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Abstract

Coherent feedback will play an important role in the emerging field of quantum con-

trol, whose goal is to apply concepts from control engineering and dynamical systems

theory to the realm of quantum systems in order to tailor system behavior and per-

formance to suit the needs of scientific and engineering applications. In this thesis I

present a system of coupled degenerate optical parametric oscillators (OPOs) that are

arranged in a feedback configuration to demonstrate some basic principles of coherent

feedback and control. A key point is that the system exhibits gain in the feedback

loop, a fundamental component necessary for design flexibility of system dynamics.

System behavior will be discussed from a perspective of control goals for narrow band

disturbance rejection and amplification, as well stabilization control.
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Figure 1: Camera still of the Catcher in the Lab, a rare specimen indeed. Surrounding
aura indicates high technical capability and strong adherence to principles. Approach
with humorous intent.
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Chapter 1

Introduction

Feedback control engineering is crucial to the design of systems and technologies that

enable our modern lifestyles [1]. Modern passenger aircraft serve as good examples

of the remarkable integration and control of a vast array of different physical systems

(mechanical, electrical, aerodynamical, optical, chemical, structural and human) that

allow us to not only realize the dream of flight, but to make it practical for travel and

accessible to many (see figs. 1.1 and 1.2). At its core, feedback control engineering

describes how dynamical systems should be connected when some part of the output

of a system to be controlled (henceforth called the "plant") is fed back to a system that

is driving it, in order to help achieve a desired control objective (see fig. 1.3). Much

progress has been made in the last two centuries to work out both the principles

and realizations of feedback control systems for macroscopic systems, but as our

attention shifts to the control of systems at the micro- and nano-scale where coherent

and quantum effects become important, the need to modify our existing theoretical

tools and methodologies to accommodate inherent differences in system dynamics

becomes clear.

Feedback control schemes for macroscopic systems rely on measurement-based

feedback, where the state of the system to be controlled is monitored by measuring

one or more of its outputs, and then feedback is applied via actuators to control

the system based on the measurements made. Measurement-based feedback is also

an effective approach for the control of quantum systems, and has been studied from

1
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Figure 1.1: Aircraft control surfaces on a couple of representative modern jetliners,
a sampling of the many systems that are integrated into the master control system
operated by the pilots. Image courtesy of www.ahrtp.com.
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Figure 1.2: Underlying control structure for aircraft control surfaces. Note the in-
clusion of both open loop (direct input from the pilot) and closed loop (feedback)
control. Ideally, the pilot input is also part of the feedback loop in that the humans
flying the plane should take the sensor readings into account and make adjustments
for a safe and comfortable flight. Image courtesy of www.ahrtp.com.

System 2 System 1 

System 2 System 1 

Closed 
Loop 

Open 
Loop 

Figure 1.3: Two basic system control configurations. On the bottom, the output of
system 1 is fed into system 2 to drive it, but there’s no feedback to system 1 (open
loop control). On top, the output of system 2 is fed back into system 1, thereby
forming a feedback loop (closed loop control).
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both the perspective of a theoretical framework [2, 3, 4, 5], as well as realization in the

laboratory [6, 7, 8, 9, 10]. However, such schemes will always introduce some noise

associated with the effects of quantum back-action during measurements [11, 12],

and while the effects of the back-action may be accounted for in the control scheme

[10], there is still the need to amplify the quantum signals to classical, macroscopic

levels during processing in the feedback loop. This presents significant limitations

in the design of the controllers, not just in terms of the absolute performance that

they can achieve, but also in terms of their power requirements, processing speed and

the degree to which they can be integrated into an architecture that consists of an

ensemble of nanoscale systems [13].

One important control scheme that circumvents some of the difficulties involved

in measurement-based feedback schemes is that of coherent control, where part of

the system output is sent to the controller for processing and fed back to the system

without measurement, so that the controller is driven by signals that share the same

correlations as those inherent to the plant, and additional noise associated with mea-

surements is not introduced [14, 15, 16]. In addition to the potential of outperforming

measurement based schemes in low excitation regimes [17, 18] and lowering power uti-

lization [19], coherent feedback schemes readily enable the use of similar, nanoscale

systems for controller implementation and thus represent a suitable methodology to

use in the design of integrated, embedded autonomous controllers [20, 21]. This is de-

sirable not only for applications involving quantum information processing and error

correction, but also those in which coherent information is processed over substantial

distances (e.g. remote sensing) so that rapid signal propagation and low loss become

important [22].

While many important problems of interest in this field involve systems with

nonlinear dynamics [20, 21, 19], the behavior of linear systems remains an important

underpinning of our understanding of quantum and coherent control. By linear, we

mean that the system dynamics can be described by a set of quantum stochastic

differential equations [23, 24, 25] that are linear in the state variables and quantum

correlated noises. The study of linear systems has facilitated the development of the

quantum analogs of powerful control paradigms in classical control theory including
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H∞ and LQG control [26, 27], and provides a natural platform to contrast ideal,

quantum-limited performance of coherent controllers with their classical counterparts

[17, 18]. To date, a few landmark implementations of coherent feedback controllers for

linear systems have been realized, and have provided some basic intuition about the

performance and limitations of this control scheme for problems including coherent

broadband disturbance rejection [15] and enhancement of optical field quadrature

squeezing [16]. Up until now, however, the feedback loops in these controllers have

been missing an important design element that is generally necessary to optimize

controller performance (in both classical and coherent scenarios): gain.

Gain in the feedback loop allows a wide variety of modifications to be made to

the closed loop dynamics of a system, including changing system stability behavior,

and plays a central role in the prescription for a systematic approach to constructing

arbitrary dynamical systems from fundamental building blocks [1, 28]. In this work,

we examine the behavior of coherent control in a pair of coupled degenerate optical

parametric oscillators (OPOs) joined together in a feedback loop configuration, where

the output of one OPO (the "plant") is fed into a second OPO (the "controller") for

processing, and then returned to the plant through a different port (see fig. 1.4). When

the controller OPO is pumped, it acts as a quantum noise limited phase sensitive

amplifier in the feedback loop and can exhibit gain for the right phase matching

conditions between the pump and signal beams. We explore the effects of gain in

the context of two problems: narrowband coherent disturbance rejection (as well

as amplification), and modification of system stability behavior. Although to some

extent the physical behavior of the closed loop system can be intuited from the well-

known behavior of the individual OPOs in an open loop configuration, closing the loop

introduces a strong dependence on an additional system phase (the phase accumulated

around the feedback loop, henceforth referred to as the coherent feedback phase ΦFB)

that significantly impacts the system dynamics and the effects of gain. Moreover,

accurate simulation of the closed loop system that accounts for the finite bandwidth

of the controller, relative phases between signal and pump, feedback phase, cavity

detunings, and parameter fluctuations due to ambient technical noise is a challenging

task. Thus, the experiment is crucial to help pinpoint the parameter regimes of
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Figure 1.4: Overlay of functional schematic over experimental setup, which consists
of 2 OPOs in a feedback loop configuration to implement a coherent feedback system
with gain. The OPO on the left serves as the "plant" cavity, while the OPO on
the right as the "controller", with the feedback and pump beam paths visible on the
overlay traces (see Chapter 3 for more details). The green glow comes from the second
harmonic pump beams injected into each OPO. High quality photography courtesy
of Mike Zhang and Armand Niederberger, immaculate overlay courtesy of Nik Tezak.

interest for control problems as discussed above and guide theoretical development

for practical realizations of coherent controllers.

The rest of the this thesis is organized as follows: Chapter 2 details a theoretical

framework that governs the behavior of general linear quantum stochastic dynamical

systems and some predictions for the specific system at hand. Chapter 3 describes

the experimental apparatus, the specs of the components involved and technical chal-

lenges encountered in building and stabilizing its behavior. Chapter 4 presents the

results of system characterization, its performance in achieving narrowband distur-

bance rejection and modifying system stability, as well future experiments to clarify

system limitations and new regimes of behavior. The 3 appendices are meant to

give some helpful details of the experimental setup to aid the next researcher(s) in
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working with the apparatus or designing similar systems. Appendix A covers the

design methodology used for the OPO bowtie ring cavities. Appendix B shows the

explicit details of the homemade analog electronic circuits used for locking servos,

high voltage amplifiers and photodetection. Finally, Appendix C contains some ad-

vice for optimizing the nonlinear optical processes (second harmonic generation and

degenerate parametric amplification) in the crystals with respect to beam alignment,

phase matching and crystal deterioration.



Chapter 2

Theory

In this Chapter we discuss the theory appropriate for general linear quantum stochas-

tic dynamical systems as well the specifics relevant for our coupled optical parametric

oscillator (OPO) system of interest in the feedback configuration. As mentioned in

the previous Chapter, the system dynamics are well described via the formalism of

quantum stochastic differential equations (QSDEs) [23, 24, 25, 29] and considerable

work has been done to augment this theoretical framework with concepts from con-

trol and systems engineering [30, 31, 28, 27, 26] for application to networks of linear

quantum optical systems. Here, we utilize some of the standard tools developed in

the previous work, namely the "SLH" description for the governing dynamics of each

system component and the series and concatenation products for joining them to

form more complex systems. The reader is referred to the above references for the

background needed to understand the notation used below.

2.1 ABCD models

For the special case where the internal degrees of freedom {aj, a†j} are given by a

collection of quantum harmonic oscillators [aj, a
†
k] = δjk with a Hamiltonian quadratic

8
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in the mode operators

H = a†Ω−a +
1

2
a†Ω+a∗ +

1

2
aTΩ∗+a (2.1)

where Ω†− = Ω− ∈ CN×N , Ω+ = ΩT
+ ∈ CN×N , (2.2)

a scalar valued scattering matrix S ∈ CM×M and a linear coupling vector

L = C−a + C+a∗, (2.3)

where C−,C+ ∈ CM×N (2.4)

the equations of motion of the mode operators are linear. For this system with input

noises dB and in particular this form of S and L we have the following quantum

stochastic differential equation for the internal mode operators

da =

(
−i[a, H]− 1

2
[a,L†]L +

1

2
[a,LT ]L∗

)
dt− [a,L†]SdB + [a,LT ]dB∗S∗ (2.5)

=

[
−iΩ−a− iΩ+a∗ − 1

2
C†− (C−a + C+a∗) +

1

2
CT

+(C∗−a∗ + C∗+a)

]
dt (2.6)

−C†−SdB + CT
+S∗dB∗ (2.7)

=

[(
−iΩ− −

1

2
C†−C− +

1

2
CT

+C∗+

)
a +

(
−iΩ+ −

1

2
C†−C+ +

1

2
CT

+C∗−

)
a∗
]

dt

(2.8)

−C†−SdB + CT
+S∗dB∗ (2.9)

It turns out that this equation is valid both as an Ito QSDE and a Stratonovich

QSDE, because all noise increments have scalar coefficients. Using the doubled-up

notation ă =

(
a

a∗

)
and ∆̆(X,Y) =

(
X Y

Y∗ X∗

)
from [31, 28] we can combine the
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equations of motion for a and a∗ into a single one:

dă = ∆̆ (A−,A+) ădt + ∆̆ (B−,B+) dB̆ (2.10)

= Aădt + BdB̆ (2.11)

A− = −iΩ− −
1

2
C†−C− +

1

2
CT

+C∗+ (2.12)

A+ = −iΩ+ −
1

2
C†−C+ +

1

2
CT

+C∗− (2.13)

B− = −C†−S (2.14)

B+ = CT
+S∗ (2.15)

Similarly, the input output relation can be expressed as

dB̆
′
= ∆̆(C−,C+)ădt + ∆̆(S,0)dB̆ (2.16)

= Cădt + DdB̆ (2.17)

From this we can easily read off

A = ∆̆ (A−,A+) ∈ C2N×2N (2.18)

= ∆̆ (−iΩ−,−iΩ+)− 1

2
∆̆
(
C†−,−CT

+

)
∆̆ (C−,C+) (2.19)

= ∆̆ (−iΩ−,−iΩ+)− 1

2
C[C (2.20)

B = ∆̆ (B−,B+) = −∆̆(C†−,−CT
+)∆̆(S,0) = −C[D ∈ C2N×2M (2.21)

C = ∆̆(C−,C+) ∈ C2M×2N (2.22)

D = ∆̆(S,0) ∈ C2M×2M (2.23)

If we write the boson field increments as dB̆ = b̆dt, we can rewrite the equations of

motion as

˙̆a = Aă + Bb̆ (2.24)

b̆′ = Că + Db̆ (2.25)
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Instead of starting with an SLH model, one could also start with an ABCD model and

try to synthesize a corresponding SLH model in terms of interconnected beamsplitter,

cavity, and parametric oscillator models. As one might expect from the general re-

dundancy in our doubled-up notation related to the fact that we must always preserve

the canonical commutation relations for oscillator and field degrees of freedom, there

exist some constraints on these matrices [28, 27].

2.2 Coherent inputs

Adding coherent inputs is straightforward. For a constant coherent input vector (one

entry for each channel/port) w ∈ CM , the Hamiltonian and the coupling vector need

to be adjusted to

H → H +
1

2i

[(
a†C†− + aTC†+

)
Sw −w†

(
S†C−a + S†C+a∗

)]
(2.26)

= H +
1

2i

[
a†
(
C†−Sw −CT

+S∗w∗
)
−
(
w†S†C− −wTSTC∗+

)
a
]

(2.27)

L→ L + Sw (2.28)

This effectively modifies the system degree equations of motion to be

ȧ→ ȧ−
(
C†−Sw −CT

+S∗w∗
)
, (2.29)

which is formally equivalent to simply displacing the noise fields b → b + w as

one might have expected. As we will later see, the coupling vector for our concrete

system model consists only of annihilation operators. Therefore, we will from now on

set C+ = O.
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2.3 Dynamic and steady state properties of the

system

Since our system is linear we can explicitly solve for the time dependence of the

internal and external degrees of freedom

ă(t) = etAă(0) + etA
∫ t

0

dt′e−t
′ABb̆(t′) (2.30)

b̆′(t) = CetA
∫ t

0

dt′e−t
′ABb̆(t′) + Db̆(t) + CetAă(0) (2.31)

If the system is Hurwitz-stable [32] the contributions from the internal degrees of

freedom’s initial state decay exponentially. Following [33] we can also define the

Laplace-transforms as

ă[s] ≡
∫ ∞

0

e−stă(t)dt (2.32)

b̆[s] ≡
∫ ∞

0

e−stb̆(t)dt (2.33)

b̆′[s] ≡
∫ ∞

0

e−stb̆′(t)dt. (2.34)

This allows us to write down a transfer function for the external fields, where we

ignore the contribution from the initial internal state

b̆′[s] = Ξ(s)b̆[s] + C(s−A)−1ă(0) (2.35)

≈ Ξ(s)b̆[s] (2.36)

where the transfer function is easily obtained as

Ξ(s) =
[
D + C (s12N −A)−1 B

]
(2.37)

=
[
12M −C (s12N −A)−1 C[

]
∆̆(S,0) (2.38)
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If we also define the Fourier transformed fields as

˜̆b(ω) ≡ 1√
2π

∫ ∞
−∞

eiωtb̆(t)dt (2.39)

˜̆b′(ω) ≡ 1√
2π

∫ ∞
−∞

eiωtb̆′(t)dt (2.40)

