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Abstract

Cavity quantum electrodynamics (cQED) has received much attention as an ideal

platform for theoretical modeling and proof-of-concept experiments on ultra-low en-

ergy all-optical information processing. Cavities provide an effective means of reduc-

ing the energy scale of nonlinear-optical effects down to the level of ten or fewer energy

quanta, deep into the quantum-mechanical regime. On the other hand, bifurcation

theory, which analyzes changes in the number and properties of equilibrium states

upon some system parameter crossing a critical value, has been used in practice not

only to ensure safe operation in a stable parameter range but also to realize robust

devices with signal processing functionalities. In this dissertation I present theoret-

ical results and numerical simulations that demonstrate how these two theories can

combine to help not only interpret nonlinear dynamics from the perspective of the

first-principle physics, but also suggest designs of useful devices for optical signal

processing networks.

Under appropriate conditions the collective interaction of two-level atoms with a

cavity field can give rise to interesting dynamical behaviors such as bistability and

self-oscillation. Both of these phenomena can provide a physical basis for designing

useful devices with signal processing functionalities. After introducing the necessary

theoretical background I first discuss the cQED analog of absorptive bistability. I

explain how transitions between the two metastable states—the quantum counter-

parts of the absorptive bistable states—can result from spontaneous emission and

based on the understanding of this switching mechanism how we can implement an

optical flip-flop using the Purcell effect. This is followed by the discussion of how the

interaction between a two-level atom and a quantized cavity field in the semi-classical
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limit can give rise to self-oscillation in the cavity field intensity and how we can make

use of the system’s sensitivity to this instability for small-signal amplification.

In addition to the potential applications, the present study of bifurcation-like phe-

nomena in the context of cavity quantum electrodynamics is also motivated by the

theoretical interest in investigating quantum-classical correspondence. The equations

in the semi-classical limit have been found to be surprisingly accurate in predicting

bifurcation-like phenomena for the full quantum model even in the strong coupling

regime in which the semi-classical approximation necessarily breaks down. Therefore

bifurcation has become a new subject for studying the correspondence. Nonetheless

traits of quantum mechanical nature are omnipresent in these bifurcation-like phe-

nomena such as the automatic switching in the quantum analog of classical absorptive

bistability, which can be considered as the quantum-classical discrepancy in the con-

text of absorptive bistability. In this dissertation I present the quantum-classical

discrepancy in the context of Hopf bifurcation, which is demonstrated by the break-

down of the pre-Hopf small-signal amplification scheme. Moreover, previous study on

the quantum-classical correspondence manifested in the prediction of bifurcation-like

phenomena has focused on the single-atom cavity quantum electrodynamics. In the

last part of this dissertation I extend the study to multi-atom cases, asking questions

such as: would there be any new bifurcation-like phenomenon in a multi-atom cavity

quantum electrodynamic system; if yes could it lead to new device application; in

addition how would it depend on the number of atoms. This latter question in fact

suggests a new perspective towards studying the quantum-classical transition.
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Outline

This dissertation consists of four chapters. Chapter 1 introduces the theoretical model

of the quantum system and three equations that are used throughout the dissertation

to provide quantitative description of the system dynamics. After the introduction of

the theoretical tools Chapter 2 is devoted to the elucidation of the mechanism of the

automatic switching in the quantum analog of absorptive bistability. Based on the

understanding of the mechanism a flip-flop is proposed which could serve as the basic

logic operation unit in future ultra-low energy optical information processing network.

In addition a reduced order model involving only three variables is derived to approx-

imate the dynamics, which is computationally much simpler than the quantum model

based on wave function. Chapter 3 further illustrates the possibility of exploring bi-

furcation in cavity quantum electrodynamics for providing physical basis for device

application. In this chapter the mechanism of Hopf bifurcation in the semi-classical

equations is explained based on which an all-optical amplifier that preserves phase

information is proposed. Moreover the amplification proposal is examined in the full

quantum model and the discrepancy from the semi-classical prediction is found and

discussed. Chapter 4 presents the effort in exploring bifurcation-like phenomena in

cavity quantum electrodynamic systems involving more than one atom. A new bifur-

cation that is dependent upon the number of atoms is provided. Furthermore, two

algebraic properties of the multi-atom models are given as an example illustrating

the possibility of searching for analytical insights about the dynamics.

1



Chapter 1

Theoretical Modeling

In this chapter I present three models for describing the open quantum system built

on a two-level atom interacting with a quantized cavity mode which also take into

account of the atomic spontaneous emission and photon leakage out of cavity end

mirrors. They are (1) the master equation (2) the stochastic Schrödinger equation

and (3) the Maxwell-Bloch equations. The master equation is an equation of motion

for the system density matrix thus it describes the ensemble averaged behavior of the

system dynamics. The stochastic Schrödinger equation is useful for tracing out indi-

vidual system state evolution trajectory (apparently analogous to the path integral

but in fact is of different nature thus the word “trajectory” is used to distinguish from

it) and considering explicitly the system state collapse due to the atomic spontaneous

emission and photon leakage through cavity end mirrors. The Maxwell-Bloch equa-

tions are equations of motion for the expectation values of the atomic Pauli matrices

and the real and imaginary part of the annihilation operator of the cavity field. The

solution to the master equation can be approximated by averaging over sufficiently

many trajectory solutions to the stochastic Schrödiner equation. The Maxwell-Bloch

equations represent the so-called “semiclassical limit” of the master equation when

the correlations between the observables of the atom and those of the cavity field can

be safely ignored.

2



CHAPTER 1. THEORETICAL MODELING 3

1.1 The Master Equation

The exact quantum model that I will use is built upon the driven Jaynes-Cummings

Hamiltonian [2] which models the interaction of a single mode of an optical cavity

having a resonant frequency ωc, with a two-level atom comprised of a ground state

|g〉 and an excited state |e〉 separated by a frequency ωa. For an atom-field coupling

constant g and an external coherent driving field with frequency ωl and amplitude

E coupled to the cavity mode, the Hamiltonian for a reference frame rotating at the

driving frequency ωl adopting rotating wave approximation (RWA) that discards high

frequency coupling terms is given by (~ = 1)

H = ∆ca
†a+ ∆aσ+σ− + ig(a†σ− − aσ+) + iE(a† − a) (1.1)

where ∆a = ωa − ωl and ∆c = ωc − ωl. In equation (1.1), a is the annihilation

operator for the chosen cavity mode (I will refer to it as “cavity field” below) and

σ− = |g〉〈e| = (σx − iσy)/2 is the atomic lowering operator. In addition to the

coherent dynamics governed by (1.1) there are two dissipative channels for the system:

the atom may spontaneously emit into modes other than the preferred cavity mode

at a rate γ⊥, and photons may leak out of the cavity mirror at a rate 2κ. Fig.1.1

below provides a conceptual picture of the open quantum system with the two lossy

channels. Assuming only these two incoherent processes the overall dynamics can be

Figure 1.1: A conceptual picture of the open quantum system
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described by the following unconditional master equation [2]

d

dt
ρ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a) + γ⊥(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−) (1.2)

where ρ denotes the system (atom + field) density matrix.

1.2 The Stochastic Schrödinger Equation

Apart from the master equation there is also a stochastic process perspective towards

the quantum dynamics, which is described by the following stochastic Schrödinger

equation [2]

i
d

dt
|ψ〉 = Heff |ψ〉 (1.3)

with the collapse operators

C1 =
√

2κa C2 =
√

2γ⊥σ− (1.4)

and the effective non-Hermitian Hamiltonian

Heff = H− i
2

∑
k

C†kCk = ∆ca
†a+∆aσ+σ−+ig(a†σ−−aσ+)+iE(a†−a)−iκa†a−iγ⊥σ+σ−

(1.5)

The continuous evolution of the stochastic Schrödinger equation (1.3) is punctured

by “quantum jumps” at which the state vector |ψ〉 collapses to

|ψ〉 7→ Ck|ψ〉
‖Ck|ψ〉‖

(1.6)

the probability of the collapse in an interval dt being given by ‖Ck|ψ〉‖2dt. This

makes the time evolution of |ψ(t)〉 a multi-dimensional stochastic process. Such a

time series of |ψ(t)〉 is known as a quantum trajectory of the system evolution.

Its relation with the master equation is that, the ensemble average of all possible

quantum trajectories is the steady state solution to the master equation.

The time series of |ψ(t)〉 may be used to find the trajectory of the expectation of
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any operator O acting on the system Hilbert space using the following formula

〈O〉 =
〈ψ(t)|O|ψ(t)〉
〈ψ(t)|ψ(t)〉

(1.7)

1.3 The Maxwell-Bloch Equations

The master equation (1.2) can be used to find the time evolution for any operator O

acting on the system Hilbert space using the formula ˙〈O〉 = Tr[Oρ̇]. The simplest set

of operators that can approximately describe the dynamics is {a, σ−, σz}. Applying

the above formula I obtain the following three equations

˙〈a〉 = −(κ+ i∆c)〈a〉+ g〈σ−〉+ E
˙〈σ−〉 = −(γ⊥ + i∆a)〈σ−〉+ g〈aσz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g(〈a†σ−〉+ 〈aσ+〉)

(1.8)

Note that the above operator expectation equations (1.8) also apply to the case of N

non-interacting atoms each coupled to the same cavity mode with the same coupling

constant g. In this case the atomic operators are the sums of those of the individual

atoms [3]

σ− =
N∑
j=1

σj−, σz =
N∑
j=1

σjz (1.9)

Notice that equations (1.8) are not closed as they contain expectations of opera-

tor products. The common practice in the quantum optics community to close the

equations is to simply factorize the operator products, e.g. 〈a†σ−〉 ≈ 〈a†〉〈σ−〉 which

corresponds to taking the thermodynamic limit of many weakly excited atoms hence

the correlations between the atomic operators and the field operator averaging to

zero [4]. The closed equations after factorization are the well-known Maxwell-Bloch
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equations (MBE)

˙〈a〉 = −(κ+ i∆c)〈a〉+ g〈σ−〉+ E
˙〈σ−〉 = −(γ⊥ + i∆a)〈σ−〉+ g〈a〉〈σz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g(〈a†〉〈σ−〉+ 〈a〉〈σ+〉)

(1.10)

which can be rewritten using physical observables x = (a+a†)/2, y = (a−a†)/2i, σx =

σ+ + σ−, σy = −i(σ+ − σ−), σz as

d

dt
〈x〉 = −κ〈x〉+ ∆c〈y〉+

g

2
〈σx〉+ Re[E ]

d

dt
〈y〉 = −κ〈y〉 −∆c〈x〉 −

g

2
〈σy〉+ Im[E ]

d

dt
〈σx〉 = −γ⊥〈σx〉 −∆a〈σy〉+ 2g〈x〉〈σz〉

d

dt
〈σy〉 = −γ⊥〈σy〉+ ∆a〈σx〉 − 2g〈y〉〈σz〉

d

dt
〈σz〉 = −2γ⊥ − 2γ⊥〈σz〉 − 2g〈x〉〈σx〉+ 2g〈y〉〈σy〉

(1.11)

The above Maxwell-Bloch equations (1.10) describing the evolution of the oper-

ator expectations for any number of atoms (i.e. any value of N) can be put into

a dimensionless form which facilitates the comparison between cases with different

number of non-interacting atoms [3]

x′ = −k[(1 + iΘ)x+ 2Cp− y]

p′ = −(1 + i∆)p+ xD

D′ = −γ[D − 1 + (x∗p+ p∗x)/2]

(1.12)

using the following scaling factors

x =

√
2g

γ⊥
〈a〉, p = −

√
2

N
〈σ−〉, D = − 1

N
〈σz〉 (1.13)

γ =
2γ⊥
γ⊥

, k =
κ

γ⊥
, C =

Ng2

2κγ⊥
, y =

√
2g

κγ⊥
E , t′ = γ⊥t (1.14)
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where C termed “cooperativity” is a measure of the strength of the collective inter-

action of the atoms with the field. Thus to vary the number of atoms while keeping

the overall interaction constant I need to keep C constant by making g inversely pro-

portional to
√
N . Hence as N increases g would go from the strong coupling regime

(g � κ, γ⊥) to the weak coupling regime (g � κ, γ⊥) therefore making a transition

from the quantum realm to the semi-classical limit.

