2(j)δσ2(j)(σ2◦σ1)(l) (A.10)

=
∑
j

δkσ2(j)δσ2(j)σ2(σ1(l)) =
∑
j

δkσ2(j)δjσ1(l) =
∑
j

(Pσ2)kj(Pσ1)jl, (A.11)

where the third equality corresponds simply to a reordering of the summands and the fifth

equality follows from the bijectivity of σ2. In the following we will often write Pσ as a

shorthand for (Pσ,0, 0). Thus, our definition ensures that we may simplify any series of

permutation systems in the most intuitive way: Pσ2 C Pσ1 = Pσ2◦σ1 . Obviously the set of

permutation systems of n channels and the series product are a subgroup of the full system

series group of n channels. Specifically, it includes the identity idn = Pσidn
.

From the orthogonality of the representation matrices it directly follows that PT
σ = Pσ−1

For future use we also define a concatenation between permutations

σ1 � σ2 :=

(
1 2 . . . n n+ 1 n+ 2 . . . n+m

σ1(1) σ1(2) . . . σ1(n) n+ σ2(1) n+ σ2(2) . . . n+ σ2(m)

)
, (A.12)

which satisfies Pσ1 � Pσ2 = Pσ1�σ2 by definition. Another helpful definition is to introduce

a special set of permutations that map specific ports into each other but leave the relative

order of all other ports intact:

ω
(n)
l←k :=



 1 . . . k − 1 k k + 1 . . . l − 1 l l + 1 . . . n

1 . . . k − 1 l k . . . l − 2 l − 1 l + 1 . . . n

 for k < l 1 . . . l − 1 l l + 1 . . . k − 1 k k + 1 . . . n

1 . . . l − 1 l + 1 l + 2 . . . k l k + 1 . . . n

 for k > l

(A.13)

We define the corresponding system objects as W
(n)
l←k := P

ω
(n)
l←k

.

A.1.3. Permutations and Concatenations

Given a series PσC(Q1�Q2� · · ·�QN ) where the Qj are irreducible systems, we analyze in

which cases it is possible to (partially) ”move the permutation through” the concatenated
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expression. Obviously we could just as well investigate the opposite scenario (Q1 � Q2 �

· · ·�QN )C Pσ, but this second scenario is closely related2.

Block-permuting permutations

The simples case is realized when the permutation simply permutes whole blocks intactly

(cf. Fig. A.5) Given a block structure n := (n1, n2, . . . nN ) a permutation σ ∈ Σn is said to

(a) Pσ C (A1 �A2) (b) (A2 �A1)C Pσ

Figure A.5.: A block permuting series.

block permute n iff there exists a permutation σ̃ ∈ ΣN such that

Pσ C (Q1 �Q2 � · · ·�QN ) = (Pσ C (Q1 �Q2 � · · ·�QN )C Pσ−1)C Pσ

= (Qσ̃(1) �Qσ̃(2) � · · ·�Qσ̃(N))C Pσ

Hence, the permutation σ, given in image tuple notation, block permutes n iff for all

1 ≤ j ≤ N and for all 0 ≤ k < nj we have σ(oj + k) = σ(oj) + k, where we have introduced

the block offsets oj := 1+
∑

j′<j nj . When these conditions are satisfied, σ̃ may be obtained

by demanding that σ̃(a) > σ̃(b)⇔ σ(oa) > σ(ob). This equivalence reduces the computation

of σ̃ to sorting a list in a specific way.

Block-factorizing permutations

The next-to-simplest case is realized when a permutation σ can be decomposed σ = σb ◦ σi

into a permutation σb that block permutes the block structure n and an internal permuta-

tion σi that only permutes within each block, i.e. σi = σ1 � σ2 � · · ·� σN . In this case we

can perform the following simplifications

Pσ C (Q1 �Q2 � · · ·�QN ) = Pσb C [(Pσ1 CQ1)� (Pσ2 CQ2)� · · ·� (PσN CQN )] .