(2.41)

then it turns out that the Laplace representation transfer function can be extended

to complex s = −iω parameters

˜̆b′(ω) = Ξ(−iω)˜̆b(ω), (2.42)

which implies that

b̃′(ω) = G(ω)b̃(ω) + g(ω)b̃(−ω)∗, (2.43)

where the gain matrices are given by the upper two blocks of the transfer function

matrix Ξ(−iω). Note that this frequency-domain transfer function is of the form

Ξ(−iω) =

(
g(ω) G(ω)

G∗(−ω) g∗(−ω)

)
. (2.44)

The negative frequency of the adjoint field operators is due to the fact that

1√
2π

∫ ∞
−∞

eiωtb∗(t)dt =
1√
2π

(∫ ∞
−∞

e−iωtb(t)dt

)∗
= b̃(−ω)∗, (2.45)

and thus:

˜̆b(ω) =

(
b̃(ω)

b̃(−ω)∗

)
(2.46)
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2.4 The squeezing spectrum

Squeezing is a phenomenon in which the uncertainty or the variance in one field

quadrature is decreased at the cost of adding uncertainty to the orthogonal quadra-

ture. The optical parametric oscillator can produce squeezed states of light. If we

now define a output quadrature operator for a specific port j as

Xθ
j (t) = eiθb′j(t) + e−iθb′j

†
(t), (2.47)

⇔ X̃θ
j (ω) = eiθb̃′j(ω) + e−iθb̃′j(−ω)†, (2.48)

then it is possible to use the transfer functions above to derive an expression for the

power spectral density of the output fields:

Pθj (ω) = lim
T→∞

1

T

〈∫ T

0

eiωtXθ
j (t)dt

∫ T

0

e−iωt
′
Xθ
j (t′)dt′

〉
, (2.49)

which can be shown to be implicitly given by

〈X̃θ
j (ω)X̃θ

j (ω′)〉 = Pθj (ω)δ(ω + ω′) (2.50)

Using the above results, it takes on the following form for vacuum inputs [33]:

Pj(ω, θ) = 1 +Nj(−ω) +Nj(ω) + e−2iθMj(ω) + e2iθMj(ω)∗, (2.51)

where Nj(ω) ≡
(
g(ω)g(ω)†

)
jj
, (2.52)

Mj(ω) ≡
(
G(ω)g(−ω)T

)
jj

(2.53)

Constant coherent inputs to the system w ∈ CM will only affect the squeezing spec-

trum at DC by adding a δ peak with an amplitude depending on the coherent input

amplitudes. This corresponds to the transformation

b̆(t)→ b̆(t) + w̆ (2.54)
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or in Fourier-Space

˜̆b(ω)→ ˜̆b(ω) + w̆δ(ω) (2.55)

(2.56)

and consequently

˜̆b′(ω)→ ˜̆b′(ω) + Ξ(−iω)w̆δ(ω) (2.57)

= ˜̆b′(ω) + Ξ(0)w̆δ(ω) = ˜̆b′(ω) + ∆̆(G(0),g(0))w̆δ(ω) (2.58)

Therefore, the θ-quadrature of the j-th output field is shifted as

X̃θ
j (ω)→ X̃θ

j (ω) + e−iθ (Ξ(0)w̆)j δ(ω) (2.59)

+ eiθ (Ξ(0)w̆)j+M δ(ω) (2.60)

= X̃θ
j (ω) + vj(θ,w,w

∗)δ(ω) (2.61)

And thus the power spectral density receives an additional DC contribution:

Sθ(ω)→ Sθ(ω) + v2
j (θ,w,w

∗)δ(ω) (2.62)

The generalization to a time dependent coherent field is possible as well.

2.5 System variables

Regarding the expectations of system variables, we remind ourselves that all the

above results are only valid if the system is stable, which is the case whenever A is

Hurwitz-stable, i.e., all eigenvalues have strictly negative real part. From the previous

section we know that the expected output field amplitude in the presence of constant

coherent input fields w is given by

〈b̆′〉ss = Ξ(0)w̆ =
[
D−CA−1B

]
w̆. (2.63)
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The expectation value of the internal mode operators is given by

〈ă〉ss = −A−1Bw̆. (2.64)

The intra-cavity photon number expectations can be obtained from the diagonal

elements of

N ≡
〈
ăă†
〉

(2.65)

which obeys an ODE that can be derived via the Ito-rules for the input fields. The

fields in turn are completely specified through the F matrix, which is implicitly defined

via

Fdt ≡ d̆Bd̆B
†
, (2.66)

and for pure vacuum inputs we have

Fvac =

(
1M 0

0 0

)
, (2.67)

while for input fields in different thermal states characterized by a mean photon

number n1, n2, . . . , nM , we would have

Ftherm =

(
diag(1 + n1, 1 + n2, . . . , 1 + nM) 0

0 diag(n1, n2, . . . , nM)

)
, (2.68)

where the vacuum case is recovered for n1 = n2 = · · · = nM = 0. This leads to:

Ṅ = AN + NA† (2.69)

+ Bw̆〈˜̆a†〉+ 〈˜̆a〉w̆†B† + BFB† (2.70)
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In steady state we can replace 〈˜̆a〉 with its steady-state value (cf. Equation (2.64)),

which leads to the following Lyapunov equation

0 = ANss + NssA
† −Bw̆w̆†B†A†

−1 −A−1Bw̆w̆†B† + BFB† (2.71)

= A (Nss −Nw) + (Nss −Nw) A† + Q, (2.72)

where we have introduced the constant matrices:

Q = BFB† (2.73)

Nw = A−1Bw̆w̆†B†A†
−1

= 〈ă〉ss〈ă†〉ss (2.74)

This quite intuitive result shows that a non-zero coherent input field simply leads to

an additive contribution Nw to the second order moments. Also note that if both

Ω+ and C+ are zero, the Lyapunov equation decouples and one can instead solve an

analogous equation for the matrix 〈a†a〉 instead.

2.6 Output power

For an SLH model with the ABCD matrices defined as above and with coherent inputs

(S,L, H) � (1,w, 0) the expected output power Pj from port j is implicitly given by

the expectation value of the corresponding gauge process increment Pjdt = 〈dΛ′jj〉.
This expectation is given by

Pjdt =

〈
(S∗dΛST )jj

dt

〉
+
〈
L†jLj

〉
dt (2.75)

=
(
D
(
F + w̆w̆†

)
D†
)
M+j,M+j

dt +
(
CNC†

)
M+j,M+j

dt (2.76)

+
(
Dw̆〈ă†〉C†

)
M+j,M+j

dt +
(
C〈ă〉w̆†D†

)
M+j,M+j

dt (2.77)

In steady state, we can again replace the amplitude expectation and we find

Dw̆〈ă†〉ssC† + C〈ă〉ssw̆†D† = Dw̆w̆†B†A†
−1

C† −CA−1Bw̆w̆†D† (2.78)
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We can also split apart the internal second order moments as above Nss = (Nss −
Nw) + Nw, where the first part is computed via a Lyapunov equation and the second

part is given by a simple expression featuring only the input displacement and the

model matrices. With this, we find

Pj =
(
DFD†

)
M+j,M+j

+
(
C(Nss −Nw)C†

)
M+j,M+j

+
(
Ξ(0)w̆w̆†Ξ(0)†

)
M+j,M+j

(2.79)

In this form, the first two contributions are the combined (squeezed) vacuum/thermal

photon number contributions while the last part is the only contribution due to the

coherent input amplitude.

2.7 The linear optical parametric oscillator model

Finally, we discuss a concrete physical model that is central to this work: An OPO

cavity consists of an optical resonator (in our case a bowtie cavity) with a PPLN

crystal that couples a narrow-linewidth pump beam at a frequency 2ω to electromag-

netic modes of lower frequencies via three-wave mixing. Generally, this enables the

scattering of a single pump photon into two other photons with frequencies ω1, ω2

that sum up to the original 2ω to satisfy conservation of energy. In the special case

of degenerate three-wave mixing, the final photons have the same energy ω1 = ω2,

this is the case for the OPOs considered here. In the following we refer to the cavity

mode with frequency ω as the signal mode to distinguish it from the pump.

The cavity is chosen such that it has a fairly narrow linewidth (on the order of

tens of MHz) for the signal mode, whereas it is much larger for the pump. In fact the

mirror transmissivity for the pump wavelength is so large that it is not technically

well-defined to speak of a single pump mode in the cavity, but it will nonetheless

turn out to be useful to model it that way later on. There exists a threshold for

the pump input power at which the roundtrip power gain in the signal mode due to

pump→ signal photon conversion becomes equal to the roundtrip power loss through

the cavity mirrors. Above this threshold, the system starts lasing at the signal mode
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frequency. For the most part, we assume that we are operating in a sub-threshold

parameter regime where the pump beam amplitude is practically unaffected by the

signal mode. We can then neglect the dynamics of the pump entirely. As we will see

this leads to a quadratic Hamiltonian in the signal mode operators and thus to linear

equations of motion.

S = 13 (2.80)

L =


√
κ1a+ α
√
κ2a
√
κLa

 (2.81)

H = ∆a†a+
1

2i

(
ε∗a2 − εa†2

)
+

√
κ1

2i

(
αa† − α∗a

)
(2.82)

In this case we find the following Ito QSDE for the signal mode operators

ȧ = −(κT/2 + i∆)a+ εa† −
√
κ1α−

√
κ1dA1 −

√
κ2dA2 −

√
κLdAL (2.83)

ȧ† = −(κT/2− i∆)a† + ε∗a−
√
κ1α

∗ −
√
κ1dA1 † −

√
κ2dA2 † −

√
κLdA

†
L (2.84)

or writing the QSDE in vectorized form(
da

da†

)
=

(
−(κT/2 + i∆) ε

ε∗ −(κT/2− i∆)

)(
a

a†

)
dt (2.85)

+

(
−√κ1 −

√
κ2 −

√
κT 0 0 0

0 0 0 −√κ1 −
√
κ2 −

√
κT

)


dA1 + αdt

dA2

dA3

dA†1 + α∗dt

dA†2

dA†3


(2.86)

= Aădt + B
(
d̆A + w̆dt

)
(2.87)
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It can be formally solved as

ă = etAă0 +
(
etA − 12

)
A−1Bw̆ +

∫ t

0

e(t−t′)ABd̆At′ (2.88)

The eigenvalues of A are given by λ± = −κT/2±
√
|ε|2 −∆2, so the linearized system

is stable for

κT > 2|ε|, (2.89)

where we have set ∆ = 0, because above threshold the system can spontaneously

start lasing at the shifted cavity frequency, i.e. the single-mode approximation may

be invalidated. In steady state, the signal mode amplitude is given by

〈ă〉ss = −A−1Bw̆ =

 2
√
κ1(2iα∆−2εα∗−ακT )

4∆2−4|ε|2+κ2T

−2
√
κ1(2αε∗+α∗(2i∆+κT ))

4∆2−4|ε|2+κ2T

 (2.90)

On resonance and for α ∈ R (which we are free to fix since only relative phases

matter) we find

〈a〉ss, α∈R,∆=0 =

 −2
√
κ1α(2ε+κT )

κ2T−4|ε|2
−2
√
κ1α(2ε∗+κT )

κ2T−4|ε|2

 (2.91)

As a function of the pump phase, the amplitude is maximized (minimized) in mag-

nitude when ε ∈ R and ε > 0 (ε < 0). In this case, we the pump leads to a linear

amplification or deamplification by a factor of κT
κT−2ε

with respect to the case without

pump.

2.8 Steady state photon number

For a coherently displaced, thermal input to the first port with coherent amplitude α

and thermal variance coefficient kn (note that setting kn simply corresponds to only
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sending in a coherent input), the steady state photon number of the OPO is given by

〈a†a〉ss =
knκ1(κ1 + κ2 + κ3) + 2|ε|2

(κ1 + κ2 + κ3)2 − 4|ε|2
(2.92)

+
4α2κ1|2i∆ + 2ε+ κ1 + κ2 + κ3|2

(4∆2 + (κ1 + κ2 + κ3)2)2 + 16|ε|4 + 8|ε|2 (4∆2 − (κ1 + κ2 + κ3)2)
(2.93)

We can already see from this that the thermal noise contribution is independent of

the detuning, which is an intuitive result, since the thermal noise is broadband. On

resonance ∆ = 0 and for real ε (pump 180◦ out of phase with input) this simplifies to

〈a†a〉ss, α∈R,∆=0, ε=±|ε| =
knκ1(κ1 + κ2 + κ3) + 2ε2

(κ1 + κ2 + κ3)2 − 4ε2
+

4α2κ1

((κ1 + κ2 + κ3)− 2ε)2 , (2.94)

We see from this that a non-zero pump amplitude will always increase the thermal

noise photon contribution, whereas it can reduce the photon number due to a coherent

input, depending on the relative phase of ε with the external driving. For α, ε = 0,

we retrieve the result of the open-loop empty cavity with thermal input [17, 18]

〈a†a〉ss, α=0,∆=0, ε=0 =
knκ1

κ1 + κ2 + κ3

=
knκ1

κT
(2.95)

With trivial feedback from port 2→ 3, the total linewidth can be modfied to [19]

κT (φ) = κ1 + |
√
κ3 + eiφ

√
κ2|2 (2.96)

The roundtrip feedback phase, denoted as φ for brevity in this chapter (and as ΦFB

in Chapter 4) is critical in determining the effect of coherent feedback in the system.

2.9 Transmission spectrum/transfer function

We now turn to a brief discussion of the transmission spectrum in the special case

of a single mirror κ2 = κ3 = 0, κ1 = κ. In this case the frequency domain transfer
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functions G(ω) and g(ω) are given by

G(ω) = −
κ2

4
+ (∆ + ω)2 + |ε|2

(κ
2
− i(ω + ∆))2 − |ε|2

(2.97)

g(ω) = − εκ

(κ
2
− i(ω + ∆))2 − |ε|2

(2.98)

If we take the above result and rescale ε → kε, κ → kκ and take the k → ∞ limit,

we find the static squeezer limit for the single port OPO:

b′(t) = − cosh(r)b(t)− ε

|ε|
sinh(r)b†(t), (2.99)

b′
†
(t) = − cosh(r)b†(t)− ε∗

|ε|
sinh(r)b(t), (2.100)

where the squeezing parameter is given by r = log
1+

2|ε|
κ

1− 2|ε|
κ

. For ε/κ → 0 we find

r → 0 and we recover an adiabatically eliminated cavity model that acts on the

scattered field by imparting a π phase shift. Furthermore, for |ε| → κ/2 the squeezing

parameter diverges logarithmically which suggests that close to threshold one may

produce arbitrarily squeezed states.