Under the resonance condition ∆c = ∆a = 0, 〈a〉 and 〈σ−〉 are real thus the

above Maxwell-Bloch equations (1.10) can be re-written using only three physical

observables x = (a+ a†)/2, σx = (σ+ + σ−) and σz as

˙〈x〉 = −κ〈x〉+
g

2
〈σx〉+ E

˙〈σx〉 = −γ⊥〈σx〉+ g〈x〉〈σz〉
˙〈σz〉 = −2γ⊥(1 + 〈σz〉)− 2g〈x〉〈σx〉

(1.15)

In this case it turns out that the atom-field interaction fits into a spin precession

picture—I can rewrite the driving terms of the atomic operator expectation equations

in the form of the classical equation of motion for a magnetic moment in a static

magnetic field

d

dt


〈σx〉

0

〈σz〉

 =
d

dt
~S = 2g~S × ~B = 2g


〈σx〉

0

〈σz〉

×


0

−〈x〉
0

 (1.16)

where ~S =
(
〈σx〉 0 〈σz〉

)T
, ~B =

(
0 −〈x〉 0

)T
. It shows that the atomic

spin undergoes precession in xz-plane driven by the cavity field acting as a pseudo-

magnetic field (out of phase with the dipole moment 〈σx〉 though because of the minus

sign in front of 〈x〉). This spin precession representation of the atomic dynamics turns

out to be crucial to deciphering the mechanism of automatic switching between the

metastable states in the quantum analog of absorptive bistability.



Chapter 2

The Mechanism of Automatic

Switching in the Quantum Analog

of Absorptive Bistability

The mechanism of automatic switching between the two metastable states in the

quantum analog of absorptive bistability is elucidated, based on which an optical

implementation of flip-flop control in the context of single-atom cavity quantum elec-

trodynamics is proposed.

2.1 Introduction

Cavity quantum electrodynamics has received much attention as the ideal platform for

theoretical modeling and concept-proving experiments on ultra-low energy all-optical

information processing devices [5]. One of the physical bases for the proposed logic

devices is absorptive bistability. It has been extensively studied in the classical con-

text [4] and its analog found in the single-atom strong-coupling quantum regime [3].

As the operating energy of a device is reduced to only dozens of quanta the physical

process inevitably bears the footprint of quantum mechanics. One such example is

the automatic switching between the two metastable states in the quantum analog

of absorptive bistability due to quantum fluctuation [6]. There has already been a

8
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proposal on how to suppress the automatic switching in the context of dispersive

bistability which certainly regards it as something unwanted [7]. However the under-

standing of the mechanism suggests a way to engineer the switching for implementing

flip-flop logic operation thus convert something undesirable into something useful, as

I will discuss later in this chapter.

For a simple physical picture, in this chapter the resonance condition ∆c = ∆a = 0

is always assumed so as to eliminate the effect of detuning.

2.2 The Switching Mechanism via Spontaneous Emis-

sion

The automatic switching refers to the following phenomenon: for an absorptive

bistable parameter set identified by the Maxwell-Bloch equations the quantum tra-

jectory simulation would show that the system has two preferred states with low and

high field amplitude respectively resembling absorptive bistability; however unlike

in the limiting case described by the Maxwell-Bloch equations the system does not

stay in one of the two states forever; instead it frequently jumps between them as

is illustrated in Fig.2.1 below. This observation has been confirmed by our recent

experiment [6].

Since the automatic switching is a stochastic process, to search for the underlying

physical mechanism one should obviously focus on the stochastic processes contained

in our theoretical model, which are the atomic spontaneous emission and photon

leakage out of the cavity mirror. It is intuitive that intrinsic field fluctuation due

to photon leakage could induce transitions between the two metastable states as is

suggested by the dispersive bistability in a Kerr-nonlinear cavity [7]. However it is

not clear whether the atomic spontaneous emission also contributes to the automatic

switching and if yes how it results in the switching.

The numerical evidence for the active role of the atomic spontaneous emission

in inducing the switching is based on the Monte Carlo simulation of the quantum

trajectory defined in the chapter of theoretical modeling. In particular I used the
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Figure 2.1: A typical quantum trajectory simulation result for the evolution of the
field amplitude quadrature expectation 〈x〉 for an absorptive bistable parameter set
identified by the Maxwell-Bloch equations

quantum optics toolbox [8] to generate quantum trajectories. I then used 3-state

hidden Markov model (HMM) to classify all the data points of the trajectory into

3 groups: (1) low-state (weak cavity field but strong dipole moment) points (2) in-

transit points and (3) high-state (weak dipole moment but strong cavity field) points

based on the corresponding observable expectation triplet (〈x〉, 〈σx〉, 〈σz〉) and defined

the occurrence of switching as the moment at which the system goes from low/high-

state to in-transit state followed by the system going from in-transit state to high/low-

state. With this I collected the statistics of spontaneous emission, photon leakage and

the observable expectation triplet conditioned upon the occurrence of switching using

a counting window with a suitable width. Moreover I slid the counting window from

the occurrence of switching backward in time just like rewinding the film to see what

happened that precedes the switching. The conditioned statistics versus the time the

counting window is positioned for low-to-high transitions are plotted in Fig.2.2 below.

As one can see from the plot, there is excessive spontaneous emission preceding the
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onset of low-to-high transitions.

Figure 2.2: The statistics of spontaneous emission, photon leakage and 〈x〉, 〈σx〉 con-
ditioned upon low-to-high state transitions, where the origin of the x-axis is defined
as the moment the system goes from low- to in-transit state and the position of the
counting window is defined as the moment one starts counting; the time unit of the
x-axis is chosen to be the mean time the system takes to complete the low-to-high
state transitions (termed “mean jump-up duration” in the plot) and the counting
window width is set to be 1/16 of the time unit

This excessive spontaneous emission is also observed in the statistics conditioned upon

high-to-low transitions as is shown in Fig.2.2 below.

It seems like excessive spontaneous emission is a precursor to the automatic switch-

ing. More careful examination of the effect of spontaneous emission on the spin

precession representation of the atomic-field interaction (refer to the chapter of theo-

retical modeling) reveals that excessive spontaneous emission is not just a precursor



CHAPTER 2. THEMECHANISMOF AUTOMATIC SWITCHING IN THE QUANTUMANALOGOF ABSORPTIVE BISTABILITY12

Figure 2.3: The statistics of spontaneous emission, photon leakage and 〈x〉, 〈σx〉 con-
ditioned upon high-to-low state transitions, where the origin of the x-axis is defined
as the moment the system goes from high- to in-transit state and the position of the
counting window is defined as the moment one starts counting; the time unit of the
x-axis is chosen to be the mean time the system takes to complete the high-to-low
state transitions (termed “mean jump-down duration” in the plot) and the counting
window width is set to be 1/16 of the time unit

to the automatic switching but actually responsible for inducing the switching by

weakening or strengthening, depending on whether the speed of precession is slow or

fast, the dipole moment hence the dipole radiation that destructively interferes with

the external field coupled into the cavity.

Whenever a spontaneous emission occurs the atomic spin is reset to pointing

vertically downward in the unit sphere (〈σz〉 = −1) and the dipole moment is reset

to zero (〈σx〉 = 0 and recall that the resonant case is being considered thus 〈σy〉 ≡ 0).

After the emission, the atomic spin continues precessing and because of the out of

phase relation between the cavity field and the dipole moment/radiation (refer to

the chapter of theoretical modeling), the cavity field drives the spin back towards

its position before spontaneous emission i.e. the dipole moment recovers. Fig.2.4
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below helps to visualize the consequence of spontaneous emission on the atomic spin

precession.

Figure 2.4: Graphical representation of spontaneous emission interrupting the atomic
spin precession in which the red arrow represents the atomic spin whereas the blue
arrow represents the cavity field acting as a pseudo-magnetic field

Therefore at low-state the cavity field is weak thus the speed of precession is slow hence

the recovery is slow. But once the dipole moment is recovered it will remain strong for

a long time because of its slow precession. As a result excessive spontaneous emission

leads to weaker dipole moment and dipole radiation as is illustrated by Fig.2.5 below.

In contrast, at high-state the cavity field is strong thus the speed of precession is

fast therefore the recovery is immediate. But once the dipole moment is recovered it

will quickly precess to the opposite sign and complete many revolutions if there is no

spontaneous emission to interrupt the cycling. As a consequence the dipole moment

averages to almost zero when there are few emissions. This is illustrated in Fig.2.6

below.
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Figure 2.5: Illustration of excessive spontaneous emission weakening the dipole mo-
ment when the speed of the atomic spin precession is slow

As a verification for the above hypothesis I randomly chose a trajectory and di-

vided it into time segments of equal length and for each segment I counted the number

of spontaneous emissions. After that I evaluated for each segment the time average of

〈x〉 and classified a segment as low-intensity segment if its 〈x〉 average is smaller than

a chosen limit or high-intensity segment if its 〈x〉 average is greater than a chosen

limit. The final step consists of making a histogram for both the set of low-intensity

segments and that of high-intensity segments based on the number of spontaneous

emissions occurred within the segment, and evaluating for each of the histogram bins

the average of 〈σx〉. The resulted histogram on the bin average of 〈σx〉 versus the

number of spontaneous emissions for both the low-intensity segments and the high-

intensity segments are plotted in Fig.2.7 and Fig.2.8 below, which show clearly the

dipole moment weakening/strengthening by excessive spontaneous emission.



CHAPTER 2. THEMECHANISMOF AUTOMATIC SWITCHING IN THE QUANTUMANALOGOF ABSORPTIVE BISTABILITY15

Figure 2.6: Illustration of excessive spontaneous emission strengthening the dipole
moment when the speed of the atomic spin precession is fast

2.3 Flip-Flop Control via Spontaneous Emission

Enhancement

With the above understanding of the switching mechanism via spontaneous emission,

I proposed an implementation of flip-flop control in the context of single-atom cav-

ity quantum electrodynamics via spontaneous emission enhancement, which provides

further corroboration to the above hypothesized mechanism. The idea is straight-

forward: if excessive spontaneous emission can lead to state transition then when

state transition is desired what needs to be done is just to artificially introduce ex-

cessive spontaneous emission, and there is a well-known method to enhance sponta-

neous emission—the Purcell effect, which promotes more spontaneous emissions by

increasing the local oscillation mode density via an optical cavity [9]. Thus sup-

pose there is some means to alter the cavity detuning (w.r.t. the atomic resonance

frequency)—either by some kind of electro-optic mechanism or by Kerr effect with

a control beam—then one can realize state transition in the first cavity, the absorp-

tive bistable cavity, by reducing to zero the detuning of the second cavity, the cavity
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Figure 2.7: Bin average of 〈σx〉 vs. the
number of spontaneous emissions his-
togram for the low-intensity segments

Figure 2.8: Bin average of 〈σx〉 vs. the
number of spontaneous emissions his-
togram for the high-intensity segments

for spontaneous emission enhancement. Fig. 2.9 and Fig. 2.10 below illustrate the

flip-flop control via turning the detuning off.

Figure 2.9: Cavity enhanced sponta-
neous emission induces low-to-high tran-
sition

Figure 2.10: Cavity enhanced sponta-
neous emission induces high-to-low tran-
sition

An added advantage of this flip-flop control is that, for conventional flip-flops the

required input to trigger bit flip from “0” to “1” is different from that to trigger bit

flip from “1” to “0”; however for our proposal, the same input, which is turning off

the detuning of the Purcell cavity, can be used to trigger both “0” to “1” and “1” to



CHAPTER 2. THEMECHANISMOF AUTOMATIC SWITCHING IN THE QUANTUMANALOGOF ABSORPTIVE BISTABILITY17

“0” bit flips.