(A.14)

We see that we have reduced the problem to the above discussed case. The result is now

Pσ C (Q1 � · · ·�QN ) =
[
(Pσσ̃b(1)

CQσ̃b(1))� · · ·� (Pσσ̃b(N)
CQσ̃b(N))

]
C Pσb

. (A.15)

2Series-Inverting a series product expression also results in an inverted order of the operand inverses (Q1C

Q2)C−1 = QC−1
2 C QC−1

1 . Since the inverse of a permutation (concatenation) is again a permutation

(concatenation), the cases are in a way ”dual” to each other.
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In this case we say that σ block factorizes according to the block structure n. Figure

illustrates an example of this case. A permutation σ block factorizes according to the block

(a) Pσ C (A1 �A2) (b) Pσb C Pσi C (A1 �A2) (c) ((Pσ2 CA2)�A1)C Pσb

Figure A.6.: A block factorizable series.

structure n iff for all 1 ≤ j ≤ N we have max0≤k<nj σ(oj+k)−min0≤k′<nj σ(oj+k
′) = nj−1,

with the block offsets defined as above. In other words, the image of a single block is coherent

in the sense that no other numbers from outside the block are mapped into the integer range

spanned by the minimal and maximal points in the block’s image. The equivalence follows

from our previous result and the bijectivity of σ.

The general case

In general there exists no unique way how to split apart the action of a permutation on a

block structure. However, it is possible to define a some rules that allow us to ”move as much

of the permutation” as possible to the RHS of the series. This involves the factorization

σ = σx◦σb◦σi defining a specific way of constructing both σb and σi from σ. The remainder

σx can then be calculated through

σx := σ ◦ σ−1
i ◦ σ

−1
b . (A.16)

Hence, by construction, σb ◦ σi factorizes according to n so only σx remains on the exterior

LHS of the expression.

So what then are the rules according to which we construct the block permuting σb and

the decomposable σi? We wish to define σi such that the remainder σ ◦ σ−1
i = σx ◦ σb does

not cross any two signals that are emitted from the same block. Since by construction σb

only permutes full blocks anyway this means that σx also does not cross any two signals

emitted from the same block. This completely determines σi and we can therefore calculate

σ ◦σ−1
i = σx ◦σb as well. To construct σb it is sufficient to define an total order relation on

the blocks that only depends on the block structure n and on σ ◦ σ−1
i . We define the order

on the blocks such that they are ordered according to their minimal image point under

σ. Since σ ◦ σ−1
i does not let any block-internal lines cross, we can thus order the blocks

according to the order of the images of the first signal σ ◦ σ−1
i (oj). In Figure A.7 we have

illustrated this with an example.

Finally, it is a whole different question, why we would want move part of a permutation

through the concatenated expression in this first place as the expressions usually appear to
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(a) Pσ C (A1 �A2) (b) Pσx C Pσb C Pσi C (A1 �A2) (c) (Pσx C (Pσ2 CA2)�A1)C Pσb

Figure A.7.: A general series with a non-factorizable permutation. In the intermediate step A.7(b)

we have explicitly separated σ = σx ◦ σb ◦ σi.

become more complicated rather than simpler. This is, because we are currently focussing

only on single series products between two systems. In a realistic case we have many systems

in series and among these there might be quite a few permutations. Here, it would seem

advantageous to reduce the total number of permutations within the series by consolidating

them where possible: Pσ2 C Pσ1 = Pσ2◦σ1 . To do this, however, we need to try to move the

permutations through the full series and collect them on one side (in our case the RHS)

where they can be combined to a single permutation. Since it is not always possible to move

a permutation through a concatenation (as we have seen above), it makes sense to at some

point in the simplification process reverse the direction in which we move the permutations

and instead collect them on the LHS. Together these two strategies achieve a near perfect

permutation simplification.

A.1.4. Feedback of a concatenation

A feedback operation on a concatenation can always be simplified in one of two ways: If

the outgoing and incoming feedback ports belong to the same irreducible subblock of the

concatenation, then the feedback can be directly applied only to that single block. For an

illustrative example see Figure A.8.

(a) [A1 �A2]2→3 (b) A1 � [A2]1→2

Figure A.8.: Reduction to feedback of subblock.