2.10 Concrete OPO models for our setup

The actual setup consists of two OPO cavities in a mutual feedback configuration. We

distinguish between a Plant cavity P and a controller cavity C. Light emanated from

one of the Plant mirrors bounces off (and couples into) a controller mirror and is then

fed back to a second Plant mirror. We neglect the time delay along the feedback path,

but allow for an accumulated roundtrip phase φ. After feedback, the light reflected

from the second plant mirror passes into a homodyne detector D. We account for

(linear) losses in the optical pathways and mirror couplings P → C, C → P and

P → D as well as the intra-cavity losses due to the mirrors and losses in the PPLN

crystals.
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The bare plant model P = (SP ,LP , HP )

SP = 15 (2.101)

LP =



√
γ1a
√
γ2a
√
γ3a
√
γ4a
√
γLa


(2.102)

HP = ∆a†a+
1

2i

(
ε∗a2 − εa†2

)
(2.103)

The bare controller model C = (SC ,LC , HC)

SC = 12 (2.104)

LC =

( √
κa

√
κLa

)
(2.105)

HC = δb†b+
1

2i

(
η∗b2 − ηb†2

)
(2.106)

Due to the trivial scattering matrices we can decompose both models into con-

catenations of single port SLH models for each port P = �5
j=1Pj, C = C1�C2, where

we can include the Hamiltonian with any one of them.

The network model we now wish to consider is as follows: The beam emitted

from the first mirror of P is fed into the first mirror of C after it is attenuated by

linear loss L1. The beam reflected off this first controller mirror is then fed back to

the second port of P after it is attenuated by a second linear loss L2. Finally, the

light reflected off the second plant mirror is detected in a homodyne detector after it

undergoes a third linear loss L3. The losses linear Lj can be modeled as beamsplitters,

i.e., neglecting the counter-propagating fields, they have two inputs and two outputs.

Without losses the simplified network expression is given by

(P2 � φ� C1 � P1) � P3 � P4 � P5 � C2, (2.107)
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which is straightforward to understand. Including the losses clutters the expressions

quite a bit. To better understand this, we visualize the lossless network in Figure 2.1

(decomposing P and C into concatenations allows us to convert the feedback into

series products) and several equivalent (up to permutations of the ports) expressions

for the lossy model are graphically represented in Figure 2.2.

(a) Full Circuit (b) Decomposed into con-
catenations

(c) Simplified

Figure 2.1: Equivalent ways to diagram the circuit expression
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The parameters for the whole network are given by

S =


eiφ
√
1− l1

√
1− l2

√
1− l3 −eiφ

√
l1
√
1− l2

√
1− l3 −

√
l2
√
1− l3 −

√
l3 0 0 0 0

eiφ
√
l3
√
1− l1

√
1− l2 −eiφ

√
l1
√
l3
√
1− l2 −

√
l2
√
l3

√
1− l3 0 0 0 0

eiφ
√
l2
√
1− l1 −eiφ

√
l1
√
l2

√
1− l2 0 0 0 0 0

√
l1

√
1− l1 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

 (2.108)

L =



(√
γ1

√
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√
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√
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√
γ2

√
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)
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√
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√
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1− l3eiφb(√
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√
l3
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√
γ2

√
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κ
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√

1− l2eiφb
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√
l2
√

1− l1eiφa+
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√
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√
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(2.109)

H =
(

∆ +
√
γ1γ2(1− l1)(1− l2) sin(φ)

)
a†a+ δb†b (2.110)

+
1

2i

(
η∗b2 − ηb†2

)
+

1

2i

(
ε∗a2 − εa†2

)
(2.111)

+

√
κ

2i

[(√
γ2(1− l2)eiφ −

√
γ1(1− l1)

)
ab† −

(√
γ2(1− l2)e−iφ −

√
γ1(1− l1)

)
a†b
]

(2.112)

The physical parameters in our experiment are given in Table 2.1. Inspecting the

Hamiltonian we see that the feedback achieves two things: It introduces a feedback

phase dependent detuning of the Plant mode a and it couples the Plant and Controller

modes with a coupling constant that also depends on the feedback roundtrip phase.

The final Hamiltonian can be written as a quadratic form in the mode operators. We
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Symbol Value Description
γ1 4× 4.5MHz/2π = 18MHz/2π Plant mirror 1 (start of feedback loop)
γ2 8× 4.5MHz/2π = 36MHz/2π Plant mirror 2 (end of feedback loop)
γ3 .34× 4.5MHz/2π ≈ 2MHz/2π Plant mirror 3 (coherent input)
γ4 .1× 4.5MHz/2π ≈ .45MHz/2π Plant mirror 4 (to photodetector for feedback

lock)
γL 1× 4.5MHz/2π ≈ 4.5MHz/2π Combined additional Plant losses
|ε| ≤ 4× 4.5MHz/2π = 18MHz/2π Plant pump power gain
∆ ± a few MHz Plant cavity detuning with respect to the ex-

ternal coherent driving
κ 18.7× 4.5MHz/2π ≈ 84MHz/2π Controller mirror (for feedback)
κL 1× 4.5MHz/2π ≈ 4.5MHz/2π Combined additional Controller losses
|η| ≤ 4× 4.5MHz/2π = 18MHz/2π Plant pump power gain
δ ± a few MHz Controller cavity detuning with respect to

the external coherent driving
φ 0− 2π Feedback roundtrip phase
l1 5% Power loss between Plant mirror 1 and Con-

troller mirror
l2 10% Power loss between Controller mirror and

Plant mirror 2
l3 5% Power loss between Plant mirror 2 and ho-

modyne detector

Table 2.1: Physical model parameters

again use a doubled up notation for the mode operators ă =


a

b

a†

b†

.

H =
1

2
ă†Ră+ C, where R =


∆(φ) g(φ)∗ iε 0

g(φ) δ 0 iη

−iε∗ 0 ∆(φ) g(φ)

0 −iη∗ g(φ)∗ δ

 , (2.113)

with ∆(φ) ≡ ∆ +
√
γ1γ2(1− l1)(1− l2) sin(φ), (2.114)

g(φ) ≡
√
κ

2i

(√
γ2(1− l2)eiφ −

√
γ1(1− l1)

)
, (2.115)

C = −∆(φ) + δ

2
∈ R (2.116)
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Note that despite its hermiticity we cannot simply diagonalize R = U†diag(λ1, . . . λ4)U

to obtain new uncoupled mode operators ă′ = Uă, because this will not automatically

preserve the canonical commutation relations, i.e., in general we would find

[ă′, ă′
†
] 6= [ă, ă†] =

(
12 0

0 −12

)
(2.117)

For details check [31, 28]. A special case, in which this is possible is in the absence

of squeezing η = ε = 0. In this case we have

H =
(
a† b†

)
Ω−

(
a b

)
, where Ω− =

(
∆(φ) g(φ)∗

g(φ) δ

)
, (2.118)

we can rewrite Ω− in terms of the Pauli matrices Ω−− = ∆(φ)+δ
2

+ ~n · ~σ, where

~n =
(
<g(φ) =g(φ) ∆(φ)−δ

2

)T
. This implies that the spectrum is just given by

λ± =
∆(φ) + δ

2
±

√
|g(φ)|2 +

(
∆(φ)− δ

2

)2

(2.119)

We see that regardless of the actual or feedback-imposed detuning, we get a mode

splitting due to the coupling of the two cavity modes. When both cavities have the

same (effective) center frequency δ = ∆(φ) we have λ+ − λ− = 2|g(φ)| From the

definition of g we see that this becomes maximal for φ = π, in which case

|g(π)| =
√
κ

2

(√
γ1(1− l1) +

√
γ2(1− l2)

)
(2.120)

With the physical parameters as given in Table 2.1 we can expect a maximum mode-

splitting of about 45MHz/2π ≈ 7MHz. Finally, we give our model in the ABCD

parametrization for later use. We know that the ABCD matrices can be expressed in
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terms of coefficients entering the Hamiltonian and the coupling vector

A = ∆̆ (−iΩ−,−iΩ+)− 1

2
C[C (2.121)

B = −C[D (2.122)

C = ∆̆(C−,C+) (2.123)

D = ∆̆(S,0) (2.124)

In our case we have:

Ω− =

(
∆(φ) g(φ)∗

g(φ) δ

)
(2.125)

Ω+ = i

(
ε 0

0 η

)
(2.126)
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(2.127)

C+ = 0 (2.128)
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 (2.129)
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We know that C[C = ∆̆(C†−C−,0), where the non-trivial part is given by

C†−C− =

(
γT + 2

√
(1− l1)(1− l2)γ1γ2 cosφ

√
(1− l1)γ1κ+ eiφ

√
(1− l2)γ2κ√

(1− l1)γ1κ+ e−iφ
√

(1− l2)γ2κ κT

)
,

(2.130)

where γT = γ1 + γ2 + γ3 + γ4 + γL and κT = κ+ κL. Therefore the system matrix is

given by A = ∆̆(Ã,−iΩ+), where

Ã =

(
−i∆− γT

2
− Γe−iφ −

√
κγ2(1− l2)eiφ

−
√
γ1κ(1− l1) −iδ − κT

2

)
, (2.131)

−iΩ+ =

(
ε 0

0 η

)
, (2.132)

Γ =
√
γ1γ2(1− l1)(1− l2) (2.133)

2.11 The setup as an LQG problem

Although the experimental results presented in Chapter 4 are strictly for the case of

coherent inputs, here we continue to generalize to the inclusion of thermal (broad-

band) inputs, which will be useful for comparison with previous work [17, 18] as well

as future experiments. From the final form of the elements of the A matrix we can

see that the roundtrip phase φ controls the phase of the inter-cavity mode coupling

coefficents as well as the decay rate and the detuning of the plant cavity mode. This

roundtrip phase is associated with the optical pathlength in the feedback loop. We

also expect the Controller mirror itself to impart an additional phase shift on the

beam and when we are pumping the Controller OPO, we expect a phase dependent

attenuation or amplification of the roundtrip signal [17, 18]. We treat the Plant as

a simple cavity by setting its pump parameter to zero, since we have seen in section

2.8 that the plant pump cannot help reject a thermal input. The input port is the

second effective port after feedback, i.e. the one with coupling γ3. The monitored

output port is the next one with coupling γ4.
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We now discuss the different types of control possible in our setup, starting with

the "trivial controller" where the beam only reflects off Controller input mirror. In

this case, to make the discussion simpler, we some set losses to zero: γ4 = γL = 0, l1 =

l2 = l3 = 0. The open loop Plant model then has two ports, but with the feedback it

effectively becomes a single port system again. The ABCD model is then given by:

Atfb = ∆̆(−γT/2−
√
γ1γ2e

iφ, 0) (2.134)

Btfb = ∆̆
[(
−√γ1 −

√
γ2e

iφ −√γ3 −
√
γ4 −

√
γL

)
,0
]

(2.135)

Ctfb = ∆̆



√
γ1e

iφ +
√
γ2

√
γ3
√
γ4
√
γL

 ,0

 (2.136)

Dtfb = ∆̆



eiφ 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,0

 (2.137)

The trivial feedback effectively maps the five-port model to a four-port model with

φ-dependent couplings and detuning. As we have seen above, for a thermal input

with noise coefficient kn, the steady state photon number for φ ∈ {0, π} is given by

〈n〉ss(φ) =
γ3kn
γT (φ)

, (2.138)

where γT (φ) = γT + 2
√
γ1γ2 cos(φ).

Intuitively, the simple (empty) cavity controller should perform worse than trivial

feedback controller because of the frequency dependent phase shift it imparts on the

signal (see Chapter 4 for an additional discussion), and in fact this was confirmed

in previous numerical studies [17, 18] when the cavity mirror reflectivities were left

as variable parameters during controller optimization (i.e. the trivial feedback case

was actually the optimal empty cavity controller!). The previous numerical work

also considered the case of an infinite bandwith OPO controller (i.e. static squeezer),
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but the apparatus built and tested here is very much in the regime of a narrowband

controller (relative to the noise bandwidth). As it turns out, the steady state photon

number expressions are too complicated to be tractable for analytic analysis, and

their numerical simulation remains an area for further research. Instead, having

built the apparatus, we did a brief experiment (discussed in Chapter 4) and found

that the narrowbandedness of the controller presents a significant limitation to its

ability to reject broadband noise (however, the controller is effective for narrowband

disturbances, which will be subject of the rest of the thesis).

At this juncture, I would also like to point out that a significant amount of work

was done to investigate the effects on the squeezing spectra produced from the OPOs

connected in the coherent feedback configuration, as well as the possibility of an

emergent limit cycle behavior when the combined system is well above threshold.

Although very germane to the area of coherent control engineering, this work will be

presented elsewhere at a future date, hopefully in conjunction with some additional

experimental results.
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(a) Full Circuit with losses (b) Decomposed into concatenations

(c) Simplified, permuted ports

Figure 2.2: Simplification of the lossy circuit expression.



Chapter 3

Experimental Setup

In this Chapter we describe the experimental apparatus in depth, including its com-

ponents, locking stabilization schemes, and operation (see fig. 3.1, which shows a

functional diagram of the entire apparatus and approximate relative location of the

components; we’ll next proceed with a discussion of the individual subsystems before

returning to it. Pictures of the apparatus can be found in fig. 3.2). Further informa-

tion on the details regarding cavity design, electronics and nonlinear optical crystals

can be found in the Appendices.

3.1 Master laser and beam generation

The master laser in the experiment from which all beams (signal, pump, locking

and local oscillator) derive is an Mephisto MOPA from InnoLight (the laser will be

henceforth referred to as the "MOPA") operating in CW mode at a wavelength of

1064.4 nm and a nominal output power of 10 W (see fig. 3.3). The laser is configured

in a Master Oscillator Power Amplifier (MOPA) arrangement where the output of a

spectrally narrow (∼ kHz linewidth) non-planar ring oscillator (NPRO) YAG laser is

amplified by a pair of additional diode-pumped YAG crystals before output from the

laser head; the nominal max power from the master oscillator is 1 W, and the amplifier

crystals bring this up to 10 W. The output wavelength is set by the temperature of

the master oscillator crystal, and care was chosen to set it to a nominal value to avoid

33
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Figure 3.1: Functional diagram of entire apparatus, showing injection, feedback,
pump and detection paths. Waveplates, modematching lenses and backwards beam
diagnostic detectors omitted for clarity. Go Charles!
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Figure 3.2: Front (left) and rear (right) views of the apparatus. Author makes cameo
appearance. With respect to the diagram shown in fig. 3.1, the "front" corresponds
to looking from the right of the diagram, while the "back" corresponds to looking
from the left.

modehopping (the set value used in the experiment was 24.53 ◦C, and wavelength

and stability monitored by fiber coupling part of the output beam into a Burleigh

Wavemeter). Although it’s certainly possible to run the laser at an output power

of less than 10 W by reducing either the master oscillator or amplifier laser diode

current, doing so significantly alters the output beam size (most likely due to spatial

gain saturation in the amplifier crystals), and thus it’s desirable to keep this constant

to avoid changes in the beam parameters throughout the rest of the apparatus. The

current in the master oscillator controller is set a little below the max output at 2.2 A,

while the current is maxed out in the amplifier controller to ≈ 43 A. The laser is water

cooled by a ThermoCube recirculating water chiller rated to a thermal load of 400 W

with a centrifugal pump, chosen to minimize flow induced vibrations while providing

large enough flow rate to keep the MOPA from overheating. The coolant used is

an 85% distilled water, 15% ethanol by volume mixture to prevent bacteria growth

in the coolant lines, and the coolant set temperature is 25.0 ◦C. The interior of the

MOPA head also requires dehumidification, and this is done by a desiccant cartridge

screwed in to the center of the rear (fig. 3.3) that requires changing every 1 to 2

weeks or so. Even when the laser temperature and currents are properly stabilized

by the controllers, a slow (∼ Hz or less) drift in output power on the order of up

to a % at times is present, and the laser also exhibits higher frequency relaxation
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Figure 3.3: Front (left) and rear (right) of the MOPA, the master laser used in the
experiment. Black desiccant cartridge visible at center of rear; center indicator is
dark blue when the cartridge is fresh, exchange cartridge when it turns light purple.

oscillations at 700 kHz (readily visible by viewing part of the MOPA output on a

spectrum analyzer via a detector with sufficient bandwidth). For the purposes of this

experiment, the slow drifts aren’t problematic, but they could be servo-ed out via the

current modulation analog input port on the MOPA if necessary.