2.4 A Reduced Order Model for the Dynamics

In view of the accuracy of the mean-field Maxwell-Bloch equations in predicting

various parameter regimes with bifurcation-like phenomena for the full quantum

model [3], having understood the mechanism of the automatic switching I attempted

to derive a reduced order model that can approximately describe the switching dy-

namics (which the Maxwell-Bloch equations can not). The approach I took is to derive

trajectories of operator expectations from the standard quantum trajectory formu-

lation. The continuous evolution of the standard quantum trajectory formulation is

given by the following effective Schrödinger equation

d

dt
|ψ〉 = −iHeff |ψ〉 (2.1)

where the effective non-Hermitian Hamiltonian is given by

Heff = H − i

2

∑
k

C†kCk =⇒H†eff = H +
i

2

∑
k

C†kCk (2.2)

in which {Ck} are a family of collapse operators. For any operator O its expectation

is given by
〈ψ|O|ψ〉
〈ψ|ψ〉

(2.3)

thus its equation of motion is given by

d

dt

〈ψ|O|ψ〉
〈ψ|ψ〉

=
1

〈ψ|ψ〉

[
d

dt
〈ψ|O|ψ〉

]
− 〈ψ|O|ψ〉
〈ψ|ψ〉2

[
d

dt
〈ψ|ψ〉

]
=

1

〈ψ|ψ〉

[(
d

dt
〈ψ|
)
O|ψ〉+ 〈ψ|O

(
d

dt
|ψ〉
)]
− 〈ψ|O|ψ〉
〈ψ|ψ〉2

[(
d

dt
〈ψ|
)
|ψ〉+ 〈ψ|

(
d

dt
|ψ〉
)]

(2.4)

Substitute in
d

dt
|ψ〉 = −iHeff |ψ〉

d

dt
〈ψ| = +i〈ψ|H†eff (2.5)
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and notice that H†eff 6= Heff I have

d

dt

〈ψ|O|ψ〉
〈ψ|ψ〉

=
1

〈ψ|ψ〉

[
+i〈ψ|H†effO|ψ〉 − i〈ψ|OHeff |ψ〉

]
− 〈ψ|O|ψ〉
〈ψ|ψ〉2

[
+i〈ψ|H†eff |ψ〉 − i〈ψ|Heff |ψ〉

]
= +i

1

〈ψ|ψ〉
〈ψ|(H†effO −OHeff )|ψ〉 − i

〈ψ|O|ψ〉
〈ψ|ψ〉2

〈ψ|(H†eff −Heff )|ψ〉

(2.6)

where ([ , ] represents commutator and { , } represents anti-commutator)

H†effO −OHeff = (HO +
i

2

∑
k

C†kCkO)− (OH − i

2

∑
k

OC†kCk)

= [H,O] +
i

2

∑
k

{C†kCk, O}
(2.7)

and

H†eff −Heff = (H +
i

2

∑
k

C†kCk)− (H − i

2

∑
k

C†kCk) = i
∑
k

C†kCk (2.8)

the expectations of which may need to be approximated in order to close the equa-

tions.

For absorptive bistability at resonance the Hamiltonian is H = +ig(a†σ− −
aσ+) + i(Ea† − E∗a) and the basic set of operator expectations is {〈x〉, 〈σx〉, 〈σz〉}
and the family of collapse operators is {C1 =

√
2κa, C2 =

√
2γ⊥σ−} hence {C†1C1 =

+2κa†a, C†2C2 = +2γ⊥σ+σ−} for which I have

[H, x] = −ig
2
σx − iRe[E ]

{C†1C1 + C†2C2, x} = +2γ⊥ + 2γ⊥xσz + 2κ(xa†a+ a†ax)

[H, σx] = −i2gxσz
{C†1C1 + C†2C2, σx} = +2γ⊥σx + 4κσxa

†a

[H, σz] = +i2g(xσx − yσy)

{C†1C1 + C†2C2, σz} = +2γ⊥ + 2γ⊥σz + 4κσza
†a

(2.9)
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therefore the equations of motion for 〈x〉, 〈σx〉, 〈σz〉 are

d

dt
〈x〉 =

d

dt

〈ψ|x|ψ〉
〈ψ|ψ〉

=
1

〈ψ|ψ〉
〈ψ|g

2
σx + Re[E ]− γ⊥x− γ⊥xσz − κ(xa†a+ a†ax)|ψ〉

+
〈ψ|x|ψ〉
〈ψ|ψ〉

1

〈ψ|ψ〉
〈ψ|2κa†a+ 2γ⊥σ+σ−|ψ〉

= +
g

2
〈σx〉+ Re[E ]− γ⊥〈x〉 − γ⊥〈xσz〉 − κ〈xa†a+ a†ax〉+ 〈x〉(2κ〈a†a〉+ γ⊥〈σz + I〉)

d

dt
〈σx〉 =

d

dt

〈ψ|σx|ψ〉
〈ψ|ψ〉

=
1

〈ψ|ψ〉
〈ψ|2gxσz − γ⊥σx − 2κσxa

†a|ψ〉

+
〈ψ|σx|ψ〉
〈ψ|ψ〉

1

〈ψ|ψ〉
〈ψ|2κa†a+ 2γ⊥σ+σ−|ψ〉

= +2g〈xσz〉 − γ⊥〈σx〉 − 2κ〈σxa†a〉+ 〈σx〉(2κ〈a†a〉+ 2γ⊥〈σ+σ−〉)
d

dt
〈σz〉 =

d

dt

〈ψ|σz|ψ〉
〈ψ|ψ〉

=
1

〈ψ|ψ〉
〈ψ|2gyσy − 2gxσx − γ⊥ − γ⊥σz − 2κσza

†a|ψ〉

+
〈ψ|σz|ψ〉
〈ψ|ψ〉

1

〈ψ|ψ〉
〈ψ|2κa†a+ 2γ⊥σ+σ−|ψ〉

= +2g〈yσy〉 − 2g〈xσx〉 − γ⊥ − γ⊥〈σz〉 − 2κ〈σza†a〉+ 〈σz〉(2κ〈a†a〉+ 2γ⊥〈σ+σ−〉)
(2.10)

The above equations are obviously not closed therefore approximation needs to

be made. The prudent choice, in view of the basis set of operator expectations that

one wants to confine to, is the following

1. factorize the field and atomic wave function and hence the field and atomic

operator expectations e.g. 〈xσz〉 ≈ 〈x〉〈σz〉, 〈xσx〉 ≈ 〈x〉〈σx〉 (the numerical

solution to the stochastic master equation [10] shows that this is a fairly good

approximation)

2. assume coherent state (with amplitude α) for the field, and as the resonant

condition is assumed α = α∗ = Re[α] = 〈x〉 and 〈y〉 ≡ 0

with which one have the following closed equations of motion for 〈σx〉 and 〈σz〉

d

dt
〈σx〉 ≈ +2g〈x〉〈σz〉 − γ⊥〈σx〉 − 2κ〈σx〉〈x〉2 + 2κ〈σx〉〈x〉2 + γ⊥〈σx〉(〈σz〉+ 1)

= +2g〈x〉〈σz〉+ γ⊥〈σx〉〈σz〉
(2.11)
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d

dt
〈σz〉 ≈ −2g〈x〉〈σx〉 − γ⊥ − γ⊥〈σz〉 − 2κ〈σz〉〈x〉2 + 2κ〈σz〉〈x〉2 + γ⊥〈σz〉(〈σz〉+ 1)

= −2g〈x〉〈σx〉 − γ⊥ + γ⊥〈σz〉2

(2.12)

whereas the equation of motion for 〈x〉 is reduced to

d

dt
〈x〉 ≈ +

g

2
〈σx〉+ Re[E ]− γ⊥〈x〉 − γ⊥〈x〉〈σz〉 − κ〈xa†a+ a†ax〉+ 2κ〈x〉〈a†a〉+ γ⊥〈x〉(〈σz〉+ 1)

= +
g

2
〈σx〉+ Re[E ]− κ〈xa†a+ a†ax〉+ 2κ〈x〉〈a†a〉

(2.13)

To close the equation of motion for 〈x〉 some approximation needs to be adopted

for the higher order operator expectation xa†a + a†ax. One has two choices of ap-

proximation

normal order approximation:

〈xa†a+ a†ax〉 =

〈
a+ a†

2
a†a+ a†a

a+ a†

2

〉
=

〈
aa†a+ a†a†a+ a†aa+ a†aa†

2

〉
=

〈
(a†a+ 1)a+ a†a†a+ a†aa+ a†(a†a+ 1)

2

〉
=

〈
a†aa+ a+ a†a†a+ a†aa+ a†a†a+ a†

2

〉
= 〈a†aa+ a†a†a〉+ 〈a+ a†

2
〉 = 〈a†aa〉+ 〈a†a†a〉+ 〈x〉

(2.14)

with which I have −κ〈xa†a + a†ax〉 = −κ〈x〉〈x〉〈x〉 − κ〈x〉〈x〉〈x〉 − κ〈x〉 =

−2κ〈x〉〈x〉〈x〉−κ〈x〉 resulting in the following equation of motion for 〈x〉 (adopt

normal order approximation to 〈a†a〉 as well i.e. 〈a†a〉 ≈ 〈x〉〈x〉)

d

dt
〈x〉 ≈ +

g

2
〈σx〉+Re[E ]−2κ〈x〉〈x〉〈x〉−κ〈x〉+2κ〈x〉〈x〉〈x〉 = −κ〈x〉+g

2
〈σx〉+Re[E ]

(2.15)
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number operator factorization approximation:

a†ax = a†a
a+ a†

2
=
a†aa+ a†aa†

2
=

(aa† − 1)a+ a†(a†a+ 1)

2

=
aa†a+ a†a†a

2
− a− a†

2
=
a+ a†

2
a†a− ia− a

†

2i
= xa†a− iy

⇒ xa†a+ a†ax = 2xa†a− iy

(2.16)

with which I have −κ〈xa†a + a†ax〉 = −κ〈2xa†a− iy〉 = −2κ〈xa†a〉 + iκ〈y〉 ≈
−2κ〈x〉〈a†a〉 (recall that the resonance condition is assumed thus 〈y〉 ≡ 0)

resulting in the following equation of motion for 〈x〉

d

dt
〈x〉 ≈ +

g

2
〈σx〉+ Re[E ]− 2κ〈x〉〈a†a〉+ 2κ〈x〉〈a†a〉 = +

g

2
〈σx〉+ Re[E ] (2.17)

One can see that the only difference between these two approximations is the presence

or absence of a mean field decay term −κ〈x〉. However as can be seen in the following,

the field amplitude decay due to photon leaking out of cavity end mirror is already

taken into account in the collapse operation. Thus one should not incorporate another

decay in the equation of motion governing the continuous evolution.

The effects of the two collapse operations are the following: with the collapse

|ψ〉 →
√

2γ⊥σ−|ψ〉 I have

〈ψ|x|ψ〉
〈ψ|ψ〉

→ 2γ⊥〈ψ|σ+xσ−|ψ〉
2γ⊥〈ψ|σ+σ−|ψ〉

=
〈ψ|x2σ+σ−|ψ〉
〈ψ|2σ+σ−|ψ〉

=
〈ψ|x(σz + I)|ψ〉/〈ψ|ψ〉
〈ψ|σz + I|ψ〉/〈ψ|ψ〉

=
〈xσz〉+ 〈x〉
〈σz〉+ 1

≈ 〈x〉〈σz〉+ 〈x〉
〈σz〉+ 1

= 〈x〉

〈ψ|σx|ψ〉
〈ψ|ψ〉

→ 2γ⊥〈ψ|σ+σxσ−|ψ〉
2γ⊥〈ψ|σ+σ−|ψ〉

=
〈ψ|σ+σxσ−|ψ〉
〈ψ|σ+σ−|ψ〉

=
〈ψ|0|ψ〉
〈ψ|σ+σ−|ψ〉

= 0

〈ψ|σz|ψ〉
〈ψ|ψ〉

→ 2γ⊥〈ψ|σ+σzσ−|ψ〉
2γ⊥〈ψ|σ+σ−|ψ〉

=
〈ψ|σ+σzσ−|ψ〉
〈ψ|σ+σ−|ψ〉

=
−〈ψ|σ+σ−|ψ〉
〈ψ|σ+σ−|ψ〉

= −1

(2.18)

and the collapse probability given by 2γ⊥dt〈σ+σ−〉 = γ⊥dt(〈σz〉+ 1) [2].
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With the collapse |ψ〉 →
√