If, on the other, the outgoing feedback port is on a different subblock than the incoming,

the resulting circuit actually does not contain any real feedback and we can find a way

to reexpress it algebraically by means of a series product (cf. Figures A.9 and A.10).
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(a) [A1 �A2]1→3 (b) A2 CW
(2)
2←1 C (A2 � id1)

Figure A.9.: Reduction of feedback to series, first example

(a) [A1 �A2]2→1 (b) (A1 � id1)CA2

Figure A.10.: Reduction of feedback to series, second example

To discuss the case in full generality consider the feedback expression [A � B]k→l with

cdim (A) = nA and cdim (B) = nB and where A and B are not necessarily irreducible.

There are four different cases to consider.

1. k, l ≤ nA: In this case the simplified expression should be [A]k→l �B

2. k, l > nA: Similarly as before but now the feedback is restricted to the second operand

A� [B](k−nA)→(l−nA), cf. Fig. A.8.

3. k ≤ nA < l: This corresponds to a situation that is actually a series and can be

re-expressed as (idnA − 1�B)CW (n)
(l−1)←k C (A+ idnB − 1), cf. Fig. A.9.

4. l ≤ nA < k: Again, this corresponds a series but with a reversed order compared to

above (A+ idnB − 1)CW (n)
l←(k−1) C (idnA − 1�B), cf. Fig. A.10.

A.1.5. Feedback of a series

There are two important cases to consider for the kind of expression at either end of the

series: A series starting or ending with a permutation system or a series starting or ending

with a concatenation.

1. [AC (C �D)]k→l: We define nC = cdim (C) and nA = cdim (A). Without too much

loss of generality, let’s assume that l ≤ nC (the other case is quite similar). We can

then pull D out of the feedback loop: [A C (C �D)]k→l −→ [A C (C � idnD)]k→l C
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(a) [A3 C (A1 �A2)]2→1 (b) (A3 C (A1 � id2))CA2

Figure A.11.: Reduction of series feedback with a concatenation at the RHS.

(a) [A3 C Pσ]2→1 (b) [A3]2→3 C Pσ̃

Figure A.12.: Reduction of series feedback with a permutation at the RHS.

(idnC − 1 �D). Obviously, this operation only makes sense if D 6= idnD. The case

l > nC is quite similar, except that we pull C out of the feedback. See Figure A.11

for an example.

2. We now consider [(C � D) C E]k→l and we assume k ≤ nC analogous to above.

Provided that D 6= idnD, we can pull it out of the feedback and get (idnC − 1�D)C

[(C � idnD)C E]k→l.

3. [ACPσ]k→l: The case of a permutation within a feedback loop is a lot more intuitive

to understand graphically (e.g., cf. Figure A.12). Here, however we give a thorough

derivation of how a permutation can be reduced to one involving one less channel and

moved outside of the feedback. First, consider the equality [A CW (n)
j←l]k→l = [A]k→j

which follows from the fact that W
(n)
j←l preserves the order of all incoming signals

except the l-th. Now, rewrite

[AC Pσ]k→l = [AC Pσ CW
(n)
l←n CW

(n)
n←l]k→l (A.17)

= [AC Pσ CW
(n)
l←n]k→n (A.18)

= [ACW (n)
σ(l)←n C (W

(n)
n←σ(l) C Pσ CWl←n)]k→n (A.19)

Turning our attention to the bracketed expression within the feedback, we clearly

see that it must be a permutation system Pσ′ = W
(n)
n←σ(l) C Pσ CW

(n)
l←n that maps

n→ l→ σ(l)→ n. We can therefore write σ′ = σ̃�σid1 or equivalently Pσ′ = Pσ̃�id1

But this means, that the series within the feedback ends with a concatenation and
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from our above rules we know how to handle this:

[AC Pσ]k→l = [ACW (n)
σ(l)←n C (Pσ̃ � id1)]k→n (A.20)

= [ACW (n)
σ(l)←n]k→n C Pσ̃ (A.21)

= [A]k→σ(l) C Pσ̃, (A.22)

where we know that the reduced permutation is the well-defined restriction to n − 1

elements of σ′ =
(
ω

(n)
n←σl ◦ σ ◦ ω

(n)
l←n

)
.

4. The last case is analogous to the previous one and we will only state the results

without a derivation:

[Pσ CA]k→l = Pσ̃ C [A]σ−1(k)→l, (A.23)

where the reduced permutation is given by the (again well-defined) restriction of

ω
(n)
n←k ◦ σ ◦ ω

(n)
σ−1(k)←n to n− 1 elements.
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