Unfortunately, unlike the beams of other comparable high power solid state lasers

manufactured by other companies, the output beam of the MOPA is highly divergent

and a pair of lenses are used to collimate the beam before it enters a high power op-

tical isolator (IO-10-1064-VHP from Thorlabs). The initial lenses are tilted to avoid

sending surface reflections of the beam back into the laser (at the expense of adding a

small amount of ellipticity to it), and the isolator also serves as the "master" beam-

splitter for the beams in the experiment: the main transmitted beam has ≈ 9.1 W of

power and is used to pump the frequency doubling crystal (a 2 cm long magnesium

oxide doped periodically poled lithium niobate (MgO:PPLN) crystal mounted in an

oven, both from Covesion), while the rejected beams are further split and used as the

input to the system, for locking the cavities, and for the local oscillator in the homo-

dyne detection setup discussed below (see fig. 3.4). The frequency doubling crystal

generates the second harmonic pump beam at 532.2 nm, and this doubling method

has the advantage in that it achieves automatic frequency locking between the signal

(fundamental 1064.4 nm) beams and half the second harmonic beam frequency. If
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Figure 3.4: Diagram (left) and photograph (right) of the frequency doubling setup.
The high power optical isolator (beige in color) also serves as the "master" beam
splitter for the signal beams and the "pump" to generate the second harmonic beam
(which is itself the "pump" for the OPOs as discussed below). The doubling crystal
is housed inside the black oven mounted on the translation stage near the bottom of
the picture.

a different laser (e.g. a Verdi from Coherent) were used as to pump the degenerate

OPOs as described below, its frequency would also have to be locked to double the

fundamental MOPA frequency, which would require yet another servo mechanism in

the apparatus (as we discuss below, there are already a considerable number of these).

The doubling crystal itself contains 5 poled regions, each designed to phase match

at a different temperature, and for a relatively weakly focused beam (spot size ∼
55 µm) on a single pass through the crystal, the amount of second harmonic power

generated by the main beam is ideally a little over 1 W for the higher temperature

(∼ 60 ◦C and above) gratings (the details of this process, obtaining more power,

and crystal issues are discussed in Appendix C; see fig. 3.5). The entire doubling

setup is housed in a black plastic box (with a frame made of 80/20 material) to

prevent stray light from the infrared and green beams from being a hazard to the

people and equipment in the surrounding area, and an Oriel 76992 shutter (capable

of withstanding up to 2 W CW power at 532 nm) is used to toggle the pump output

from the box on and off. Throughout the apparatus, razorblade stack beam blocks
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Figure 3.5: PPLN crystal schematic, showing the different poled regions (left). Pho-
tograph of the generation of the second harmonic pump beam, visible as a thin green
line (right), with the power being measured by the Thorlabs PM50 thermal power
meter.

(Thorlabs LB1) are used to block beams of 0.1 W or more in power, with care taken

to make sure the beams aren’t focusing onto the stacks.

3.2 OPO specs, pump coupling, and feedback loop

As mentioned in Chapter 1, the coherent feedback setup consists of a pair of degener-

ate OPOs, one nominally behaving as a "plant" (henceforth referred to as "OPO2")

and one as a "controller" (henceforth referred to as "OPO1"; the number indicates

the order in which they were built). Each OPO consists of a bowtie ring cavity of

two curved and two flat mirrors, with a crystal identical to the doubling crystal (also

housed in an identical oven) centered between the two curved mirrors (see figs. 3.6

and 3.7). NB: the reflectivities and transmissivities listed below are given in terms

of % optical power. For OPO1, the mirrors are chosen such that only one of the

mirrors (the input flat mirror, a 1 in. diameter YAG output coupler from VLOC)

has relatively high transmission (≈ 18.5%), and the rest are high reflectors (the 7

mm diameter curved mirrors from PMS have reflectivities ∼ 99.99%, remaining 1 in.

diameter flat from CVI Laser has a reflectivity of ≈ 99.93%). This is done so that

the amount of squeezing from this OPO approaches that for an ideal squeezer with
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only a single input/output port, which is important for coherent cascade or feedback

configurations that try to optimize the amount of squeezing (and although this is not

strictly necessary for the measurements presented in the next Chapter, it makes the

apparatus more suitable for exploring these directions in the near future). The loss

per pass through the crystal at the fundamental wavelength is ∼ 1%, and most of this

seems to be coming from back scattering off the crystal input and output facets (the

crystals could use better AR coatings!) rather than absorption in the crystal, which

actually causes some trouble with the cavity locking schemes as discussed below. For

OPO2, two of the mirrors have relatively high transmission (≈ 8% and ≈ 4% for 1

in. diameter flat output couplers from JouleOptik) to facilitate reasonable coupling

to the coherent feedback path, while the curved mirrors have higher reflectivity, but

not as high as those in OPO1 (≈ 99.66% and ≈ 99.90% for 0.5 in. diameter mirrors

from LayerTech and the Byer-Fejer group, respectively) to allow the injected coherent

"disturbance" and locking beams to enter more easily. The curved mirrors have a ra-

dius of ≈ 10 cm to optimize the design size of the OPO and the coupling of the cavity

mode to the crystal, as discussed in Appendix A. The angles of reflection in the bowtie

cavities are chosen to be small to minimize the amount of astigmatism of the cavity

modes, and the actual values measured by imaging the cavity outputs on a Spiricon

beam imaging camera confirm the ellipticities of these beams to be small (∼ 5%). To

accommodate these small angles and to avoid traversing the crystal more than once

per cavity roundtrip (which would incur additional losses), the face of the Covesion

ovens that house the crystals is opened up and the bowtie path lies in a plane such

that the paths between the flat mirrors and curved mirrors are both straight, but the

former lies ∼ 1 cm above the other. When using the lowest temperature gratings (∼
40 ◦ and 60 ◦C) on the crystal, opening the oven faces does not significantly affect

the temperature stability of the crystal. Both OPOs are surrounded by acrylic boxes

to prevent air currents from causing substantial drift in the cavity length (but the

boxes have small holes to let the beams through).

For each OPO, the dual-coated curved mirrors are highly transmissive at the pump

wavelength (≈ 93%), to allow for good pump beam coupling to the crystal. For OPO1,

the pump is directly coupled through the curved mirror along its own optical path,
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Figure 3.6: Degenerate OPO functional schematic. A coherent state b̂ is injected
into one of the partially transmissive mirrors (reflectivity R) and circulates in the
cavity as mode â, while interacting with the PPLN crystal being pumped by a second
harmonic beam with coupling efficiency ε. Due to the phase sensitive nature of the
degenerate parametric interaction, the output field b̂′ is squeezed along a direction
determined by the phase of the pump beam.

Figure 3.7: Pictures of the two OPOs: OPO2, the plant (left), and OPO1, the
controller (right). The box surrounding OPO2 is smaller and contains only the cavity,
while that surrounding OPO1 is larger and includes the pump beam coupling optics.
This unfortunately makes tweaking up the pump alignment more difficult for OPO1,
but the wider box allows additional components (for e.g. a removable beam block) to
be more readily inserted into the cavity.
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while for OPO2 the pump is combined with the coherent input at a dichroic mirror

and then injected into the curved mirror (fig. 3.1). As is discussed in Appendix C, for

a fundamental (i.e. signal) cavity mode with a given beam waist in the crystal, there

exists an optimal beam waist for the pump to maximize the pump-signal coupling in

the crystal (for a degenerate parametric process the pump waist should be smaller by a

factor of
√

2 and should occur at the same position as the signal waist [34]). However,

because the pump beam is not resonant with the cavity (so we can’t readily use the

standard trick of monitoring beam transmission to check its mode matching, as is

discussed below), a good trick to figuring out what the beam parameters should be is

to send in a fundamental beam of high enough intensity to generate a visible second

harmonic beam, measure its parameters, and then choose the pump mode matching

lenses and their positions roughly by Gaussian beam optics. Then, we send in a signal

beam, and try to optimize the parametric amplification while aligning the pump to it

(we must then typically move the lenses, and perhaps try different lenses to get the

focal position correct and size of the pump beam correct, while tweaking the mirrors

to keep the two beams overlapped). Improving the pump coupling incrementally can

be very difficult when a lot of noise or drift is present in the cavity length, and thus

doing this with the box on and surrounding noise sources as suppressed as possible is

advised! Once reasonably well coupled, the pump alignment is sensitive enough that

mechanical drift in the optics over the course of a few hours can cause the coupling

efficiency to drop significantly, and thus it must be re-tweaked to maintain optimal

coupling.

The two OPOs are connected in a feedback configuration such that the output

of the 4% outcoupler of OPO2 is sent to the 18.5% outcoupler in OPO1, reflects

off it, and is returned to the 8% coupler of OPO2 (fig. 3.1). It’s important that

different ports (i.e. mirrors) on OPO2 are used on the feedback path, as using the

same mirror would then cause a 3rd ring cavity to form along the feedback path, and

the coupling to this intermediate cavity which would introduce additional dynamics at

the cavity decay rate timescale and the effective coherent controller in the feedback

loop would be a different system. As discussed in the next section, the roundtrip

feedback phase is controlled by a pair of protected silver mirrors from Thorlabs (P01
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coated) mounted on piezoelectric actuators, and an optical isolator (IO-5-1064-VHP,

also from Thorlabs) is also placed on the path to prevent the backscattered forwards

light (as well as the leaking injected backwards beam used for cavity locking) from

propagating around the loop and causing interference effects. To align the feedback

loop, we first align an injected forwards signal beam into the plant cavity (done via

the R ≈ 99.66% curved mirror) and confirm that it’s well mode matched, lock the

OPO2 cavity, then align the output of the 4% outcoupler to the input of OPO1 and

confirm that it’s well mode matched, lock the OPO1 cavity, and then finally align the

reflected beam off OPO2 into the 8% outcoupler of OPO1 and confirm that it’s also

well mode matched. This last step of the feedback alignment is done by sweeping the

feedback phase and monitoring the height of the peaks (and depths of the troughs)

of the OPO2 transmission signal and tweaking the mirrors to adjust the contrast.

However, it’s important to note that the alignment position which maximizes this

contrast for coupling into the OPO1 cavity is generally different from that which

maximizes the contrast for the case of "trivial" feedback, where a beam block is

placed inside the OPO1 cavity and the light simply reflected off the outcoupler. As

discussed in Chapter 2, this is because the optical transfer function that determines

the height and depth of the OPO2 transmission signal as the feedback phase is swept

is complicated beyond the simple "change in cavity linewidth" interpretation valid

for the "trivial" feedback case, and nominally making the coupling back to OPO2 a

little worse may actually increase the peak contrast. For the data presented in the

next Chapter, the alignment was done to maximize peak contrast for the "trivial"

feedback case, and then the beam block was removed and light allowed to couple into

the OPO1 cavity, but it should be noted that the "optimal" way to align the feedback

from OPO1 is still a direction worth investigating.

3.3 Locking schemes

Next, we describe the locking schemes used to stabilize the cavity lengths and relative

phases of the beams. Both schemes use the same basic idea that consists of phase

modulation on an input optical signal, detection of either a reflected or transmitted
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beam from the cavity, and mixing the photodetector signal with an electronic local

oscillator (LO) at the modulation frequency to obtain an error signal which is then

used by an electronic servo to stabilize the path length. This idea, known as the

Pound-Drever-Hall method, is very well detailed in refs. [35, 36]; here, we focus on

the specific details as they apply to our apparatus.

The cavity locking in each OPO is achieved by first sending a signal beam (at

the fundamental wavelength of 1064.4 nm) through a free-space coupled electro-optic

modulator (EOM, broadband model 4004 from NewFocus) that is driven by a voltage

controlled oscillator (VCO) at a radiofrequency (≈ 47 MHz for OPO1 and 35 MHz for

OPO2) (see fig. 3.8). This creates optical sidebands on the beam at + and - the phase

modulation frequency, and the modulated beam is then sent backwards into one of the

mirrors on each OPO (the high reflector flat on OPO1, the the R ≈ 99.90% curved

mirror on OPO2). The reflected beam is then detected by a detector with large enough

bandwidth to see the sidebands (a NewFocus 1811 for OPO1 and MenloSystems APD

for OPO2), and the detector output sent to a mixer that multiplies this signal with

part of the output from the VCO. The output of the mixer is filtered to block twice

the VCO frequency and the resulting error signal is sent to a homemade electronic

servo controller (design shown in Appendix B) that then actuates the piezo on one

of the cavity mirrors (the high reflector flat on OPO1, the 4% outcoupler on OPO2)

to lock the cavity on resonance with the fundamental wavelength. This technique of

using a backwards beam at the same frequency as the forwards beam avoids some of

the difficulties encountered when using other beams with different wavelength (e.g.

a HeNe beam or part of the pump beam) for cavity locking, as both forward and

backward beams share the same cavity frequency response and the error signals are

easy to work with (the wavelengths mentioned above are very weakly resonant and

generate small error signals). However, the downside in this particular setup (which

is primarily due to the less than ideal coatings on the crystal facets) is that the

backscattered light from the forwards beam interferes with the backwards beam and

messes up the error signal at high forward powers (note that since the error signal

is proportional to the temporal derivative of the photodetector signal, even small

changes in this signal can significantly affect the error signal). For OPO1, to avoid
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this problem, which is significant at even moderately low forward powers of 10’s of

µW, the backwards locking beam is detuned from the forwards beam by exactly

1 cavity free-spectral range (FSR) by quadruple passing it through an acousto-optic

modulator (AOM, 2 W model from NEOS; each pass through the shifts the frequency

by ≈ 112 MHz, and a detuning equal to the FSR of OPO1, ≈ 450 MHz, is reached

after 4 passes, see 3.1). Thus the two beams ideally don’t interfere with each other,

and in fact that’s the case at those forward power levels. However, it turns out that

at high forward power (10’s of mW or more), it’s likely that other nonlinear processes

in the crystal generate enough power at the locking beam frequency to once again

cause trouble for the error signal, and thus this scheme limits the amount of forward

power that can circulate in OPO1 before the lock fails. For OPO2, it turns out that

the higher transmission of the curved mirror through which the backwards beam gets

injected gives a larger backwards circulating power and the forward power that can be

tolerated before the lock fails is significantly larger (at least ∼ mW), thus this beam

isn’t detuned from the forward beam frequency and is simply injected into the cavity.

Again, however, the scheme fails at large forward powers. This suggests that a good

locking scheme for the system in a very high forward power regime (e.g. pumped well

above the lasing threshold) might be to use beams at frequencies far enough away

from the phase matching frequency bandwidth of the crystal (∼ 40 GHz or so) to

avoid interaction with the forward beam, but close enough so that the reflectivities

of the cavity mirrors aren’t too different, and have it such that these beams can be

detuned (say via AOMs) such that their resonance coincides with a forward beam

resonance for the same cavity length.