2κa|ψ〉 I have

〈ψ|x|ψ〉
〈ψ|ψ〉

→ 2κ〈ψ|a†xa|ψ〉
2κ〈ψ|a†a|ψ〉

=
〈ψ|a†xa|ψ〉/〈ψ|ψ〉
〈ψ|a†a|ψ〉/〈ψ|ψ〉

=
〈a†xa〉
〈a†a〉

〈ψ|σx|ψ〉
〈ψ|ψ〉

→ 2κ〈ψ|a†σxa|ψ〉
2κ〈ψ|a†a|ψ〉

=
〈ψ|σxa†a|ψ〉/〈ψ|ψ〉
〈ψ|a†a|ψ〉/〈ψ|ψ〉

=
〈σxa†a〉
〈a†a〉

≈ 〈σx〉〈a
†a〉

〈a†a〉
= 〈σx〉

〈ψ|σz|ψ〉
〈ψ|ψ〉

→ 2κ〈ψ|a†σza|ψ〉
2κ〈ψ|a†a|ψ〉

=
〈ψ|σza†a|ψ〉/〈ψ|ψ〉
〈ψ|a†a|ψ〉/〈ψ|ψ〉

=
〈σza†a〉
〈a†a〉

≈ 〈σz〉〈a
†a〉

〈a†a〉
= 〈σz〉

(2.19)

and the collapse probability given by 2κdt〈a†a〉 ≈ 2κdt〈x〉2. Again some approxima-

tion needs to be adopted, this time for 〈a†xa〉/〈a†a〉. However the effect of one photon

leaking out of cavity end mirror is obvious: the intracavity photon number is reduced

by one. If one adopts coherent state approximation then the reduction in the intra-

cavity photon number can be translated into the reduction in the squared norm of

the coherent state amplitude: 〈α|a†a|α〉 = α∗α = |α|2 7→ |α|2 − 1 = β∗β = 〈β|a†a|β〉.
The mapping that can generate the desired reduction in the squared norm of the

coherent state amplitude is the following

〈x〉 7→ 〈x〉 − 〈x〉
2(〈x〉2 + 〈y〉2)

〈x〉2 7→
(
〈x〉 − 〈x〉

2(〈x〉2 + 〈y〉2)

)2

= 〈x〉2 − 〈x〉2

〈x〉2 + 〈y〉2
+ o(1)

〈y〉 7→ 〈y〉 − 〈y〉
2(〈x〉2 + 〈y〉2)

〈y〉2 7→
(
〈y〉 − 〈y〉

2(〈x〉2 + 〈y〉2)

)2

= 〈y〉2 − 〈y〉2

〈x〉2 + 〈y〉2
+ o(1)

(2.20)

which with coherent state approximation 〈α|a†a|α〉 = α∗α = |α|2 leads to

|α|2 = |〈x〉+ i〈y〉|2 = 〈x〉2 + 〈y〉2 7→
(
〈x〉 − 〈x〉

2(〈x〉2 + 〈y〉2)

)2

+

(
〈y〉 − 〈y〉

2(〈x〉2 + 〈y〉2)

)2

= 〈x〉2 + 〈y〉2 − 〈x〉2

〈x〉2 + 〈y〉2
− 〈y〉2

〈x〉2 + 〈y〉2
+ o(1) = 〈x〉2 + 〈y〉2 − 1 = |α|2 − 1

(2.21)

Under resonance 〈y〉 ≡ 0 thus with the collapse |ψ〉 →
√

2κa|ψ〉 one should have
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〈x〉 7→ 〈x〉 − 〈x〉/2〈x〉2 = 〈x〉 − 1/(2〈x〉).
With all the above derivation and approximations a reduced order model in terms

of the basic set of 3 operator expectations 〈x〉, 〈σx〉, 〈σz〉 is finally arrived:

continuous evolution: governed by

d

dt
〈x〉 = +

g

2
〈σx〉+ Re[E ]

d

dt
〈σx〉 = +2g〈x〉〈σz〉+ γ⊥〈σx〉〈σz〉

d

dt
〈σz〉 = −2g〈x〉〈σx〉 − γ⊥ + γ⊥〈σz〉2

(2.22)

discrete collapses: two collapse channels

first collapse probability: pc1 = 2κdt〈x〉〈x〉

first collapse criterion: a random number rn drawn from a [0, 1] uni-

form distribution < pc1

first collapse operation: 〈x〉 7→ 〈x〉 − 1/(2〈x〉), no change to

〈σx〉, 〈σz〉

second collapse probability: pc2 = γ⊥dt(〈σz〉+ 1)

second collapse criterion: pc1 ≤ the random number rn drawn <

pc1 + pc2

second collapse operation: 〈σz〉 7→ −1 and 〈σx〉 7→ 0, no change to

〈x〉

This reduced order model manages to reproduce the automatic switching as can

been seen from Fig. 2.11 and Fig. 2.12 below.

Not only does the model exhibit bistable state switching but also it yields low-

/high-state statistical distributions similar to those produced by the quantum trajec-

tory simulation as can be seen from Fig. 2.13 and Fig. 2.14 below.

As a quantitative measure of the goodness of approximation, the 〈x〉 autocorre-

lation of the model at E = 0.515, 0.520 and 0.525 averaged over 10, 20 and 40 trials

respectively is compared with that of master equation and plotted in Fig. 2.15 below.
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Figure 2.11: The 3D reduced order model
at E = 0.525 starting from low-state
showing both low-to-high and high-to-
low transitions

Figure 2.12: The 3D reduced order model
at E = 0.525 starting from high-state
showing both high-to-low and low-to-
high transitions

For comparison the external driving dependence of the 〈x〉 autocorrelation of the mas-

ter equation is shown in Fig. 2.16 where E = 0.5354 ∼ 0.540 corresponds to the case

with approximately equal probability of the system staying in low- and high-state and

E = 0.525 ∼ 0.555 is roughly the range of bistability. As can be seen in the plot, the

autocorrelation remains almost the same as the external driving is slightly varied from

E = 0.5354 to E = 0.540, indicating its relative insensitivity to the external driving

when the bistability is most manifested. This same insensitivity is also observed in

the autocorrelation plot for the reduced order model at E = 0.520 ∼ 0.525 as can

be seen in Fig. 2.15 and the time evolution plots of 〈x〉 at E = 0.525 (Fig. 2.13 and

Fig. 2.14) for the reduced order model show roughly equal time split between low-

and high-state thus the condition at E = 0.525 for the reduced order model roughly

corresponds to the condition at E = 0.540 for the master equation. Therefore the 〈x〉
autocorrelation comparison between them at these two driving levels is reasonable

and the plot suggests that the autocorrelations are pretty close to each other.

As another quantitative measure of the goodness of approximation, hidden Markov

model is used to identify (reasonable) transitions for both the reduced order model

and the quantum trajectory simulation and then the number of transitions compared.
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Figure 2.13: The low-state statistical
distribution of the reduced order model
(red) and that of the quantum trajectory
simulation (blue)

Figure 2.14: The high-state statistical
distribution of the reduced order model
(red) and that of the quantum trajectory
simulation (blue)

For the sake of generality the coupling constant g and the field decay rate κ are varied

to change the critical photon number n0 = γ2⊥/2g
2 while keeping the cooperativity C

fixed to examine different separations/distances between low- and high-state. In the

following the cooperativity C is fixed at 6 and the external driving is tweaked towards

50-50 time split between low- and high-state. A stay duration requirement (that the

system should stay in the destination state for a sufficiently long time) is imposed to

distinguish true low-to-high/high-to-low transitions from mere field fluctuations.

Critical photon number = 3

The steady state solution to the master equation produces the Q-function plotted in

Fig. 2.17 and Fig. 2.18.

The transition counts of 7 trajectories for both the reduced order model at E =

0.434 and the quantum trajectory simulation at E = 0.433 with 130 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 7 trajectories

the number of jump-ups identified by 3-state HMM = 279

the number of good jump-ups selected by the cutoff criterion = 209

the number of jump-downs identified by 3-state HMM = 278

the number of good jump-downs selected by the cutoff criterion = 209
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Figure 2.15: Autocorrelation of 〈x〉 for the 3D reduced order model with number
operator factorization approximation at E = 0.515, 0.520, 0.525 averaged over 10, 20
and 40 trials respectively and the master equation at E = 0.540

quantum trajectory simulation: with a stay duration cutoff of 125 in 7 trajecto-

ries

the number of jump-ups identified by 3-state HMM = 248

the number of good jump-ups selected by the cutoff criterion = 175

the number of jump-downs identified by 3-state HMM = 245

the number of good jump-downs selected by the cutoff criterion = 176

The transition counts of 10 trajectories for both the reduced order model at E =

0.434 and the quantum trajectory simulation at E = 0.433 with 130 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 10 trajectories

the number of jump-ups identified by 3-state HMM = 432

the number of good jump-ups selected by the cutoff criterion = 292

the number of jump-downs identified by 3-state HMM = 433

the number of good jump-downs selected by the cutoff criterion = 295
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Figure 2.16: Autocorrelation of 〈x〉 for the master equation at various external driving

quantum trajectory simulation: with a stay duration cutoff of 125 in 10 trajec-

tories

the number of jump-ups identified by 3-state HMM = 344

the number of good jump-ups selected by the cutoff criterion = 243

the number of jump-downs identified by 3-state HMM = 340

the number of good jump-downs selected by the cutoff criterion = 243

Critical photon number = 4

The steady state solution to the master equation produces the Q-function plotted in

Fig. 2.19 and Fig. 2.20.

The transition counts of 7 trajectories for both the reduced order model at E =

0.376 and the quantum trajectory simulation at E = 0.373 with 170 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 7 trajectories

the number of jump-ups identified by 3-state HMM = 142

the number of good jump-ups selected by the cutoff criterion = 111
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Figure 2.17: Q-function contour plot for
C = 6, n0 = 3, E = 0.433 with 130 Fock
bases

Figure 2.18: Q-function 3D plot for C =
6, n0 = 3, E = 0.433 with 130 Fock bases

the number of jump-downs identified by 3-state HMM = 145

the number of good jump-downs selected by the cutoff criterion = 112

quantum trajectory simulation: with a stay duration cutoff of 125 in 7 trajecto-

ries

the number of jump-ups identified by 3-state HMM = 145

the number of good jump-ups selected by the cutoff criterion = 102

the number of jump-downs identified by 3-state HMM = 139

the number of good jump-downs selected by the cutoff criterion = 95

The transition counts of 10 trajectories for both the reduced order model at E =

0.376 and the quantum trajectory simulation at E = 0.373 with 170 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 10 trajectories

the number of jump-ups identified by 3-state HMM = 193

the number of good jump-ups selected by the cutoff criterion = 155

the number of jump-downs identified by 3-state HMM = 195

the number of good jump-downs selected by the cutoff criterion = 155
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Figure 2.19: Q-function contour plot for
C = 6, n0 = 4, E = 0.373 with 160 Fock
bases

Figure 2.20: Q-function 3D plot for C =
6, n0 = 4, E = 0.373 with 160 Fock bases

quantum trajectory simulation: with a stay duration cutoff of 125 in 10 trajec-

tories

the number of jump-ups identified by 3-state HMM = 202

the number of good jump-ups selected by the cutoff criterion = 145

the number of jump-downs identified by 3-state HMM = 194

the number of good jump-downs selected by the cutoff criterion = 137

Critical photon number = 5

The steady state solution to the master equation produces the Q-function plotted in

Fig. 2.21 and Fig. 2.22.

The transition counts of 7 trajectories for both the reduced order model at E =

0.337 and the quantum trajectory simulation at E = 0.3325 with 210 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 7 trajectories

the number of jump-ups identified by 3-state HMM = 70

the number of good jump-ups selected by the cutoff criterion = 56
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Figure 2.21: Q-function contour plot for
C = 6, n0 = 5, E = 0.3325 with 200 Fock
bases

Figure 2.22: Q-function 3D plot for C =
6, n0 = 5, E = 0.3325 with 200 Fock
bases

the number of jump-downs identified by 3-state HMM = 70

the number of good jump-downs selected by the cutoff criterion = 55

quantum trajectory simulation: with a stay duration cutoff of 125 in 7 trajecto-

ries

the number of jump-ups identified by 3-state HMM = 64

the number of good jump-ups selected by the cutoff criterion = 57

the number of jump-downs identified by 3-state HMM = 59

the number of good jump-downs selected by the cutoff criterion = 54

The transition counts of 10 trajectories for both the reduced order model at E =

0.337 and the quantum trajectory simulation at E = 0.3325 with 210 Fock bases are

as follows

reduced order model: with a stay duration cutoff of 125 in 10 trajectories

the number of jump-ups identified by 3-state HMM = 100

the number of good jump-ups selected by the cutoff criterion = 80

the number of jump-downs identified by 3-state HMM = 99

the number of good jump-downs selected by the cutoff criterion = 77
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quantum trajectory simulation: with a stay duration cutoff of 125 in 10 trajec-

tories

the number of jump-ups identified by 3-state HMM = 131

the number of good jump-ups selected by the cutoff criterion = 78

the number of jump-downs identified by 3-state HMM = 125

the number of good jump-downs selected by the cutoff criterion = 74

From the above transition count comparison one can see that the reduced order

model is at least as capable of inducing state transition as the standard quantum

trajectory formulation. Thus the goodness of approximation of the reduced order

model is finally established.