The phase locking scheme for locking the relative phase of the pump beam to the

signal beam in each OPO is very similar to the cavity locking scheme, with the main

differences being that the pump phase (instead of the signal phase) is phase modu-

lated, and at a frequency (∼ 30 kHz) that is lower than the linewidth of the cavity

(∼ 10 MHz). This is done by reflecting the pump beam off a small (7 mm diame-

ter) protected silver mirror (P01 coating from Thorlabs) mounted on a short range

piezoelectric stack (AE0203D04F from Thorlabs) and dithering the mirror position

at the desired modulation frequency (the mirror/stack combination has resonances
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Figure 3.8: OPO cavity locking (left) and pump beam phase locking (right) schemes.
Although not shown in the diagrams, there is a low pass filter to block the signal
at twice the modulation frequency generated during mixing before the servo, a high
voltage amplifier on the output of the servo to drive the piezos, and additional low
pass filters before the piezos. The actual phase locking scheme in the apparatus
works via the detection of a transmitted (instead of reflected) signal, see fig. 3.1 for
an anatomically correct picture.

at 35 kHz and above when mounted on optical mounts that are much heavier). The

reason the frequency is lower is that now the sidebands make it through the cavity,

allowing the Pound-Drever-Hall method to work via detection of a transmitted (in-

stead of reflected) beam, which is useful given the way the signal is injected into the

coherent feedback loop for both OPOs (fig. 3.1). The long range piezo stack (PAS009

from Thorlabs with a 0.5 diameter in. P01 mirror mounted on it) is also used in

conjunction with the short range stack in the pump path to facilitate phase locking

for extended periods periods of time (closing the curtains around the apparatus also

helps).
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3.4 Detuned coherent input and optical noise gen-

eration

Instead of injecting a coherent amplitude at the fundamental frequency, the apparatus

is also configured to send a detuned coherent beam or noisy, "thermal" beam (or some

combination of both!) into the signal input port of OPO2. The way this works is as

follows.

Part of the fundamental beam is sent through an AOM (from NEOS, operational

from 25 to 40 MHz) and detuned away from the cavity resonances, and then it’s

phase modulated by a fiber coupled EOM (Photline NIR-MPX-LN-10, with up to 10

GHz bandwidth, henceforth referred to as the "Photline") to generate sidebands that

lie at the desired detuning (see fig. 3.1). With the flipper mirror in place (actually

a NewFocus 9807 adjustable mirror mount mated to a removable magnetic base,

Thorlabs NX1F), the detuned beam (one of the sidebands) is sent into the injection

port of OPO2. The max amount of power transferred to each of the sidebands is

considerable (34% of the original beam power, see [35]), allowing the detuned beam

to have considerable power, and it’s this detuned beam that’s used to characterize the

narrowband nature of the controller as shown in the next Chapter. Because this beam

passes through the Photline, it turns out that there is a considerable amount of phase

drift present (due to changes in refractive index of the fiber) in the output beam, and

the long range piezos are very useful to keep this beam phase locked relative to the

pump beams when desired.

A noisy, "thermal" beam can also be generated in this beam’s place by driving the

Photline with broadband electronic noise from a function generator (here, we used a

Tektronix 3102 AFG, as well as a 1 W RF amp from Minicircuits was used to boost

the electronic noise power). The noise generates a continuum of optical sidebands

that span a frequency range equal to the noise bandwidth on either side of the main

beam frequency, and these sidebands behave as optical noise (simulating a "thermal"

state of the electromagnetic field) by simultaneously injecting a continuum of coherent

states with randomized phase at different frequencies. The noise can be wider than

the bandwidth of the cavity, or narrower and centered at a desired detuning by first
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low passing the noise from the function generator to reduce the bandwidth to a desired

amount, and then mixing it with an additional electronic signal at the desired detuned

frequency (multiplication in the time domain = convolution in the frequency domain,

so a detuned "lump" of optical noise is generated).

3.5 Homodyne detection

Here we briefly discuss a part of the apparatus that was not directly involved in the

measurements presented in the next Chapter, but that will be very useful for squeezing

measurements and as well as further experiments involving broadband noise rejection

with coherent feedback.

Part of the main signal beam (that is not detuned from the OPO cavities) is split

off to act as a local oscillator (LO) for an optical balanced homodyne measurement

of the output of OPO2 (see fig. 3.1). The LO beam is first "cleaned" by sending it

through a mode matching cavity that has identical properties as the OPO cavities

(save that it lacks the PPLN crystal at the center), which removes the spatial noise

on the beam so that it will be well mode matched to the OPO signal output. The LO

is then combined with the signal beam on a 50/50 beamsplitter and the output beams

are measured by a pair of ETX-500T (from JDS Uniphase) photodiodes arranged in

subtracting configuration in order to detect the noise variance of the electric field

in the signal beam (see [37], Chapter 18 for a detailed description of this scheme).

Because the photodiodes were not AR coated, a substantial reflection (≈ 12%) was

present off the facet of each photodiode. This would severely limit the quantum effi-

ciency in the detection process (and thus the amount of squeezed noise variance that

could be detected), but fortunately the reflected beams can be nearly retroreflected

via prisms (Thorlabs PS971-C) onto the detectors at a slight angle so that most of

the reflected light can still be detected, but the reflected beams don’t back propagate

throughout the apparatus to cause undesired interference effects. Including the ef-

fects of absorption in the passivation layer on the photodiodes, the overall quantum

efficiency of the detectors with the reflected beams is ≈ 97%, an excellent value for

measuring squeezing values significantly less than 10 dB, which is what is generated
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Figure 3.9: Pumping both OPOs with a significant amount of pump power, which
should enable generation of interesting squeezing spectra and perhaps limit cycle
behavior.

by the OPOs in the apparatus. Squeezing measurements from each individual OPO

were performed that were easy to interpret and showed the amounts predicted by

theory, but difficulties (discussed at the end of the next Chapter) were present that

made measuring and interpreting squeezing from the system in the coherent feedback

configuration difficult. However, when both OPOs are pumped with a significant

amount of pump power (see fig. 3.9), and feedback phase locked to an appropriate

value, interesting squeezing spectra should be visible, as well as a change in system

dynamics that shows a large amplitude oscillation of power between pump and signal

beams (limit cycle behavior).



Chapter 4

Experimental Results

In this Chapter we present experimental results central to the investigation of the co-

herent feedback setup used for narrowband disturbance rejection and stability modifi-

cation of the "plant" OPO. Here, we will revert to calling the plant OPO the "Plant"

for short (i.e. OPO2 in the previous chapter), and the controller OPO the "Controller"

(i.e. OPO1 in the previous chapter).

4.1 OPO characterization

We first characterize the behavior of the OPOs to determine their individual proper-

ties before connecting them in the feedback loop configuration (see figs. 4.1 and 4.2).

To do so, a coherent input at the signal wavelength (1064.4 nm) at moderately low

power (∼ 1 µW) is injected into each OPO, the cavity locked, and the pump beam

turned on and its phase swept relative to that of the signal beam. As this phase is

swept (typically by several multiples of 2π as the piezoelectric stack is displaced by

a few wavelengths), the signal alternates between amplification and de-amplification:

the relative phase of the two beams determines the phase matching condition for en-

ergy transfer between the two beams. At a given pump power, for low signal power

relative to the pump beam power (so pump depletion is negligible), the expected

amounts of maximum amplification and de-amplification follow the theoretical curves

[38]:

49
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Figure 4.1: Signal gain vs pump power for OPO1 (Controller). Green and red lines
display fits to data, blue line displays de-amplification fit corresponding to the ex-
pected amount given the amplification (green) data. Predicted threshold power ≈
1.6 W.
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Figure 4.2: Signal gain vs pump power for OPO2 (Plant). Green and red lines display
fits to data, blue line displays de-amplification fit corresponding to the expected
amount given the amplification (green) data. Predicted threshold power ≈ 260 mW,
agrees to within 10% of actual measured values.
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G+ =

(
1

1−
√
P/Pthr

)2

(4.1)

for amplification and

G+ =

(
1

1 +
√
P/Pthr

)2

(4.2)

for de-amplification, where G+ and G− are the power gains, P is the pump beam

power and Pthr is the threshold pump power. Thus, we can determine the threshold

pump power for each OPO by fitting the data, which also gives us an idea of how

well the pump beam is coupled to each OPO. If the coupling of the pump beams

were equal, we would expect a Controller threshold to be about 2 to 3 × that of the

Plant given the ∼ 1.5 × higher cavity decay rate in the controller [39], but instead

we find it to be a still a bit higher than this expected value, indicating poorer pump

coupling in the Controller. Nevertheless, the coupling is good enough to realize gains

of several dB for the available pump power, which is enough to substantially affect

the dynamics of the Plant in the feedback loop configuration as we discuss below. As

noted in the previous Chapter, the pump coupling to the OPOs changes significantly

over a few hours due to thermal-mechanical drift in the optics, and a re-tweaking of

the alignment is needed to reproduce the behavior shown in figs. 4.1 and 4.2.

4.2 Narrowband disturbance rejection and ampli-

fication

We next examine the properties of the closed loop system when a coherent (narrow-

band) input is injected into the Plant input port. To help develop some intuition for

what’s going on, we first consider the case where the input is on resonance with the

(locked) OPO cavities and the case where the Controller is not pumped (i.e. there is

only loss in the feedback loop, and no gain).

We find that, as expected, as the coherent feedback phase ΦFB is swept over a range
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of a little more than 2π and the transmission output port of the Plant is monitored

with a photodetector, the detection signal alternates between minima and maxima

corresponding to destructive and constructive interference in the plant cavity (see fig.

4.3), and thus suppression and enhancement of photon number. We see that the case

of "trivial" feedback (when the feedback beam is reflected off the Controller input

coupler without entering the cavity) already produces a substantial effect, due to a

broadening and narrowing of the cavity effective linewidth ([19] and equation 2.96 in

Chapter 2). The case of "empty cavity" feedback (non-pumped Controller) doesn’t

provide much better suppression (still about a factor of 2), but it does provide better

enhancement, and the intuition behind this can be roughly thought of as the fact that

the reflectance of the cavity on resonance is actually higher (due to optical impedance

mismatch of its mirrors, see Appendix A for an example with similar cavity mirrors)

than the input coupling mirror alone, and thus there is less loss in the feedback path

and the fed back beam ostensibly has a larger effect.

Next, we examine the case in which the Controller is pumped (so now there’s

gain in the feedback loop; see fig. 4.4). With ΦFB locked to the values that either

maximize or minimize the photon number and the pump phase swept relative to

the signal phase, we see that the effects of gain are indeed to enhance the effect of

coherent feedback, and the photon number can be further enhanced or suppressed

with it. As noted above, sweeping the pump phase causes the Controller to alternate

between providing gain or even more loss; this phase can also be locked if desired,

but the main point is that the gain provides a critical degree of freedom that adjusts

the strength of the feedback and allows the coherent controller to tailored towards

the application at hand.

We can also see the strong influence of ΦFB on the response of the system to gain

by looking at the pump powers required to substantially effect the photon number

when ΦFB is locked (see figs. 4.5 and 4.6) and the pump phase swept. For the

case when ΦFB is locked to maximize photon number, we see that it only requires a

very small amount of pump power to significantly effect the photon number in the

cavity (values shown for pump powers up until the point when the ΦFB lock fails,

probably due to significant change in the signal amplitude during locking). For the
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Figure 4.3: Effects of resonant coherent feedback on the Plant photon number without
gain in the feedback loop. Coherent feedback phase swept sinusoidally at 115 Hz.
Black corresponds to no Plant input, green to the equilibrium photon number without
feedback, red the case of "trivial" feedback, and blue the case of "empty cavity"
feedback. This and the following traces taken on a Tektronix 3052 Oscilloscope.
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Figure 4.4: Effects of resonant coherent feedback on the Plant photon number with
gain in the feedback loop. Coherent feedback phase ΦFB swept sinusoidally at 115 Hz
for comparison (green) then locked for the remainder of the traces. Purple corresponds
to ΦFB locked to maximize photon number, red with the Controller pump on and
pump phase swept relative to signal phase, light blue with ΦFB locked to minimize
photon number, and blue with once again with the Controller pump on and pump
phase swept. The apparent offset between the peak of the green trace and purple
trace and trough of the green trace and light blue trace are due to drifts in the ΦFB

lock, which is very sensitive to mechanical/acoustic disturbances. The pump power
for the blue trace is significantly larger than that for the red trace, see the following
figures and explanation in the text.



CHAPTER 4. EXPERIMENTAL RESULTS 56

case when ΦFB locked to minimize photon number, substantially more pump power

is required to achieve the same fractional changes in the Plant photon number. We

might obtain a more insightful explanation for this in the future, but for now we note

that this behavior makes sense as the reduced cavity loss for the Plant in the former

configuration are likely to make it more sensitive to small changes in gain the feedback

loop, in a manner similar to how small changes in pump power have a larger effect

on the gain of an OPO with narrower linewidth than one with a broader linewidth.

It turns out that further suppression of the photon number much beyond the values

shown in fig. 4.6 is actually rather difficult; although it should work in principle, the

stability of the ΦFB lock limits the extent to which it can be done (see fig. 4.7).

Thus, the system seems to perform as expected on resonance and increases dis-

turbance rejection (or amplification) as expected when gain is applied. However, the

effects of detuning the input beam off resonance are also important and illustrate the

narrowbandedness of the controller. When the coherent input beam is detuned off

the cavity resonance using the method described in the previous Chapter, we find

that, in general, the effects of feedback decrease (see fig. 4.8). This makes sense, as

both the Plant and Controller are finite bandwidth systems and coupling to them

decreases off resonance. Photon number enhancement in the Plant seems to decrease

monotonically with increasing detuning regardless of the feedback scheme used, while

the suppression also seems to exhibit the same behavior, except for the case of trivial

feedback (a detailed analysis in the future might reveal why, but for now we note

general trends of this system are as expected).

Although not shown here, additional measurements done when broadband noise

(100 MHz bandwidth) is injected into the system reveal that each coherent feedback

scheme discussed above fails to achieve photon number (i.e. noise) suppression in

the Plant. This isn’t surprising for two reasons: we know the effects of feedback

are reduced for frequencies detuned from the plant resonance, and additionally, each

frequency component of the noise will receive a different phase shift upon reflection

off the Controller, and thus the value of ΦFB for which it achieves maximal construc-

tive/destructive interference in the plant will be different. Thus, it’ll be impossible

for all these frequency components add or cancel for the same ΦFB, and the effect of
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Figure 4.5: Maxima and minima of Plant output when ΦFB locked to maximize photon
number. Error bars due to drifts in the ΦFB lock.
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Figure 4.6: Maxima and minima of Plant output when ΦFB locked to minimize photon
number. Error bars due to drifts in the ΦFB lock.
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Figure 4.7: Trace showing maxima and minima of Plant output when ΦFB locked to
minimize photon number but pump power high (above threshold for the closed loop
system). We see that lasing is barely being suppressed by the ΦFB lock, and the lock
fails for higher pump powers. Nevertheless, it shows the strong dependence of system
dynamics and stability on ΦFB.
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Figure 4.8: Table showing the effects of input detuning on suppression and enhance-
ment of the Plant photon number with different feedback schemes ("trivial" feedback,
empty cavity feedback, and feedback with gain). Entries correspond to the ratio of the
min/max photon number in that configuration (for ΦFB locked, pump phase swept)
relative to the photon number with no feedback.

the feedback is washed out. Investigating the practical implementation of broadband

coherent feedback schemes for noise rejection would be an interesting topic for future

research.

4.3 System stability modification

We also examine the effects of the feedback loop on the system stability from perspec-

tive of reduction (or raising) the system lasing threshold. As mentioned in Chapter

2, we can consider the quadrature field operators of the Plant cavity mode as the

canonical phase space operators of our quantum harmonic oscillator, and we note

that a stable system (such as an OPO below threshold) will simply move toward the

equilibrium value of the cavity field given the decay rate (and pump rate, if any)

of the cavity, regardless of the initial state of the system. However, an OPO above

threshold is an unstable system in that (in the ideal limit of no pump depletion) the

amplitude of any initial state (including the vacuum) will increase without bound as

long as the equations that govern its evolution hold. In practice, this stops as soon

as the pump is depleted, but the concept is still important as the system dynamics



CHAPTER 4. EXPERIMENTAL RESULTS 61

0 20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

45

50

Controller Pump Power (mW)

Pl
an

t T
hr

es
ho

ld
 P

um
p 

Po
w

er
 (m

W
)

Plant Threshold Pump Power (No Feedback Threshold = 256 mW)

 

 

trivial feedback
OPO feedback

Student Version of MATLAB

Figure 4.9: Threshold pump power for the Plant vs increasing pump power in the
Controller when OPOs are connected in the closed loop configuration.

undergo a fundamental change and the state of the system is now drawn to the equi-

librium manifold above threshold. When we connect the Plant to the feedback loop,

we find that we significantly alter the pump power at which it is stable (see fig. 4.9),

i.e. the pump power at which it lases.

We see that the Plant lasing threshold is reduced dramatically (5 ×) when con-

nected in even the "trivial" feedback configuration, as the effective cavity linewidth is

substantially reduced at the corresponding value of ΦFB. The empty cavity feedback

reduces the cavity losses even further, and as gain is added from the Controller, we see

that the threshold continues to lower monotonically, until it vanishes altogether. This



CHAPTER 4. EXPERIMENTAL RESULTS 62

makes sense, as the condition for lasing is that the roundtrip loss for the Plant cavity

equals the roundtrip gain, and when the Controller gain is a few dB, all the power

lost from the Plant cavity during a single roundtrip is restored at the 8% coupling

mirror of the cavity. Alternatively, from symmetry in the feedback loop construction,

we can view the Controller as the "plant" and the Plant as the "controller", and we

note that the combined system should lase if we only pump the Controller (which it

does).

Just as we can reduce the lasing theshold for the Plant by adding coherent feedback

with the appropriate values of ΦFB, we can also raise it and suppress lasing by using

the other values of ΦFB (which correspond to the case of photon number suppression

in the Plant, when the power cavity losses are increased and power routed away from

the feedback loop). The easiest demonstration of this is can be seen from pumping

the Plant above threshold, sweeping ΦFB and seeing that lasing is suppressed for part

of the sweep. Unfortunately, as of the time of this writing the pump power available

in the doubling crystal has dwindled so much that the Plant can’t be pumped above

threshold, and thus we leave it to the next intrepid researcher to switch out the

doubling crystal and demonstrate this (see below).

4.4 Future directions

We briefly mention some future directions that can be explored with the apparatus

(that would also be useful to compare with the theory) at this point.

Right off the bat, we note that if the pump power were restored (in the final weeks

of the experiment, the poled regions in the doubling crystal deteriorated rapidly and

the pump power significantly reduced below the ideal 1 W value), we would immedi-

ately be able to see the phenomena of lasing suppression for the Plant as mentioned

above, which would demonstrate the idea of stabilizing an otherwise unstable system

with coherent feedback, the complement to what we observed above. If the phase

locking of the pump beams and ΦFB were improved, we could not only get more pre-

cise data similar to what was shown above and to try to get quantitative agreement

with the theory developed so far, but we could also to investigate the effects of the
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coherent feedback loop on the squeezing generated by the OPOs (the current problem

is that the piezo modulation depth required to get a clean error signal is large, large

enough to generate extra noise that obscures the measured squeezing spectrum when

the phases are locked; increasing the modulation frequency and using detectors with

narrower bandwidth would boost the signal to noise on the error signal and hopefully

require less modulation depth for locking). If the cavity lock schemes were changed to

enable the OPOs to be stabilized well above threshold, we could try to obtain clean

measurements of limit cycles (if present), and even if the cavity locks fail, if pump

power were restored we could look for them nonetheless. Finally, we could place an

acoustic noise shield around the setup (but not touching the optical table) that would

reduce the noise and give all the locks an easier time.



Appendix A

Bowtie Cavity Design

The bowtie cavity design affords a simple way to construct a ring cavity with rela-

tively small astigmatism in the cavity modes. Here we detail the design of a symmetric

bowtie cavity with two consecutive curved mirrors and two consecutive flat mirrors.

Many variations on this design "theme" are possible, but for our purposes this de-

sign’s symmetry and simplicity make it relatively easy to both analyze and construct.

We first analyze the ranges of mirror radii of curvature and lengths over which the

cavity supports stable modes, and then show the effects of inclusion of a crystal and

astigmatism due to reflection off the curved mirrors at near-normal incidence. We

conclude with the cavity frequency response, which depends on the cavity length,

mirror reflectivities and intracavity losses.

A.1 Geometry and Stability Range

A ring cavity with one or more spherical mirrors may support stable Gaussian modes,

and these will be the modes of interest in our design. The stability requirement for a

given mode is that the Gaussian beam repeats itself after a cavity roundtrip (see for

e.g. §4.5 of [37]), i.e.

q =
Aq +B

Cq +D
(A.1)

64
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PPLN

Figure A.1: Symmetric bowtie ring cavity with two flat mirrors (M1 and M4) two
curved mirrors (M2 and M3). The resonant beam of interest (shown in red) enters and
leaves the cavity predominantly via M1, with the other mirrors being high reflectors
at the cavity frequency. The cavity is symmetric about the dashed line, with the
curved mirrors separated by a length 2L0, and the remaining cavity length 2L1 (so
the empty cavity roundtrip perimeter p = 2L0 + 2L1). The crystal has length 2` and
index n (so, with the crystal, the cavity perimeter is p = 2(L0− `) + 2n`+ 2L1), and
the nominal small angle of incidence on all mirrors is θ.
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where q is the complex Gaussian beam parameter at any particular position along

the beam path in the cavity, and the A, B, C and D parameters correspond to the

entries of the cavity roundtrip ABCD matrix for that position. Intuitively, given

the layout of the curved and flat mirrors of our cavity as shown in fig. A.1, we note

that our stable cavity mode should be a Gaussian beam with a particular Rayleigh

range in the region between the pair of curved mirrors, and then reflection off the

first curved mirror changes the Rayleigh range (in accordance with the appropriate

ABCD transformation for the mirror), and then beam continues to propagate until

it reaches the second curved mirror, reflects and regains its initial Rayleigh range.

To simplify our analysis, we note that if we truly have a symmetric cavity with the

same radius of curvature R for both curved mirrors and symmetric mirror placement,

then the beam waists will occur at exactly the midpoints between the the curved and

the flat mirrors. At these positions, since the beam radius of curvature is infinite, q

is purely imaginary (q = izR, where zR is the Rayleigh range of the beam) and we

can readily solve for the Rayleigh range of each beam from the above mode stability

criterion: each must satisfy the quadratic equation

Cq2 + (D − A)q −B = −Cz2
R + i(D − A)zR −B = 0. (A.2)

First, we consider the beam waist between the curved mirrors, at a distance L0

from each curved mirror. The corresponding roundtrip ABCD matrix is just the

product of the individual ABCD matrices corresponding to propagation to the first

curved mirror, reflection from it, propagation up to the next curved mirror, reflection

from it, and then back to the initial position (see for e.g. §2.1 of [37]):

[
A B

C D

]
=

[
1 L0

0 1

][
1 0

−1/f 1

][
1 2L1

0 1

][
1 0

−1/f 1

][
1 L0

0 1

]
(A.3)

where f = R/2 is the focal length of each curved cavity mirror. Carrying out the

multiplication, we find that
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A =
f 2 − 2(L0 + L1) + 2L0L1

f 2
, (A.4)

B =
2 [(L0 + L1)f 2 − (L2

0 + 2L0L1)f + L0L12]

f 2
, (A.5)

C =
2(L1 − f)

f 2
, (A.6)

D =
f 2 − 2(L0 + L1) + 2L0L1

f 2
= A. (A.7)

Thus, D − A = 0 and the quadratic equation for zR becomes

z2
R =
−B
C

=
(f − L0)(L0f + L1f − L0L1)

f − L1

. (A.8)

Since zR needs to be real and positive for a stable mode (and thus so does z2
R), we

can now find the relationships between f , L0 and L1 that satisfy this from eqn. A.8.

Note that, from the geometry in fig. A.1, even if the flat mirrors are brought close

together so that the distance between them is less than that of the curved mirrors

(i.e. L0), we’ll always have L0 < L1; the limiting case of L1 → L0 just corresponds to

the symmetric curved mirror Fabry-Perot resonator. In fact, taking this limit in eqn.

A.8 with yields L1 → L0 = L yields z2
R = L(2f − L), exactly the expression for the

symmetric Fabry-Perot resonator with mirror separation 2L, as expected (see for e.g.

§4.3 of [37]).

We thus have three cases: f < L0 < L1, L0 < f < L1, and L0 < L1 < f .

We immediately see that the intermediate case, L0 < f < L1, does not yield stable

solutions, as the numerator of eqn. A.8 is then always positive while the denominator

is always negative, so the overall expression is negative. The final case, L0 < L1 < f ,

always yields stable solutions as both numerator and denominator are always positive.

Note, however, that theoretical limit in which the Rayleigh range (and thus focused

spot size) approaches zero (ignoring the diffraction limit) only occurs as the mirror

spacings L0 and L1 themselves approach zero; thus, if we desire a very small focus

spot size, we have to bring the mirrors very close together, which may be difficult
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to achieve in practice (especially if we’re trying to insert something like a crystal in

between them on the optical table).

However, the first case f < L0 < L1 gives us the ability to approach the very

small spot size limit between the curved mirrors while keeping larger mirror spacings,

comparable to the focal length of the curved mirrors: the zero of the numerator of

eqn. A.8 occurs at L0f + L1f − L0L1 = 0, i.e.

L1 =
−L0f

f − L0

, (A.9)

or alternatively

L0 =
−L1f

f − L1

. (A.10)

From eqn. A.8, we see that if either L0 or L1 exceed the values above, the numer-

ator becomes negative and the mode is then unstable. To find the individual upper

limits on L0 and L1 in terms of f , we then note that a stable mode requires

L0 < L1 <
−L0f

f − L0

, (A.11)

and for this to be possible, we need

L0 <
−L0f

f − L0

, (A.12)

which means that we need fundamentally need

L0 < 2f, (A.13)

in order to have a stable solution at all, regardless of the value we would choose

for L1. For a given L0 < f , the upper limit on L1 is then given by eqn. A.9. With the

above information in hand, we can plot the parameter regime where a stable mode

exists.

As we see from fig. A.2, as L0 increases from f to 2f , the range of possible

choices for L1 for a stable mode gets narrower and narrower, and eventually closes
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Figure A.2: Stability region for the bowtie cavity with f < L0 < L1: the resonator is
stable between the left (green line), right (blue line) and lower (red line) boundaries.
The lower boundary is the limiting case L1 → L0, which corresponds to the symmetric
curved mirror Fabry-Perot resonator. As either the left or the right boundary is
approached, the focus spot size becomes very small, and L1 → ∞ as L0 → f along
the right boundary.
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off altogether at L0 = 2f . Near the left and right stability boundaries, the focus

spot size is becomes very small, and thus for a given length of either L0 or L1, one

can adjust remaining length to get close to the boundary and choose the spot size

(as shown in another plot below). The lower boundary in fig. A.2 given by the line

L1 = L0 corresponds to the symmetric curved mirror Fabry-Perot resonator, and we

note that the concentrically focused limit (L0 = 2f = R) is also the limit beyond

which the Fabry-Perot resonator is unstable. As a reminder, as mentioned above, the

left boundary occurs because the case L0 < f < L1 is unstable.

Our analysis so far has been sufficient to determine both the stability regime of

the bowtie cavity and the Rayleigh range (and thus focus spot size) between the two

curved mirrors. From here, it’s straightforward to calculate a few other important

mode parameters, including the maximum spot size (which occurs at the curved

mirrors) and the spot size between the flat mirrors (henceforth referred to as the

"auxiliary" waist; the waist between the curved mirrors will be the "primary" waist).

The maximum spot size can be found from simply propagating the Gaussian mode

from the primary waist out a distance L0 to the curved mirror, i.e.

wmax = w0

√
1 + (L0/zR)2, (A.14)

where w0 is the spot size at the primary waist (=
√
λzR/π, λ the mode wavelength

in the ambient medium). The auxiliary waist spot size can be found by applying the

exact same analysis to find the Rayleigh range as was done for the primary waist

above, but with the roles of L0 and L1 switched, and we thus obtain

z2
Raux =

(f − L1)(L0f + L1f − L0L1)

f − L0

, (A.15)

with zRaux the Rayleigh range of the auxiliary waist, and the corresponding spot

size waux =
√
λzRaux/π. As an example, for a bowtie cavity with f = 50 mm (i.e.

curved mirror radius of curvature R = 10 cm) and L1 = 265.5 mm we plot the

behavior the relevant cavity spot sizes versus L0. This example is the basis for the

design of our OPO bowtie cavities.
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Figure A.3: Plot of relevant cavity spot sizes versus L0 for f = 50 mm and L1 = 265.5
mm. The red, blue and green lines indicate the primary, max and auxiliary spot sizes
respectively. At the edges of the stability boundary, the spot sizes either become very
small or very large, and note that for this choice of L1, the range of L0 over which
the cavity is stable is a little over 1.1 cm; this range can be increased by decreasing
L1, but at the expense of making the average primary waist spot size larger over it.
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A.2 Effects of Intracavity Crystal and Astigma-

tism

We next consider effects that can change the properties of the cavity mode and its

stability: the effects of placing a crystal inside the cavity mode path, as well as

astigmatism due to reflection off the curved mirrors at a non-zero angle of incidence.

As seen in fig. A.1, we let ` be half the length of crystal, assume that it’s centered

between the curved mirrors, and has an index of refraction n (typical nonlinear crys-

tals operating at the visible and near IR have an index of ∼ 2 at those wavelengths).