2.5 Conclusion and Discussion

I have elucidated the contribution of excessive spontaneous emission to the automatic

switching between the two metastable states in the quantum analog of absorptive

bistability, which weakens/strengthens the dipole moment thus dipole radiation under

weak/strong cavity field. The difference in the consequence of excessive spontaneous

emission is resulted from the difference in the speed of the atomic spin precession

driven by the cavity field. Even though the modeling and analysis is carried out under

the resonance assumption, the underlying mechanism is present under non-resonance

condition as well. Based on this understanding I proposed a flip-flop control of an

absorptive bistable cavity via cavity enhanced spontaneous emission using a second

cavity with tunable detuning, which provides a physical basis for designing ultra-low

energy information processing logic devices.

Regarding the merit of having a reduced order model, facilitating faster numerical

solution thereby enabling design of real-time feedback control is beyond question.

But to physicists the most attractive merit is the reduced order model being able to

reveal the underlying physics. However it is doubtful whether a reduced order model

can become such a useful tool or not, even in our special case—recall how I selected

the approach for deriving the reduced order model: I choose deriving trajectories of

operator expectations exactly because I understand the switching mechanism based
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on the atomic spontaneous emission collapse and the natural way of incorporating

this collapse operation into a reduced order model is to start from the standard

quantum trajectory formulation. If deriving a reduced order model is a useful tool

for unraveling the underlying physics then the derivation process should be in the

opposite order, i.e. based on some very general principle one derives a reduced order

model which contains the collapse operations capable of inducing the switching and

the model shows the switching as a necessary consequence of the collapse operations,

perhaps in the manner that if one replaces the collapse(s) by mean field decay one

would then not be able to observe the switching. Nonetheless such a general principle

for deriving the “right” reduced order model does not seem to exist because one

really needs to make a decision as to what kind of quantum dynamics unraveling

i.e. what type of measurement to take [2]. There is in fact another reduced order

model that can produce the switching yet is based on homodyne measurement of the

field amplitude quadrature: consider the stochastic master equation with homodyne

measurement on the amplitude quadrature x = (a + a†)/2 of the cavity field which

reads [10]

ρ̇ = −i[H, ρ] + κ(2aρa† − a†aρ− ρa†a) + γ⊥(2σ−ρσ+ − σ+σ−ρ− ρσ+σ−)

+
√

2κ(aρ+ ρa† − Tr[(a+ a†)ρ])dW
(2.23)

The stochastic term involving the Wiener process dW accounts for the update

of our information about the system based on how much the actual measurement

result differs from the expected value (the trace term). With this stochastic master

equation one can use the trace formula for deriving the Maxwell-Bloch equations to

derive stochastic differential equations (SDE) for a suitable set of observables and

then close the equations by making appropriate approximations of the expectations

of observable products exactly as what I did before. The simplest example is to apply

the formula to the same set of physical observables {x, σx, σz} to obtain a stochastic
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version of the Maxwell-Bloch equations. After applying the trace formula I have

d〈x〉 = −κ〈x〉dt+
g

2
〈σx〉dt+ Edt+

√
2κ(2〈xx〉 − 1

2
− 2〈x〉〈x〉)dW

d〈σx〉 = −γ⊥〈σx〉dt+ 2g〈xσz〉dt+ 2
√

2κ(〈xσx〉 − 〈x〉〈σx〉)dW

d〈σz〉 = −2γ⊥(1 + 〈σz〉)dt− 2g〈xσx〉dt+ 2
√

2κ(〈xσz〉 − 〈x〉〈σz〉)dW

(2.24)

and then one can close the equations by approximating 〈xx〉, 〈xσx〉, 〈xσz〉 using suit-

able functions of 〈x〉, 〈σx〉 and 〈σz〉, for example 〈xx〉 ≈ 〈x〉〈x〉, 〈σx〉 ≈ 〈x〉〈σx〉 and

〈xσz〉 ≈ 〈x〉〈σz〉.
To derive a reduced order model for describing the automatic switching, it turns

out that one needs to add 〈xx〉, 〈xσx〉, 〈xxσz〉 to the set of expectation variables. Ap-

plying the trace formula to the set of six physical observables {x, σx, σz, xx, xσx, xxσz}
I have (where y = (a− a†)/2i)

d〈x〉 = −κ〈x〉dt+
g

2
〈σx〉dt+ Edt+

√
2κ(2〈xx〉 − 1

2
− 2〈x〉〈x〉)dW

d〈σx〉 = −γ⊥〈σx〉dt+ 2g〈xσz〉dt+ 2
√

2κ(〈xσx〉 − 〈x〉〈σx〉)dW

d〈σz〉 = −2γ⊥(1 + 〈σz〉)dt− 2g〈xσx〉dt+ 2
√

2κ(〈xσz〉 − 〈x〉〈σz〉)dW

d〈xx〉 = −2κ

(
〈xx〉 − 1

4

)
dt+ g〈xσx〉dt+ 2E〈x〉dt

+
√

2κ(2〈xxx〉+ i〈xxy − yxx〉 − 2〈x〉〈xx〉)dW

d〈xσx〉 = −(γ + κ)〈xσx〉dt+ E〈σx〉dt+ 2g

(
〈xxσz〉+

1

4

)
dt

+
√

2κ(2〈xxσx〉 −
1

2
〈σx〉 − 2〈x〉〈xσx〉)dW

d〈xxσz〉 = −2(κ+ γ⊥)〈xxσz〉dt+
1

2
κ〈σz〉dt− 2γ⊥〈xx〉dt+ 2E〈xσz〉dt

− 2g〈xxxσx〉dt+ 2g〈yxyσx〉dt− g〈(yyx+ xyy)σx〉dt+ g〈(yxx+ xxy)σy〉dt

+
√

2κ(2〈xxxσz〉 − 2〈yxyσz + 〈(xyy + yyx)σz − 〈xσz〉)dW
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I then make various approximations based on the numerical solution to the stochas-

tic master equation to arrive at the following set of closed SDEs

d〈x〉 = −κ〈x〉dt+
g

2
〈σx〉dt+ Edt+

√
2κ(2〈xx〉 − 1

2
− 2〈x〉〈x〉)dW

d〈σx〉 = −γ⊥〈σx〉dt+ 2g〈x〉〈σz〉dt+ 2
√

2κ(〈xσx〉 − 〈x〉〈σx〉)dW

d〈σz〉 = −2γ⊥(1 + 〈σz〉)dt− 2g〈xσx〉dt

d〈xx〉 = −2κ

(
〈xx〉 − 1

4

)
dt+ g〈xσx〉dt+ 2E〈x〉dt

d〈xσx〉 = −(γ + κ)〈xσx〉dt+ E〈σx〉dt+ 2g

(
〈xxσz〉+

1

4

)
dt

d〈xxσz〉 = −2(κ+ γ⊥)〈xxσz〉dt+
1

2
κ〈σz〉dt− 2γ⊥〈xx〉dt+ 2E〈x〉〈σz〉dt− 2g〈xx〉〈xσx〉dt

(2.25)

I now verify whether this 6D reduced order model is able to produce the automatic

switching. Fig.2.23 and Fig.2.24 below depict the time evolution of 〈x〉 starting from

low- and high-state respectively.

Figure 2.23: A 6D reduced order model
based on stochastic master equation
starting from low-state showing both
low-to-high and high-to-low transitions

Figure 2.24: A 6D reduced order model
based on stochastic master equation
starting from high-state showing both
low-to-high and high-to-low transitions

The plots show clearly that the SDEs are capable of producing low-to-high and
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high-to-low transitions albeit the evolution is not as smooth as that of the 3D reduced

order model based on the quantum trajectory formulation. As a quantitative measure

of the goodness of approximation let’s also check the autocorrelation function of

〈x〉 and compare it with that of the master equation computed using the quantum

regression theorem [2] which is plotted in Fig.2.25 below. As one can see in the plot

that the 〈x〉 autocorrelation of the 6D reduced order model can also be close to that

yielded by the master equation.

Figure 2.25: Autocorrelation function of 〈x〉 comparison between the reduced order
model and the master equation, both at E = 0.540

In fact it is this 6D reduced order model that was first derived because the homo-

dyne measurement on the amplitude quadrature yields more direct and unambiguous

information about the system state as low- and high-state are most distinguishable

in terms of the cavity intensity.

As Carmichael puts it [2], a quantum trajectory is an unraveling of the master

equation giving us a picture of what is going on in a visible form; different unravelings

of the master equation “will give us different pictures, suited to help us understand
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different aspects of the physics. The complete picture is the complement of all the

separate pictures, and by the very nature of quantum mechanics no single picture can

substitute for them all.” Understanding of a particular aspect of quantum dynamics

requires choosing the right picture/unraveling. Therefore if deriving a reduced or-

der model still has to rely on such a choice, then the derivation of a reduced order

model would not be useful to elucidating what aspect of the dynamics is the right

picture/unraveling not to mention the essential physics in that picture/unraveling.

And up to now we do not have any clue as to finding a general guideline for selecting

the right picture/unraveling. But my personal view is that, when no hint/intuition

is available for guiding the selection, the very first one to try should perhaps be di-

rect photon + fluorescence detection as it amounts to direct observation of what the

atom and the photons are doing. This opinion is also backed by the recent work on

the mechanism of automatic switching in phase bistability [11] in which spontaneous

emission is shown to be the cause through a quantum trajectory unraveling based on

it.



Chapter 3

Self-oscillation and Phase

Insensitive Amplification in the

Maxwell-Bloch Equations

The mechanism of supercritical Hopf bifurcation in the semi-classical Maxwell-Bloch

equations for cavity quantum electrodynamics (QED) is elucidated by formulating the

atom-field interaction as a feedback control loop. The generation of self-oscillation in

the cavity field intensity upon the bifurcation turns out to be the consequence of loop

instability. A computational study is conducted on the possibility of phase insensitive

amplification of weak coherent light field by making use of the system’s sensitivity to

this loop instability and the simulation result confirms the feasibility.

3.1 Introduction

Bifurcation theory analyzing changes in the number and properties of possible equilib-

rium states upon variation of system parameters is a fundamental aspect of dynamical

systems theory [12, 13]. In practice bifurcation theory has been used not only to en-

sure safe operation in a stable parameter range but also to realize robust devices with

signal processing functionality. In the previous chapter I have proposed a flip-flip

control based on absorptive bistability in the context of single-atom cavity quantum

37
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electrodynamics. In this chapter, I will elaborate on another proposal of making use-

ful devices out of bifurcation theory—utilizing the sensitivity to periodic perturbation

tuned to intrinsic frequency near supercritical Hopf bifurcation to amplify small sig-

nals. Here “Hopf bifurcation” refers to the phenomenon in which self-oscillatory state

emerges upon system parameter crossing a critical value as is illustrated in Fig.3.1

below and “intrinsic frequency” refers to its oscillation frequency which is a character-

istic of the system; “supercritical” refers to the fact that the generated self-oscillatory

state is stable against perturbation [12].

Figure 3.1: Illustration of Hopf bifurcation: the solution is stationary before the
system parameter (in our model the amplitude of the external classical driving field)
crossing a critical value, it becomes self-oscillatory after the crossing

The theoretical foundation of this amplifier proposal is Wiesenfeld and McNa-

mara’s analysis [14], which shows that a nonlinear dynamical system right before

bifurcation becomes extremely sensitive to external perturbations—the response to

a periodic perturbation will be greatly enhanced if its frequency is tuned to the in-

trinsic frequency. Since then this phenomenon has been confirmed in many physical

systems, such as nano-mechanical resonators [15], single trapped-ion systems [16], as

well as superconducting circuits [17]. However, as far as we know there has not been

any study on systems operating in optical frequency range. In addition, Wiesenfeld

and McNamara’s analysis is based on Floquet theory which reveals the existence of
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instability as divergences in the computed power spectra but does not provide an

explanation as to how the instability comes into being. In this chapter I will point

out that the instability in question is in fact the very common loop instability found

in control theory. Although the explanation does involve the details of our phys-

ical model the same perspective should be applicable to other physical systems to

elucidate the origin of their instabilities.

The present study is also motivated by the current technological trend towards

ultra-low power signal processing, which is exemplified by recent efforts on developing

attojoule devices based on photonic crystals [5]. This raises the issue of detecting

and propagating weak signals in the desired energy scale which often calls for the

deployment of amplifiers. Although single photon detection combined with electronic

processing is a viable solution, the coherence is lost. In contrast this bifurcation-based

proposal has the potential to preserve it because its input-output phase relation is

fixed [18]. This direct optical amplification also outshines degenerate parametric

amplification by being insensitive to the phase of input signal and non-degenerate

parametric amplification by avoiding waste of energy through generating idlers.