We also assume that the crystal input and output facets are flat and normal to the

mode propagation direction. Using the appropriate individual ABCD matrices for

Gaussian beam propagation in a homogeneous medium with index n and transmission

through the interface, we once again find the overall cavity roundtrip ABCD matrix

from the primary waist:

[
A B

C D

]
=

[
1 `

0 1

][
1 0

0 1/n

][
1 L0 − `
0 1

][
1 0

−1/f 1

]
·[

1 2L1

0 1

][
1 0

−1/f 1

][
1 L0 − `
0 1

][
1 0

0 n

][
1 `

0 1

]
, (A.16)

and we find that

A =
f 2 − 2(L′0 + L1) + 2L′0L1

f 2
, (A.17)

B =
2n [(L′0 + L1)f 2 − (L′20 + 2L′0L1)f + L′0L12]

f 2
, (A.18)

C =
2(L1 − f)

nf 2
, (A.19)

D =
f 2 − 2(L′0 + L1) + 2L′0L1

f 2
= A. (A.20)
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where

L′0 = L0 + `

(
1

n
− 1

)
. (A.21)

We see that the roundtrip ABCD matrix has a very similar form (though not

identical, as there are factors of n appearing in B and C) to the case of the empty

cavity, except that L′0 is now the "effective" length from the curved mirror to the

center of the crystal, and the change in length relative to the empty cavity value is

∆L0 = L′0−L0 = `(1/n−1) (a negative value with n > 1, i.e. the "effective" length is

actually shorter). Note that L′0 → L0 if we take n→ 1 (crystal index approaches air)

or ` → 0 (crystal length goes to zero), as expected. In the same manner as before,

we solve the quadratic equation for the Rayleigh range of the mode in the crystal:

z2
R =
−B
C

=
n2(f − L′0)(L′0f + L1f − L′0L1)

f − L1

, (A.22)

and note the additional factor of n2 appears relative to empty cavity expression for

z2
R (the reason is that the wavelength in the crystal is down by a factor of n relative

to the free space value; and thus substituting zR = nπw2
0/λ, the primary waist spot

size in the crystal will be same as that for the corresponding empty cavity). We

can now employ the same analysis as before to determine the cavity lengths over

which the mode is stable, as well as the mode spot size in the crystal and other

relevant beam parameters to determine the effect of the crystal on the cavity mode.

An important point to note is that if an empty cavity is operating near the edge of

stability with L0 near its minimum value (for e.g. in order to achieve a small spot size

at the primary waist), then inserting the crystal into the cavity path can decrease the

effective distance to the curved mirror such that mode then becomes unstable. Thus,

the effect of the crystal should be taken into account; for e.g. with a 2 cm long PPLN

crystal (so ` = 1 cm and n ≈ 2.2 at 1064 nm and 532 nm), we have that ∆L0 ≈ 5.5

mm. If our cavity has the design and properties as shown in fig. A.3, the we need to

choose the empty cavity length L0 such that L0 > 55.5 mm if we want the mode to

be stable with and without the crystal.

Next, we consider the astigmatic properties of the cavity mode. Astigmatism in
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the bowtie cavity arises from the fact that the Gaussian mode reflects off the curved

mirrors at non-normal incidence, and the effect is that an initially circular Gaussian

beam will (when reflected) have a different Rayleigh range for the transverse direction

parallel to the plane of incidence (called the tangential plane) than the direction

perpendicular to it (called the sagittal plane) (see for e.g. §6.9 of [40]). In other

words, if θ is the angle of incidence on a curved mirror as shown in fig. A.1, then the

"effective" focal length of mirror now becomes

ft =
f

cos θ
(A.23)

in the tangential direction and

fs = f cos θ (A.24)

in the sagittal direction, where f is the focal length of the mirror at normal in-

cidence. Since these lengths are different for the two different transverse directions,

we need to consider the stability of the cavity for both, i.e. replace f by ft and fs in

turn in eqn. A.22. If θ is large enough (and especially if the cavity is operating near

the edge of the stability boundary) it’s possible that the cavity will become in unsta-

ble in either of the two transverse directions, i.e. the mode becomes unstable. Aside

from the issue of mode stability, as mentioned before, the more astigmatic the mode,

the more problematic it can be when used in subsequent processes whose efficiency

depend significantly on matching it with other Gaussian beams with potentially dif-

ferent astigmatism (e.g. parametric amplification, homodyne detection and squeezed

state injection into another cavity). Thus, in general it’s desirable to minimize the

cavity astigmatism, as well as use modes with as close an astigmatism as possible

for processes where mode matching is important. In our bowtie cavity prototype

example, we have that θ ≈ 4◦, which then changes the "effective" focal lengths by

∼ 0.25%, which is a small change, but one to be mindful of very near the stability

boundary of the cavity.

In closing this section, we mention that by analogy we can apply the same analysis

to determine the mode stability for an asymmetric bowtie cavity, or a ring cavity with
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a different number and/or arrangement of mirrors, as long as we use the appropriate

ABCD matrices to propagate the beam between each element of the cavity. The

general case may have considerably more complicated expressions and numbers of

terms involved (for e.g. in the asymmetric case astigmatism leads to different waist

positions for each transverse direction of the mode, in addition to different Rayleigh

ranges), and thus it’s desirable when possible to keep the design symmetric, both for

ease of intuition and for debugging problems during cavity construction.

A.3 Cavity Frequency Response

The bowtie cavity frequency response depends on the cavity length, mirror reflectivi-

ties and intracavity losses. Here, we follow the analysis done in §11.3 of [41] done for

a Fabry-Perot cavity, but generalize it to our four mirror bowtie cavity. The analysis

is done neglecting any transverse variation in cavity properties, i.e. the mirrors and

crystal facets are assumed to be planar with infinite transverse size and the cavity

modes therefore planewaves; the result will give an excellent approximation of the

longitudinal mode (i.e. TEM00) frequencies in the high longitudinal mode number

regime for the actual cavity, which is the regime we’re interested in. If desired, the

"exact" longitudinal and higher order transverse mode frequencies can be found by

accounting for the corresponding Guoy phase shifts in the Gaussian mode in each

length of the ring cavity (see for e.g. §19.3 of [41]), but for our purposes an initial

picture of the longitudinal mode response is sufficient.

Our cavity mirrors M1 through M4 (as shown in fig. A.1) have corresponding

power reflectivities R1 through R4 and power transmittivities T1 through T4. The

corresponding electric field amplitude reflectivities and transmittivities are r1 =
√
R1

and t1 =
√
T1 and so on, i.e. the complex field amplitudes written below (denoted

by tildes, e.g. Ẽ) are at reference planes chosen such that rj and tj (j = 1, 2, 3, 4)

are real numbers; we are always free to choose this, and we’ll treat each mirror as a

dielectric slab per §11.1 of [41]. The roundtrip intracavity power loss due everything

except transmission through the mirrors (i.e. losses due to absorption and scattering

in the crystal and mirrors) is given by 1 − F 2, where F < 1 is a real multiplicative
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factor on the circulating field amplitude due to these losses.

If we apply the self consistent condition that the circulating field at a reference

plane just inside the input mirror M1 is due to the sum of the field incident on the

input mirror and the circulating power from the previous cavity roundtrip, we can

write it as

Ẽc = it1Ẽi + rF exp (−iωp/c)Ẽc, (A.25)

where Ẽc is the circulating field amplitude, Ẽi the incident field amplitude at a

different reference plane just before the input mirror, ω the incident field angular

frequency, r = r1r2r3r4 the product of the mirror amplitude reflectivities, p = 2(L0−
`) + 2n`+ 2L1 the cavity perimeter, c the speed of light in air/vacuum and i =

√
−1.

After a little algebra, the ratio of the circulating power to the incident power can be

found to be ∣∣∣∣∣Ẽc

Ẽi

∣∣∣∣∣
2

=
T1

1 + r2F 2 − 2rF cos(ωτ)
(A.26)

where τ = p/c is the cavity roundtrip time. Thus we see the circulating power is

a periodic function of frequency, and the cavity mode frequencies (when the cavity

roundtrip length equals a positive integer number of optical wavelengths, henceforth

called resonances) are those at which circulating power reaches its maximum every

ω = 2πN/τ = 2πN ·FSR, where N the a positive integer labeling each cavity mode

and FSR = 1/τ = c/p is the cavity free-spectral range, i.e. the spacing between

adjacent modes in frequency. Note for cavities with p ∼ 0.5 m as in this experiment,

with c ≈ 3×108 m/s the FSR is ∼ 0.5 GHz, meaning that for the optical wavelengths

(∼ 1 µm, corresponding to a frequency of ∼ 300 THz) that we’re interested in,

N ∼ 6× 105 � 1, i.e. we’re in the high mode number regime.

Now, we consider the frequency change off each resonance peak such that the

circulating power falls to half its maximum value: call it ∆ωHWHM, the half width

half max (HWHM) of the resonance. From eqn. A.26 it can be shown with a little

algebra that ∆ωHWHM satisfies
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sin (∆ωHWHMτ/2) =
1− rF
2
√
rF
≡ π

2F
, (A.27)

where

F ≡ π
√
rF

1− rF
(A.28)

is defined to be the finesse of the cavity. If the mirror reflectivities are high enough

and cavity losses low enough such that F � 1, then we have that sin (∆ωHWHMτ/2) ≈
∆ωHWHMτ/2� 1 and the full width half max (FWHM) of the cavity mode is then

∆ωFWHM = 2∆ωHWHM ≈
2π

τF
=

2πFSR

F
, (A.29)

and the local lineshape around each resonance approaches the Lorentzian∣∣∣∣∣Ẽc

Ẽi

∣∣∣∣∣
2

local

≈ T1

(1− rF )2 + rF (∆ωτ)2
(A.30)

where ∆ω is the frequency deviation off the resonance peak. Via a temporal

Fourier Transform, it can be shown that the FWHM of the Lorentzian gives the cavity

decay rate for the mode (i.e. time for stored energy in the mode to drop to exp(−1)

its initial value), and that the finesse F gives a measure of the number of roundtrips

each photon makes in the cavity before leaving it. The Lorentzian approximation of

the resonance line shape is good even for cavities with F ∼ 10, which is the regime

for the cavities in this experiment, and an example is plotted below.

In an analogous manner, the reflected field off the input mirror M1 can be found

as the sum of the reflected incident field and the circulating field after one cavity

roundtrip that’s transmitted (instead of reflected) back out M1:

Ẽr = r1Ẽi +
it1rF exp (−iωp/c)

r1

Ẽc, (A.31)

so that
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Figure A.4: Cavity circulating power versus input frequency for a bowtie cavity with
mirror power reflectivities R1 = 0.81, R2 = R3 = 0.9999, R4 = 0.999, perimeter
p = 0.635 m and intracavity loss factor F = 0.998, corresponding to the parameters
of our basic cavity design. The FSR = 472 MHz, FWHM linewidth = 17 MHz, and
finesse F = 28.
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Figure A.5: Cavity reflected and transmitted power versus input frequency for a
bowtie cavity with mirror power reflectivities R1 = 0.81, R2 = R3 = 0.9999, R4 =
0.999, perimeter p = 0.635 m and intracavity loss factor F = 0.998, corresponding to
the parameters of our basic cavity design. The FSR = 472 MHz, FWHM linewidth =
17 MHz, and finesse F = 28; the reflected power is off in the input mirror M1, while
the transmitted power comes out through M4.

∣∣∣∣∣Ẽr

Ẽi

∣∣∣∣∣
2

=
1

R1

R2
1 + r2F 2 − 2R1rF cos(ωτ)

1 + r2F 2 − 2rF cos(ωτ)
, (A.32)

where Ẽr is the reflected field amplitude. Note that it’s possible for the reflected

power to go to zero (and this only occurs, as it can be shown, on resonance) if

R1 = rF , which is called the impedance matched condition (i.e. the input mirror

power reflectivity is equal to the roundtrip field amplitude retention rF , which has

contributions from all the mirror reflectivities and intracavity loss), and in this case

the power transfer through the cavity is maximized. This can be useful for appli-

cations that require minimal reflected power and/or substantial transmitted power

out the other cavity mirrors, but in our experiment all the mirrors are high reflectors

(Ri 6=1 ≤ 0.1%) except the input mirror M1, which has R1 ∼ 80%, so that we’re far

away from this condition.

Finally, the transmitted field from any of the other mirrors Mi 6=1 can be found by

following the circulating field around its path in the cavity to the output mirror of

interest. Starting from its initial position just inside the input mirror M1, we keep
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track of losses due to reflection of each mirror as well as any other intracavity loss

along the path to the output mirror. If the output mirror of interest is for e.g. M4,

then we have

Ẽt = it4r3r2Ft exp (−iωpt/c) Ẽc, (A.33)

so that ∣∣∣∣∣Ẽt

Ẽi

∣∣∣∣∣
2

=
T4R3R2T1F

2
t

1 + r2F 2 − 2rF cos(ωτ)
, (A.34)

where pt is the path length from the input mirror to the output mirror and Ft is

the amount of intracavity loss up to the output mirror. For our bowtie cavity design

as shown in fig. A.1, the intracavity loss on the last part of the cavity roundtrip

from M3 to M4 is very small, so we essentially have Ft = F (since the dominant loss

comes from absorption and scattering from the crystal), and we plot an example of

reflected and transmitted fields in fig. A.5. Both dip in reflected power and the peak

in the transmitted power have the same lineshape as the circulating power, and can be

used to lock the cavity to the resonance frequency via for e.g. the Pound-Drever-Hall

technique [35]. The magnitude of dip/peak can also be used to confirm the amount

of intracavity loss present in the cavity.



Appendix B

Electronics for locking and

detection

This Appendix contains the circuit level schematics for the homemade electronics used

in the apparatus for cavity and phase locking, as well as the detector designs. We

won’t go into a detailed description of their operation or their components here, but

rather will note their general function along with their schematic to aid the next re-

searcher at the highest level in using or duplicating them for their own purposes. Once

again, a hearty thanks to Hardeep(s), Nate, Yeong Dae, Charles, and the Catcher in

the Lab for their help with assembling and debugging the veritable army of servos,

amplifiers and detectors used in the apparatus!
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Figure B.1: Simple servo utilizing integral control for cavity locking and phase locking.
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Figure B.2: High voltage amplifier used to drive piezoelectric actuators.
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Figure B.4: 1 MHz bandwidth detector used to measure cavity transmission.
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Figure B.5: ∼ 100 MHz bandwidth subtracting detector circuit for balanced homo-
dyne detection.
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Figure B.6: Output buffer to enable subtracting detector to drive low impedance
loads.



Appendix C

SHG and OPA with χ(2) crystals in

practice

This Appendix focuses on how to do second harmonic generation (SHG) and optical

parametric amplification (OPA) with nonlinear optical crystals in the lab, and is

essentially garnered from my own practical experiences (in this Appendix, the royal

"we" finally switches to the humble "I").

C.1 Second harmonic generation

Second harmonic generation (SHG) is used to generate the 532 nm beam used in this

experiment (here, it’s the pump beam for the parametric oscillations that squeeze of

the cavity modes of interest). I briefly review the values of second harmonic (SH)

power I obtained when attempting SHG in a bulk periodically poled Lithium Niobate

(PPLN) crystal and a bulk periodically poled Potassium Titanyl Phosphate (PPKTP)

crystal, and compare with the values predicted from textbook calculations. I then

also note some important things I came across in trying to get the process to work in

the lab, which should be helpful to others attempting to work with these processes

in the future.