Moreover, physical processes involving only dozens of energy quanta inevitably

bear the footprint of quantum mechanics and the study on quantum-classical tran-

sition comparing the prediction of semi-classical approximate equations of motion

and that of exact quantum models has long been a theme of quantum physics. Even

though the semi-classical Maxwell-Bloch equations have been found to be surprisingly

accurate in predicting the existence of bifurcation-like phenomena for the quantum

model even outside the applicable regime of the semi-classical approximation [3], the

phenomena do exhibit characteristics of quantum nature different from their coun-

terparts in dynamical systems theory [6]. It is therefore worth asking whether this

bifurcation-based small signal amplification would carry over to the quantum regime

or not and if yes to what extent the quantum nature is manifested.
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3.2 The Mechanism of Supercritical Hopf Bifurca-

tion

Previous study has shown that the semi-classical Maxwell-Bloch equations can pro-

duce supercritical Hopf bifurcation with properly chosen parameter values, for ex-

ample those of Armen and Mabuchi’s Fig.4 [3]. To elucidate the mechanism of the

self-oscillation state generation, the system is modeled as a feedback control system,

treating the cavity field as the “plant” controlled by the “controller” which is the

atom. According to the Maxwell-Bloch equations the dynamical equations for the

“plant” are
d

dt
〈x〉 = −κ〈x〉+ ∆c〈y〉+

g

2
〈σx〉+ Re[E ]

d

dt
〈y〉 = −κ〈y〉 −∆c〈x〉 −

g

2
〈σy〉+ Im[E ]

(3.1)

and the dynamical equations for the “controller” are

d

dt
〈σx〉 = −γ⊥〈σx〉 −∆a〈σy〉+ 2g〈x〉〈σz〉

d

dt
〈σy〉 = −γ⊥〈σy〉+ ∆a〈σx〉 − 2g〈y〉〈σz〉

d

dt
〈σz〉 = −2γ⊥ − 2γ⊥〈σz〉 − 2g〈x〉〈σx〉+ 2g〈y〉〈σy〉

(3.2)

Following the common practice in control theory I linearize the dynamical equa-

tions for the “plant” and the “controller” to form a state space model, the canonical

form of which is [19]
d

dt
~x = A~x+B~u

~y = C~x+D~u

(3.3)

where ~x(t) is the vector representing the system state at time t and ~u(t), ~y(t) are the

input and output vectors respectively. Once I have the state space representation of

our feedback system, I can then evaluate its transfer function which is defined as the
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ratio of the Laplace transformed output and input [19]

G(s) =
L[~y(t)]

L[~u(t)]
=
~Y (s)

~U(s)
= C(sI − A)−1B +D (3.4)

The poles of the transfer function are the solutions to the equation det(sI − A) = 0

i.e. the eigenvalues of the matrix A in the state space model, which determine the

stability of the feedback system. If all the poles have negative real parts then the

system is stable otherwise it is unstable [19]. The reason is that these eigenvalues

would appear, after inverse Laplace transform, in the exponents of the exponential

terms of the output (e.g. epit) thus if any one of them has a positive real part then

the corresponding exponential term would go to infinity and hence the output would

be unbounded.

Using the notation δ〈O〉 = 〈O〉 − 〈O〉 to denote small deviation from 〈O〉, the

stationary solution to the operator expectation equation of O, the state space repre-

sentation of the “plant” is

d

dt

(
δ〈x〉
δ〈y〉

)
=

(
−κ +∆c

−∆c −κ

)(
δ〈x〉
δ〈y〉

)
+

(
+g/2 0

0 −g/2

)(
δ〈σx〉
δ〈σy〉

)
(
δ〈x〉
δ〈y〉

)
=

(
1 0

0 1

)(
δ〈x〉
δ〈y〉

)
+

(
0 0

0 0

)(
δ〈σx〉
δ〈σy〉

) (3.5)

and the state space representation of the “controller” is

d

dt


δ〈σx〉
δ〈σy〉
δ〈σz〉

 =


−γ⊥ −∆a +2g〈x〉
+∆a −γ⊥ −2g〈y〉
−2g〈x〉 +2g〈y〉 −2γ⊥




δ〈σx〉
δ〈σy〉
δ〈σz〉

+


+2g〈σz〉 0

0 −2g〈σz〉
−2g〈σx〉 +2g〈σy〉


(
δ〈x〉
δ〈y〉

)

(
δ〈σx〉
δ〈σy〉

)
=

(
1 0 0

0 1 0

)
δ〈σx〉
δ〈σy〉
δ〈σz〉

+

(
0 0

0 0

)(
δ〈x〉
δ〈y〉

)

(3.6)
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One now can draw for our feedback system a block diagram—the graphical rep-

resentation commonly used in control theory to emphasize the information/signal

flow [19] which is depicted in Fig.3.2 below. The diagram is simple yet informative

Figure 3.2: Block diagram for the linearized Maxwell-Bloch equations as the dynam-
ical equations for a feedback control system

but to decipher the mechanism I need to look into the details that are omitted. In

particular, although the block diagram seems to suggest one single feedback loop,

rewriting the differential equations for the “controller” as follows

d

dt


δ〈σx〉
δ〈σy〉
δ〈σz〉

 =


−γ⊥ −∆ +2g〈x〉
+∆ −γ⊥ −2g〈y〉
−2g〈x〉 +2g〈y〉 −2γ⊥




δ〈σx〉
δ〈σy〉
δ〈σz〉



+


+2g〈σz〉 0

0 −2g〈σz〉
0 0


(
δ〈x〉
δ〈y〉

)
︸ ︷︷ ︸

direct coupling

+


0 0

0 0

−2g〈σx〉 +2g〈σy〉


(
δ〈x〉
δ〈y〉

)
︸ ︷︷ ︸

indirect coupling
(3.7)
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one can see that there actually exist two feedback loops, one that involves δ〈σz〉:
δ〈x〉, δ〈y〉 → δ〈σz〉 → δ〈σx〉, δ〈σy〉 → δ〈x〉, δ〈y〉 and one that does not: δ〈x〉, δ〈y〉 →
δ〈σx〉, δ〈σy〉 → δ〈x〉, δ〈y〉. For obvious reason one can call the former the indirect

feedback loop and the latter the direct feedback loop. But what does this existence

of two feedback loops have to do with the oscillation?

It is well-known in control theory that if the open loop phase lag of a closed loop

system exceeds 180◦ or π radian before the open loop gain dropping below unity

then a signal would be amplified even without sustained input, or equivalently the

system output in response to an impulse would be unbounded. This is illustrated in

Fig. 3.3 below where the signal is modeled as a unity-amplitude sine function sin(ωφt).

In reality this signal can be supplied by any noise and it would grow in amplitude

until it exhausts the energy supply and settles down into a stable oscillation. Thus

oscillation is the consequence of a closed loop system going unstable due to excessive

phase lag. With this in mind to explain the cavity field intensity self-oscillation one

just needs to find out the source of phase lag in our feedback system and it turns out

to be the indirect feedback loop.

Figure 3.3: Illustration of excessive phase lag leading to self-oscillation
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However it is not convincing to conclude just based on the involvement of one

extra variable that the indirect feedback loop would introduce excessive phase lag

which is responsible for the oscillation. To understand why and how much lag there

is associated with the indirect feedback loop one needs to take a close look at the

coupling from δ〈σz〉 to δ〈σx〉, δ〈σy〉. To this end I decompose the matrix A in the state

space model of the “controller” into the sum of a diagonal matrix representing decay

due to dephasing and spontaneous emission and a skew-symmetric matrix which can

be interpreted as the infinitesimal generator of a rotation

d

dt


δ〈σx〉
δ〈σy〉
δ〈σz〉

 =


−γ⊥ 0 0

0 −γ⊥ 0

0 0 −2γ⊥




δ〈σx〉
δ〈σy〉
δ〈σz〉


︸ ︷︷ ︸

decay

+


0 −∆a +2g〈x〉

+∆a 0 −2g〈y〉
−2g〈x〉 +2g〈y〉 0




δ〈σx〉
δ〈σy〉
δ〈σz〉


︸ ︷︷ ︸

rotation

+


+2g〈σz〉 0

0 −2g〈σz〉
−2g〈σx〉 +2g〈σy〉


(
δ〈x〉
δ〈y〉

)

(3.8)

The rotation turns out to be the precession of the change in the atomic spin driven by

the cavity field plus the mixing between δ〈σx〉 and δ〈σy〉 due to the atomic detuning

because one can write
0 −∆a +2g〈x〉

+∆a 0 −2g〈y〉
−2g〈x〉 +2g〈y〉 0




δ〈σx〉
δ〈σy〉
δ〈σz〉



= +2g


δ〈σx〉
δ〈σy〉
δ〈σz〉

×

−〈y〉
−〈x〉

0

+


δ〈σx〉
δ〈σy〉
δ〈σz〉

×


0

0

−∆a


(3.9)

This atomic spin precession differs from the Larmor precession of magnetic moments

in an magnetic field by the fact that the field playing the role of magnetic field in
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the Larmor precession as “felt” by the atom is in fact π/2 lagging behind the cavity

field1. Therefore the rotation between δ〈σx〉 and δ〈σz〉 is induced by 〈x〉 rather than

〈y〉. Fig. 3.4 below helps to visualize the precession.

Figure 3.4: Illustration of the precession of the change in the atomic spin driven by
the cavity field and the atomic detuning (red arrow: the atomic spin, blue arrow: the
axis of rotation)

Now it should be clear why the indirect feedback loop can introduce excessive

phase lag that gives rise to self-oscillation of the cavity field intensity. It is because

the amplitude of the cavity field thus the speed of precession is finite hence it takes

time for δ〈σz〉 to rotate into xy-plane to contribute to δ〈σx〉 and δ〈σy〉. Moreover one

can imagine that as the cavity field becomes stronger the speed of rotation would

become larger therefore the phase lag would be reduced thus the oscillation would

eventually disappear if one continues increasing the external driving thus the cavity

field intensity. Here one witnesses again the effectiveness of the spin precession picture

as demonstrated in the previous chapter.

To demonstrate the validity of this oscillation mechanism hypothesis, the onset of

instability of the above state space models determined by MATLAB control toolbox

is compared with the onset of oscillation of the cavity field intensity identified by

1To see this one needs to use the imaginary part of the creation operator rather than that of the
annihilation operator. This however does not affect the explanation or the overall picture.
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numerically solving the Maxwell-Bloch equations. The system parameter set used is

that of Armen and Mabuchi’s Fig.4 [3] namely ∆a = +1.25,∆c = −6, g = 1, κ =

0.01, γ = 1 and the external driving level E rescaled to a dimensionless parameter

y =
√
2g

κγ⊥
E . The stabilities of the direct loop (discarding the indirect coupling term

in equation (3.7)), the indirect loop (discarding the direct coupling term in equation

(3.7)) and the combined feedback loop for various driving levels are determined using

MATLAB’s “isstable” function, which returns a Boolean value of 1 (true) if all system

poles are in the open left-half complex plane and 0 (false) otherwise, and are plotted in

Fig. 3.5 below. As can be seen from the plots, the direct loop is stable throughout the

Figure 3.5: Stabilities of the feedback loops (top = direct loop, middle = indirect loop,
bottom = combined loop) as functions of the external driving amplitude (rescaled to
y values)

external driving amplitude sweeping range whereas the indirect loop goes unstable at

as low as y = 1871.90 resulting in the combined loop going unstable at y = 2140.22.

At high driving levels the excessive phase lag is reduced thus the combined loop

becomes stable again at y = 4631.95 followed by the indirect loop becoming stable

again at y = 4799.57. The instability range agrees very well with the oscillation range
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depicted in Armen and Mabuchi’s Fig.4.