When working with χ(2) nonlinear optical processes, it really is worth it to make

sure that one can do SHG properly before moving on to other processes, both because

88
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SHG is the most basic (it has only one non-zero input field, i.e. the fundamental or

"pump" beam) and thus most transparent to potential problems, and because it’s

useful in aligning more complicated processes, e.g. parametric amplification.

The fundamental beam for the SHG process that I describe here was for the MOPA

YAG laser beam at 1064.4 nm, focused relatively loosely to a ∼ 55 µm spot inside

the crystal (or so I had thought at the time!), which then generated the SH beam

at 532.2 nm. The first crystal I tested was a bulk MgO doped PPLN crystal from

Covesion (the MgO doping significantly increases the laser power damage threshold

of the material, and thus the achievable SH power), and after some optimization steps

that I describe below, I was able to obtain a lot of SH power (see fig. C.1).

The predicted values come from the idealized expression found in textbooks [37]

for an incident planewave beam of finite size (that’s the idealization of a Gaussian

beam), perfectly phase matched to the crystal and includes pump depletion:

PSH = Pp tanh2

(√
2ωdeffL

n
3/2
0

(
µ0

ε0
)3/4

√
Pp
A

)
(C.1)

which is ∝ P 2
p for low pump powers (note tanh2(x) ≈ x2 for x� 1). Above, Pp is

the pump power, ω the pump frequency, deff the effective nonlinear coefficient for the

periodically poled crystal, L the crystal length, n0 the crystal index of refraction near

the pump and second harmonic frequencies, µ0 and ε0 the vacuum permeability and

permittivity, and A the beam area). In practice, in order to get the actual measured

SH power values to agree with these predicted values, there are several things that

need to be carefully considered in the setup, as described further below.

Next, I tested the bulk hydrothermal PPKTP crystal obtained from AdvR. Al-

though PPLN was expected to have the higher nonlinear coefficient (as well as po-

tentially damage threshold) and would thus be more useful in generating SH power,

the performance of the PPKTP was important because the crystal material can also

be used in other types of nonlinear processes (e.g. particular Type II parametric am-

plification where the signal and idler beams have orthogonal polarizations relative to

each other; PPLN can also support this process but is harder to find from companies

for this interaction). Without changing the the pump beam at all, I found that the
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Figure C.1: Multi-watt second harmonic generation on a single pass through PPLN.
The horizontal and vertical errorbars come from the specs for the calibration accuracy
of the Thorlabs PM50 thermal power meter. The value of deff was obtained by fitting
the textbook equation for planewave SHG to the data assuming the beam spot size
was ∼ 55 µm, but as I would later discover, the beam was thermally lensing and
focusing to a smaller spot in the crystal; the true value of deff was closer to 9 pm/V,
as could be seen by repeatedly measure the SH power for lower fundamental powers
and various known spot sizes.
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expected power was less than the predicted value given me by the company (see fig.

C.2).

Now we’ll talk about some of those details I mentioned to optimize the SHG in

practice for a given crystal. The first consideration is the focusing and quality of

the pump beam itself. Assuming an ideal TEM00 Gaussian pump beam, for a bulk

χ2 nonlinear crystal of given length and index Boyd and Kleinman ([34], a solid 43

page analysis) worked out the choice of beam parameters which maximizes the power

generated in the SH beam (which would then also be an ideal TEM00 Gaussian

beam). Specifically, the pump focus should be at the center of the crystal, and the

Rayleigh range of the beam zR in the crystal material = L/5.68 (which then also

sets the optimum spot size; note that when comparing a Gaussian beam in free space

to its counterpart in the crystal, the beam focuses more slowly in the crystal so its

Rayleigh range is down by a factor of the crystal index n0, but the spot size at the

waist remains the same). The Boyd-Kleinman analysis is exact in its inclusion of the

Gaussian nature (i. e. in both real space and momentum space) of the beams, and

it’s important to note that overfocusing a beam not only reduces efficiency because

the average beam area inside the crystal eventually gets larger (and thus the average

intensity reduced), but also because the momentum space distribution of the Gaussian

becomes broader and thus the phase matching becomes poorer. Fortunately, the

analysis shows that the drop in process efficiency isn’t extremely sharp for focusing

conditions a little away from the optimum (for e.g. loosening the focusing to zR = L/2

still gives ≈ 83% of the optimal power), so it gives a good ballpark to shoot for when

setting up the incident beam. It’s also important to note that when turning up the

power in a high power laser system (such as the Mephisto YAG MOPA) via the drive

current, the beam size and parameters may change as the power is increased, due to

for e.g. spatial saturation of the gain medium (here the YAG crystals) with increasing

laser diode pump power (this is also noted in Chapter 3). Thus, it’s usually best to

keep the laser power output fixed while using another means to control the power

of the beam that you want to use (e.g. waveplates with polarizing beam-splitters;

absorbative attenuators will control the power, but at high powers they will also act

a little like lenses and change the focusing properties of the beam, so be aware of this
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Figure C.2: Single watt second harmonic generation on a single pass through PPKTP.
Again, the horizontal and vertical errorbars come from the specs for the calibration
accuracy of the Thorlabs PM50 thermal power meter. By fitting, I measured the
value of deff to be 6 pm/V instead of the 8 pm/V given to me by the company, but
again thermal lensing was giving me a slightly higher value than actual, which turned
out to be closer to 4.5 pm/V, half that of the PPLN.
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fact), so that the beam size and focusing remains fixed; and as usual, initial alignment

into the crystal should be done with a lower power beam.

Just as important as the beam size, good beam "quality" (i.e. lack of substantial

beam aberration) is crucial to getting high process efficiency, and in particular the

beam behavior near the focus is important as that’s what the crystal "sees" during the

SHG process. Longitudinal spherical aberration from singlet lenses and/or truncation

by apertures can cause a "hole" to form in the center of the beam near the focus

on one side or the other, which then not only causes the generated SH beam to

potentially have a "hole" (even in the far field), but also distorts the momentum space

distribution of the field and thus reduces phase matching efficiency. The Spiricon

beam imaging camera is an essential tool to monitor the beam behavior near the focus,

as well as accurately measure the focused spot size for an accurate comparison with

theory. Techniques to avoid aberrating the beam include the use of aspheric lenses

when focusing/expanding the beam and to avoid moderately large beam spot sizes

incident on 1 in. diameter optics (especially lenses), as these can lead to significant

aberrations near the desired eventual focus, even if the beam itself appears to be

undistorted in the far field.

Once the incident pump beam is reasonably focused and aligned into the crystal,

the crystal temperature should be adjusted around the phase matching temperature

until SH light becomes visible (note that even if the IR pump beam power is low,

say 10’s of µW, and the SH beam is ∼ nW or a little less, the SH spot near the

focus will still be visible to the naked eye off a white card or with room lights off).

It’s worth mentioning that the phase matching temperature that companies give for

the crystal is a good starting point for the temperature search, but sample variation

during crystal manufacture as well as the actual output wavelength of your laser may

require you to sweep the temperatures a few degrees to find the optimum value. An

actual SH power vs. temperature profile I obtained during the search for the optimum

with the PPKTP crystal looks like can be seen in fig. C.3.

Another important point to note is that if absorption at either the pump or the SH

wavelength is appreciable (e.g. in PPLN it’s only 0.1% cm−1 at 1064 nm, but it’s 3.4%

cm−1 at the 532 nm–that’s 6.8% for a 2cm long crystal), local heating effects can be
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Figure C.3: SHG power vs crystal temperature for the PPKTP crystal for 1064.4 nm
power around the ∼ mW level. For an idealized planewave pump beam, textbooks
[37] predict a sinc2 dependance of the SH power about the optimum phase matching
temperature (for small changes in temperature, where the index varies approximately
linearly), but Boyd and Kleinman [34] showed that in reality the Gaussian nature of
the beam will cause some asymmetry in this phase matching profile, for temperatures
above and below, and the more tightly the beam is focused, the greater the asymmetry
will become.
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Figure C.4: The optimal phase matching temperature in PPLN for SHG decreases as
the fundamental power becomes high, and thus temperature (and sometime longitu-
dinal alignment) should be re-optimized.

considerable and both the alignment (particularly along the beam propagation axis)

and the phase matching temperature should be re-optimized as power is increased.

For PPLN, because of increased local heating, the optimum set temperature of the

crystal decreased with increasing pump power, as shown in fig. C.4.

It’s important to note that for the PPLN crystal, since the generated SH beam is

the dominant contributor to local heating, at the highest powers a small deviation off

the optimum temperature setting can actually cause the generated SH power to drop

sharply: as the SH power decreases, the local heating decreases causing a shift away

(or towards and perhaps past) from the phase matching temperature, which then

further decreases the SH power, which further moves temperature away from phase
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matching, etc. Thus, as noted before, at high power levels it’s best to turn up the

pump power gradually and allow the effects of local heating to equilibrate at a given

power, and optimize the set temperature of the crystal for phase matching, before

further increasing the pump power. In contrast with the PPLN crystal, because of its

lower absorption at both pump and SH wavelengths (< 1% cm−1) (which make the

effects of local heating less prominent), the set temperature for the PPKTP crystal

for optimum phase matching is approximately constant, even at the highest powers.

Some final remarks about laser frequency and SHG are also in order. At a fixed

temperature, the spectral acceptance bandwidth of the periodically poled crystals is

determined by the number of poling periods in the crystal (knowing this number gives

an estimate of the ideal behavior of the crystal assuming perfect poling [37]), and the

actual behavior of the crystal can be found by fixing the temperature and sweeping

the laser frequency (here, I swept the temperature of the YAG crystal in the laser and

monitored the frequency of the output with the Burleigh wavemeter; see fig. C.5).

When I sweep the laser frequency, I see that for the PPKTP crystal the spectral

acceptance bandwidth has a ∼ 40 GHz FWHM, which is actually broader than the

∼ 30 GHz tuning range of the laser. The laser modehops about every ∼ 3 GHz or so

over its tuning range, causing a need for re-optimization of the alignment and leads

to some variation of the total detected power. However, what is not shown in the

above plot is the detected SH power during the laser modehop, which can actually

be substantially greater than the values during single mode operation (I’ve observed

increases by as much as a factor 1.4 to 1.5 ×); this actually stems from the fact

that during modehopping, when two modes of comparable amplitude and frequency

separation substantially less than the spectral acceptance width of the crystal are

simultaneously lasing, the peak electric field amplitude of the sum (which can be

written as a "slowly" varying envelope modulating a carrier at the average mode

frequency) can larger than the single mode case (for the same total laser optical

power), which is the quantity relevant for SHG, thus giving rise to higher SH power.

However, you usually want a stable frequency operation regime for your laser in an

actual experiment, so it’s best to confirm that the laser is single mode, and generated

SH power is what you would expect for single mode operation.
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Figure C.5: SHG as the laser frequency is tuned for two different (fixed) PPKTP
crystal temperatures.
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Now, at this point you might ask, "what happened to that amazing 2.4 W of SH

power that was generated, you should be able to drive both OPOs independently

above threshold and still have power to spare?" The answer is that that power didn’t

last very long, mainly because the crystal couldn’t stand it (as seen in fig. C.4, it was

generated from the lowest temperature grating, and thus local heating and thermal

lensing was very strong). A few days later I measured it to be 1.8 W, and the optimum

phase matching temperature had increased; over the months it continued a steady

decline, until it finally settled below 0.5 W. I switched to the next higher temperature

grating (phase matching at ≈ 60 ◦C), which gave about 1 W (consistent with the deff

values = 9 pm/V I measured for the remaining crystals) to start with, but it too

began to degrade, dropping to 0.7 W over a few days, and then even lower. Switching

tactics, I decided to try the highest temperature grating (phase matching at ≈ 120
◦C) which should have been most robust to degradation, but for some reason was

never able to get an appreciable amount of SH light from it, despite knowing that the

fundamental beam was clearly going through the grating and the temperature swept

over the far below and above the supposed phase matching value. The same was true

for the next lower temperature grating, but for some reason the third (and central)

grating in the crystal worked fine–but only to start with! In the final days on which

I worked on the experiment, it too degraded substantially until the power dropped

below the level needed to drive the "plant" OPO above threshold.

For high power SHG, my recommendation would be to try the highest temperature

gratings first, as they should (in principle!) be the slowest to degrade, and also least

susceptible to temperature gradients formed by local heating as the heat generated by

the beam should be a smaller fraction of the total heat transferred to the crystal from

its immediate environment (i.e. the oven and the beam). This then should reduce the

effect of thermal lensing, which not only may prevent the beam from overfocusing,

but will also allow the output SH beam parameters to be more stable with time as

the crystal wears.
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C.2 Optical parametric amplification

This section will be much more brief than the previous one on SHG as it builds on the

information presented there. No diagrams this time, just a few words of "wisdom".

The process of degenerate (the case we’ll focus on here) optical parametric am-

plification (OPA) is very similar to SHG except that now the fundamental beam is

amplified by the SH beam, with the SH input power typically much greater than

the fundamental power. Boyd and Kleinman [34] once again found that optimal SH

beam for transferring SH power to the fundamental would have the same Rayleigh

range and same waist position as the fundamental beam (and thus have a waist that’s

smaller by a factor of
√

2; it would have exactly the same beam parameters as the

SH beam generated by the fundamental). This immediately suggests a good trick for

finding the optimal beam parameters for the 532 nm beam to pump the crystal with:

send in enough fundamental power to generate a SH beam, measure that beam’s pa-

rameters, and then select lenses and lens positions to try to match the 532 nm pump

beam to it (a backwards generated SH beam would work fine for this as well).

This actually works reasonably well: you can use an iris pair to get both signal (i.e.

fundamental) and pump beams close to each other, or rasterize the pump beam across

the face of the crystal, and you should be able to get a parametric amplification/de-

amplification effect on the signal as the phases of the two beams are swept relative

to each other. One catch is that (like in many mode matching scenarios) it’s unlikely

that the lenses, their positions and the beam directions in the crystal will be optimal,

so you’ll have to do some varying of each of these things to try to optimize the

amplification.

But, even when this is done, it can be difficult to get close to a coupling efficiency

that gets the measured amount of amplification close to what would be predicted by

textbook planewave formulas (again, the Gaussian nature of the beams does have

some role to play in the discrepancy you see). One final trick (actually the first thing

I tried, when there was space to do so!) is to actually image the beams at their focus

(with the crystal removed), since this is where the dominant part of the interaction

and power transfer occurs. Doing this with the Spiricon camera allowed me to not
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only match the spot sizes accurately to their appropriate relative values at the beam

waists, but perhaps more importantly confirm that the actual longitudinal location of

the waists were on top of each other by < 1 mm. Longitudinal misalignments can be

more difficult to detect by just looking at the beams in the far field, but unfortunately

they can reduce the coupling efficiency by a significant amount. Using this trick, I

managed to achieve a very high pump coupling efficiency for the "controller" OPO

at the start, but unfortunately this was lost as the doubling crystal degraded, and

the pump power reduced (simultaneously reducing its own thermal lensing and thus

changing its beam parameters). Later, with more optics on the table, there was no

room to repeat this trick, so the best I could do is what is mentioned in the previous

paragraph; that was still adequate to get appreciable gain from the "controller", but

it’s been difficult to approach the optimum value I found before. If the power of the

Catcher in the Lab can be harnessed, however, anything becomes possible...
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