3.3 Small Signal Amplification near Super-critical

Hopf Bifurcation

After understanding the origin of instability in the semi-classical Maxwell-Bloch equa-

tions one can then turn to confirming the small signal amplification based on the sys-

tem’s sensitivity to the instability proposed by Wiesenfeld and McNamara [14]. To

numerically model the small signal input let the external driving field be consisting

of two components: E = E0 +Se−iωst where E0 is the pumping field with frequency ωl

and Se−iωst is the small signal with frequency ωs + ωl (the frequency relative to the

rotating frame is thus ωs). The time origin is chosen such that E0 is a real number

and since I am only interested in steady state solutions the initial phase of the signal

would not matter one can choose it to be zero for convenience i.e. S is a real num-

ber too. I then numerically solved the semi-classical Maxwell-Bloch equations using

MATLAB’s ODE solver and quantified the output signal strength by comparing the

oscillation amplitude of |〈a〉| with S. Assuming one-ended cavity configuration i.e.

the cavity has one fully reflected and one partially reflected end mirror the boundary

condition at the partially reflected mirror is 〈aIN(ωs)〉 + 〈aOUT (ωs)〉 =
√

2κ〈a(ωs)〉
where 〈aIN(ωs)〉 is equal to S/

√
2κ thus the output signal is given by the oscilla-

tory component of 〈a〉 transmitted through the mirror minus the input signal. If
√

2κ|〈a(ωs)〉| � |〈aIN(ωs)〉| then the amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| is ap-

proximately
√

2κ|〈a(ωs)〉|/|〈aIN(ωs)〉| − 1. The parameter set used is again that of

Armen and Mabuchi’s Fig.4 [3] namely ∆a = +1.25,∆c = −6, g = 1, κ = 0.01, γ = 1

for which supercritical Hopf bifurcation occurs at E0 rising beyond 15.13364. Four

pumping levels were selected to investigate the effect of the distance to the bifurcation

on the amplification and for each pumping level the relative frequency ωs of the small

signal was swept to trace out the spectrum of |〈a(ωs)〉| and identify the frequency

that maximizes |〈a(ωs)〉| and hence the amplitude gain. Three small signal ampli-

tudes were tested: S = 7.07107× 10−5, S = 7.07107× 10−4 and S = 7.07107× 10−3
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the
√

2κ|〈a〉| spectra of which are plotted in Fig. 3.6, Fig. 3.7 and Fig. 3.8 respectively

below.

Figure 3.6: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071 × 10−5 by numerically solving the semi-classical
Maxwell-Bloch equations

All three plots show clearly that the peak oscillation amplitudes of
√

2κ|〈a〉| are

much greater than the input amplitudes, the highest ratio exceeding 30, which ev-

idently demonstrate the existence of amplification. Moreover, all three plots show

clearly that the closer E0 is to the critical pumping level 15.13364 the higher the am-

plitude ratio thus the amplitude gain, in accordance with Wiesenfeld and McNamara’s

theory [14]. In addition, the oscillation amplitude of |〈a〉| peaks at −5.97 ∼ −5.99

which is in good agreement with the intrinsic frequency (about −5.978) calculated

using the analytical method in Armen and Mabuchi’s paper [3]. The three plots

also show some differences that are characteristics of nonlinear amplification. First,

as the signal amplitude is increased the frequency at which the oscillation ampli-

tude peaks shifts slightly towards the cavity resonance frequency, from −5.978 for

S = 7.07107 × 10−5 to −5.993 for S = 7.07107 × 10−3. Second, as the signal am-

plitude is increased the amplification bandwidth becomes broader but the maximum
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Figure 3.7: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071 × 10−4 by numerically solving the semi-classical
Maxwell-Bloch equations

amplification drops, a clear sign of saturation; for S = 7.07107× 10−3 the maximum

oscillation amplitude of
√

2κ|〈a〉| is limited to around 0.15, showing little difference

between the four different pumping levels.

An added advantage of this bifurcation-based amplification is that the phase re-

lation between the input and the output is fixed thus the phase information of the

signal is preserved. Therefore it provides a promising physical basis for designing

all-optical amplifiers for optical information processing networks.

3.4 Quantum-Classical Discrepancy

To investigate whether the small signal amplification carries over to the quantum

regime I numerically solved the quantum master equation using the quantum optics

toolbox written by Sze [8]. I recorded the density matrices of the system for a series

of time moments which were then used to evaluate the expectation of the annihilation

operator 〈a(t)〉 = Tr[aρt]. The oscillation amplitude of its absolute value was then
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Figure 3.8: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071 × 10−3 by numerically solving the semi-classical
Maxwell-Bloch equations

compared with that of the small signal input just as what has been done for the semi-

classical Maxwell-Bloch equations. For comparison with the semi-classical result I

used the same parameter set, the same signal amplitudes, and one of the four pumping

levels E0 = 15.11808. The oscillation amplitude of
√

2κ|〈a〉| as a function of the small

signal relative frequency ωs for the three signal amplitudes are plotted in Fig. 3.9,

Fig. 3.10 and Fig. 3.11 respectively below.

In contrast with the semi-classical case, the master equation yields an oscillation

amplitude of |〈a〉| comparable to that of the small signal after taking into account

the mirror coupling factor
√

2κ. In this case to compute the amplitude gain one

needs to determine the relative phase of 〈a(ωs)〉 w.r.t. 〈aIN(ωs)〉, which can be ob-

tained by numerically fitting the time series of 〈a(t)〉 to a time-varying complex func-

tion Ae−i(ωst+θ), and then solving the boundary condition 〈aIN(ωs)〉 + 〈aOUT (ωs)〉 =
√

2κ〈a(ωs)〉 exactly. The computed amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| as a func-

tion of the small signal relative frequency ωs for the three signal amplitudes are plotted

in Fig. 3.12 below.
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Figure 3.9: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071× 10−5 by numerically solving the master equation

The plot indicates two differences from the semi-classical result. First, the ampli-

tude gains are significantly smaller than those of the semi-classical cases, in fact there

is virtually no gain because the maximum amplitude gain is only about 3%. Second,

the amplitude gains at different signal amplitudes are almost identical for a given sig-

nal frequency, even though the oscillation amplitude of the intracavity photon number

can be as high as 32% of its average indicating that the signal is no longer “small”;

this implies a linear input-output relation for a fixed signal frequency which is in sharp

contrast with the nonlinear characteristics of the amplification in the semi-classical

case. These observations suggest that the gain available for signal amplification ap-

pears to be very scarce. This could be due to the fact that the quantitative agreement

between the approximate semi-classical model and the exact quantum model is not

as good as I initially thought, in the sense that the quantum analog of bifurcation

requires a pumping level much higher than the semi-classical critical pumping level.

Thus the chosen pumping level E0 = 15.11808, although being sufficient to supply

substantial gain to the signal of the right frequency in the semi-classical case, is not
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Figure 3.10: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071× 10−4 by numerically solving the master equation

strong enough for the quantum case. I therefore increased the pumping level and

tried various signal frequencies for the signal amplitude S = 7.07107 × 10−5 to look

for significant gain. The computed amplitude gains are plotted in Fig. 3.13 below.

The plot seems to confirm what one would expect: the higher the pumping level

the larger the amplitude gain. However the gains are still at most around 10%, much

smaller than those of the semi-classical case. On the other hand, a quasi-probabilistic

representation called Q-function of the partially traced field density matrix, which

can be roughly interpreted as expanding the field density matrix over the coherent

state basis {|α〉} because it is defined as Q(α) = 1
π
〈α|ρ|α〉 [20], is plotted in Fig. 3.14

below, which shows that for the highest pumping level used E0 = 15.66242 sign of

oscillation is already present even without being periodically driven by the signal.

This is manifested by the crater-like structure in the Q-function plot which can be

formed by superposing coherent states rotating around a common center with uni-

formly distributed initial phases (the Q-function of a coherent state would be a bump

due to its nonzero overlapping property |〈α|β〉|2 = exp(−|α−β|2)). This observation
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Figure 3.11: Oscillation amplitude of
√

2κ|〈a〉| vs. small signal relative frequency for
an signal amplitude of S = 7.071× 10−3 by numerically solving the master equation

suggests that the observed increase in gain is probably not due to what I hoped for

i.e. the sensitivity to loop instability.

It seems that instead of having used too low pumping levels I might have used too

high pumping levels and the absence of significant gain could be due to the fact that

I had passed the bifurcation and were already into the zone of self-oscillatory states

i.e. the quantum critical pumping level might be even lower than E0 = 15.11808. A

good guess for the quantum critical pumping level is E0 = 7.07107 because it is the

pumping level at which the cavity field autocorrelation function starts oscillating as

shown in Armen and Mabuchi’s Fig.6 [3]. I therefore reduced the pumping level and

tried various signal frequencies for the signal amplitude S = 7.07107 × 10−5 to look

for significant increase in amplitude gain. The computed amplitude gains are plotted

in Fig. 3.15 below.

We see in the plot that, at the lowest pumping level E0 = 7.07107 the amplitude

gain is almost constant over the frequency range swept. This signifies that at this
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Figure 3.12: Amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| vs. small signal relative fre-
quency for various signal amplitudes by numerically solving the master equation for
a pumping level E0 = 15.11808

pumping level without signal input the cavity field contains almost no oscillatory com-

ponent and the effect of the small signal driving is merely changing periodically the

overall pumping strength and thus the observable expectations. The simulation re-

sult of the stochastic master equation with homodyne measurement on the observable

x = (a+a†)/2 [10] plotted in Fig. 3.16 below supports this assertion, showing that the

average oscillation amplitude of |〈a〉| is only about 2% of its mean value. Therefore

if there were a quantum critical pumping level passing which would lead to abrupt

change in amplitude gain it should lie between E0 = 7.07107 and E0 = 15.66242. Yet

when the pumping level is varied in this range I do not see radical change in amplitude

gain for the red-detuned range (ωs > −6). Note that the decline in amplitude gain

in the blue-detuned range (ωs < −6), probably due to the burgeoning and growth

of the oscillatory component, is rather gradual considering the amount of pumping

level increment (from E0 = 7.07107 to E0 = 10.6066), unlike the semi-classical case in

which the maximum amplitude gain skyrockets when the pumping level is increased

from E0 = 14.97808 to E0 = 15.13209 (refer to Fig. 3.6). Furthermore, Fig. 3.17 below
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Figure 3.13: Amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| vs. small signal relative fre-
quency for various pumping levels by numerically solving the master equation for
an signal amplitude of S = 7.071× 10−5

shows that analogous to the amplitude gain spectrum at E0 = 15.11808 the ampli-

tude loss/attenuation at E0 = 10.6066 also remains almost the same for a given signal

frequency when the signal amplitude is increased by two orders of magnitude, even

though the oscillation amplitude of the intracavity photon number can be as high as

25% of its average indicating that the signal is no longer “small”. This again implies

a linear input-output relation for a fixed signal frequency and contradicts with the

nonlinear characteristics of the amplification in the semi-classical case.

3.5 Towards the Origin of the Quantum-Classical

Discrepancy

To shed some light into the origin of the quantum-classical discrepancy, let’s go one

step from the most general quantum formulation by assuming a factorizable system

density matrix ρ = ρf ⊗ ρa to see whether this intermediate case, on the one hand
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Figure 3.14: Q-function plot of the partially traced field density matrix of the solution
to the master equation without signal input for a pumping level E0 = 15.66242

retaining the density matrix representation of the system state while on the other

hand justifying the factorization of the expectations of operator products, would

yield a result similar to that of the quantum master equation, or similar to that of

the semi-classical Maxwell-Bloch equations, or distinct from both of the two limits.

The master equation is reproduced below

d

dt
ρ = −i[H, ρ] + 2κ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
+ 2γ⊥

(
σ−ρσ+ −

1

2
σ+σ−ρ−

1

2
ρσ+σ−

)
= −iHρ+ iρH + 2κ

(
aρa† − 1

2
a†aρ− 1

2
ρa†a

)
+ 2γ⊥

(
σ−ρσ+ −

1

2
σ+σ−ρ−

1

2
ρσ+σ−

)
(3.10)

in which the Hamiltonian is

H = ∆ca
†a+ ∆aσ+σ− + ig(a†σ− − aσ+) + i(Ea† − E∗a) (3.11)
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Figure 3.15: Amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| vs. small signal relative fre-
quency for various pumping levels by numerically solving the master equation for
an signal amplitude S = 7.071× 10−5

Substitute the factorizable template into the master equation I get

d

dt
ρf ⊗ ρa = −i∆ca

†aρf ⊗ ρa − i∆aσ+σ−ρf ⊗ ρa + iρf ⊗ ρa∆ca
†a+ iρf ⊗ ρa∆aσ+σ−

+ [g(a†σ− − aσ+) + (Ea† − E∗a)]ρf ⊗ ρa − ρf ⊗ ρa[g(a†σ− − aσ+) + (Ea† − E∗a)]

+ 2κ

(
a(ρf ⊗ ρa)a† −

1

2
a†a(ρf ⊗ ρa)−

1

2
(ρf ⊗ ρa)a†a

)
+ 2γ⊥

(
σ−(ρf ⊗ ρa)σ+ −

1

2
σ+σ−(ρf ⊗ ρa)−

1

2
(ρf ⊗ ρa)σ+σ−

)
= −i∆ca

†aρf ⊗ ρa − i∆aρf ⊗ σ+σ−ρa + i∆cρfa
†a⊗ ρa + i∆aρf ⊗ ρaσ+σ−

+ g(a†ρf ⊗ σ−ρa − aρf ⊗ σ+ρa) + (Ea† − E∗a)ρf ⊗ ρa
− g(ρfa

† ⊗ ρaσ− − ρfa⊗ ρaσ+)− ρf (Ea† − E∗a)⊗ ρa

+ 2κ

(
aρfa

† ⊗ ρa −
1

2
a†aρf ⊗ ρa −

1

2
ρfa

†a⊗ ρa
)

+ 2γ⊥

(
ρf ⊗ σ−ρaσ+ −

1

2
ρf ⊗ σ+σ−ρa −

1

2
ρf ⊗ ρaσ+σ−

)
(3.12)
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Figure 3.16: |〈a〉| yielded by the stochastic quantum master equation with homodyne
measurement on the observable x = (a + a†)/2 and no signal input for a pumping
level E0 = 7.07107

We now take the partial trace over the atomic degrees of freedom

Tra

[
d

dt
ρf ⊗ ρa

]
=

d

dt
Tra [ρf ⊗ ρa] =

d

dt
ρf

= −i∆ca
†aρf Tra[ρa]− i∆aρf Tra[σ+σ−ρa] + i∆cρfa

†aTra[ρa] + i∆aρf Tra[ρaσ+σ−]

+ g(a†ρf Tra[σ−ρa]− aρf Tra[σ+ρa]) + (Ea† − E∗a)ρf Tra[ρa]

− g(ρfa
†Tra[ρaσ−]− ρfaTra[ρaσ+])− ρf (Ea† − E∗a) Tra[ρa]

+ 2κ

(
aρfa

†Tra[ρa]−
1

2
a†aρf Tra[ρa]−

1

2
ρfa

†aTra[ρa]

)
+ 2γ⊥

(
ρf Tra[σ−ρaσ+]− 1

2
ρf Tra[σ+σ−ρa]−

1

2
ρf Tra[ρaσ+σ−]

)
= −i∆ca

†aρf + i∆cρfa
†a− i∆aρf Tra[σ+σ−ρa] + i∆aρf Tra[σ+σ−ρa]− ρf (Ea† − E∗a)

+ g(a†ρf Tra[σ−ρa]− ρfa†Tra[σ−ρa]− aρf Tra[σ+ρa] + ρfaTra[σ+ρa]) + (Ea† − E∗a)ρf

+ 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
+ 2γ⊥

(
ρf Tra[σ+σ−ρa]−

1

2
ρf Tra[σ+σ−ρa]−

1

2
ρf Tra[σ+σ−ρa]

)
= −i[∆ca

†a, ρf ] + g(Tra[σ−ρa][a
†, ρf ]− Tra[σ+ρa][a, ρf ]) + [(Ea† − E∗a), ρf ]

+ 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
(3.13)
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Figure 3.17: Amplitude gain |〈aOUT (ωs)〉/〈aIN(ωs)〉| vs. small signal relative fre-
quency for various signal amplitudes by numerically solving the master equation for
a pumping level E0 = 10.6066

Since σ+ = (σx + iσy)/2 and σ− = (σx− iσy)/2 I have Tra[σ+ρa] = 1
2
(〈σx〉+ i〈σy〉)

and Tra[σ−ρa] = 1
2
(〈σx〉 − i〈σy〉) the partially traced field master equation then reads

Tra

[
d

dt
ρf ⊗ ρa

]
=

d

dt
Tra [ρf ⊗ ρa] =

d

dt
ρf

= −i[∆ca
†a, ρf ] +

g

2
(〈σx〉[a†, ρf ]− i〈σy〉[a†, ρf ]− 〈σx〉[a, ρf ]− i〈σy〉[a, ρf ]) + [(Ea† − E∗a), ρf ]

+ 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
= −i[∆ca

†a, ρf ] +
[g

2
〈σx〉(a† − a)− g

2
i〈σy〉(a† + a), ρf

]
+ [(Ea† − E∗a), ρf ]

+ 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
= −i[Hf , ρf ] + 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
(3.14)

where

Hf = ∆ca
†a+ i

g

2
〈σx〉(a† − a) +

g

2
〈σy〉(a† + a) + i(Ea† − E∗a) (3.15)
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We can also take the partial trace over the field degrees of freedom

Trf

[
d

dt
ρf ⊗ ρa

]
=

d

dt
Trf [ρf ⊗ ρa] =

d

dt
ρa

= −i∆c Trf [a
†aρf ]ρa − i∆a Trf [ρf ]σ+σ−ρa + i∆c Trf [ρfa

†a]ρa + i∆a Trf [ρf ]ρaσ+σ−

+ g(Trf [a
†ρf ]σ−ρa − Trf [aρf ]σ+ρa) + Trf [(Ea† − E∗a)ρf ]ρa

− g(Trf [ρfa
†]ρaσ− − Trf [ρfa]ρaσ+)− Trf [ρf (Ea† − E∗a)]ρa

+ 2κ

(
Trf [aρfa

†]ρa −
1

2
Trf [a

†aρf ]ρa −
1

2
Trf [ρfa

†a]ρa

)
+ 2γ⊥

(
Trf [ρf ]σ−ρaσ+ −

1

2
Trf [ρf ]σ+σ−ρa −

1

2
Trf [ρf ]ρaσ+σ−

)
= −i∆c Trf [a

†aρf ]ρa + i∆c Trf [a
†aρf ]ρa − i∆aσ+σ−ρa + i∆aρaσ+σ− − Trf [(Ea† − E∗a)ρf ]ρa

+ g(Trf [a
†ρf ]σ−ρa − Trf [a

†ρf ]ρaσ− − Trf [aρf ]σ+ρa + Trf [aρf ]ρaσ+) + Trf [(Ea† − E∗a)ρf ]ρa

+ 2κ

(
Trf [a

†aρf ]ρa −
1

2
Trf [a

†aρf ]ρa −
1

2
Trf [a

†aρf ]ρa

)
+ 2γ⊥

(
σ−ρaσ+ −

1

2
σ+σ−ρa −

1

2
ρaσ+σ−

)
= −i[∆aσ+σ−, ρa] + g(Trf [a

†ρf ][σ−, ρa]− Trf [aρf ][σ+, ρa])

+ 2γ⊥

(
σ−ρaσ+ −

1

2
σ+σ−ρa −

1

2
ρaσ+σ−

)
(3.16)

Since a = x + iy and a† = x − iy I have Trf [a
†ρf ] = 〈x〉 − i〈y〉 and Trf [aρf ] =

〈x〉+ i〈y〉 the partially traced atomic master equation then reads

Trf

[
d

dt
ρf ⊗ ρa

]
=

d

dt
Trf [ρf ⊗ ρa] =

d

dt
ρa = −i[∆aσ+σ−, ρa]

+ g(〈x〉[σ−, ρa]− i〈y〉[σ−, ρa]− 〈x〉[σ+, ρa]− i〈y〉[σ+, ρa]) + 2γ⊥

(
σ−ρaσ+ −

1

2
σ+σ−ρa −

1

2
ρaσ+σ−

)
= −i[∆aσ+σ−, ρa] + [−ig〈x〉σy − ig〈y〉σx, ρa] + 2γ⊥

(
σ−ρaσ+ −

1

2
σ+σ−ρa −

1

2
ρaσ+σ−

)
= −i[Ha, ρa] + 2γ⊥

(
σ−ρaσ+ −

1

2
σ+σ−ρa −

1

2
ρaσ+σ−

)
(3.17)

where

Ha = ∆aσ+σ− + g〈x〉σy + g〈y〉σx (3.18)
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We can derive equations of motion for the atomic operator expectations from the

partially traced atomic master equation, just as how I derived the Maxwell-Bloch

equations i.e. using the trace formula d〈O〉 = Tr[Odρ].

With O = σx I have

d

dt
〈σx〉 =

d

dt
Tra[σxρa] = Tra

[
σx

d

dt
ρa

]
= Tra

[
σx[−i∆aσ+σ− − ig〈x〉σy − ig〈y〉σx, ρa] + 2γ⊥

(
σxσ−ρaσ+ −

1

2
σxσ+σ−ρa −

1

2
σxρaσ+σ−

)]
= Tra

[
−i∆aσxσ+σ−ρa + i∆aσxρaσ+σ− + 2γ⊥

(
σ+σxσ−ρa −

1

2
σxσ+σ−ρa −

1

2
σ+σ−σxρa

)]
+ Tra [+g〈x〉σzρa − ig〈y〉ρa + ig〈x〉σxρaσy + ig〈y〉σxρaσx]

= Tra [−i∆aσxσ+σ−ρa + i∆aσ+σ−σxρa]

+ Tra [+g〈x〉σzρa − ig〈y〉ρa + ig〈x〉σyσxρa + ig〈y〉σxσxρa − γ⊥(σ− + σ+)ρa]

= Tra [−∆aσyρa + 2g〈x〉σzρa − γ⊥σxρa]

= −γ⊥〈σx〉 −∆a〈σy〉+ 2g〈x〉〈σz〉
(3.19)

With O = σy I have

d

dt
〈σy〉 =

d

dt
Tra[σyρa] = Tra

[
σy
d

dt
ρa

]
= Tra

[
σy[−i∆aσ+σ− − ig〈x〉σy − ig〈y〉σx, ρa] + 2γ⊥

(
σyσ−ρaσ+ −

1

2
σyσ+σ−ρa −

1

2
σyρaσ+σ−

)]
= Tra

[
−i∆aσyσ+σ−ρa + i∆aσyρaσ+σ− + 2γ⊥

(
σ+σyσ−ρa −

1

2
σyσ+σ−ρa −

1

2
σ+σ−σyρa

)]
+ Tra [−ig〈x〉ρa − g〈y〉σzρa + ig〈x〉σyρaσy + ig〈y〉σyρaσx]

= Tra [−i∆aσyσ+σ−ρa + i∆aσ+σ−σyρa]

+ Tra [−ig〈x〉ρa − g〈y〉σzρa + ig〈x〉σyσyρa + ig〈y〉σxσyρa + iγ⊥(σ+ − σ−)ρa]

= Tra [+∆aσxρa − 2g〈y〉σzρa − γ⊥σyρa]

= −γ⊥〈σy〉+ ∆a〈σx〉 − 2g〈y〉〈σz〉
(3.20)



CHAPTER 3. SELF-OSCILLATION AND PHASE INSENSITIVE AMPLIFICATION IN THEMAXWELL-BLOCH EQUATIONS62

With O = σz I have

d

dt
〈σz〉 =

d

dt
Tra[σzρa] = Tra

[
σz
d

dt
ρa

]
= Tra

[
σz[−i∆aσ+σ− − ig〈x〉σy − ig〈y〉σx, ρa] + 2γ⊥

(
σzσ−ρaσ+ −

1

2
σzσ+σ−ρa −

1

2
σzρaσ+σ−

)]
= Tra [−i∆aσzσ+σ−ρa + i∆aσzρaσ+σ− + γ⊥ (2σ+σzσ−ρa − σzσ+σ−ρa − σ+σ−σzρa)]

+ Tra [−g〈x〉σxρa + g〈y〉σyρa + ig〈x〉σzρaσy + ig〈y〉σzρaσx]

= Tra [−i∆aσzσ+σ−ρa + i∆aσ+σ−σzρa]

+ Tra [−g〈x〉σxρa + g〈y〉σyρa − g〈x〉σxρa + g〈y〉σyρa + γ⊥ ((−σz − I)ρa − (σz + I)ρa)]

= Tra [−2g〈x〉σxρa + 2g〈y〉σyρa − 2γ⊥(σz + I)ρa]

= −2γ⊥(〈σz〉+ 1)− 2g〈x〉〈σx〉+ 2g〈y〉〈σy〉

Note that the equations of motion for 〈σx〉, 〈σy〉, 〈σz〉 are exactly the same as

those in the Maxwell-Bloch equations, albeit no approximation is required during the

derivation. This is expected as a factorizable density matrix should naturally lead

to factorizable expectations of operator products. In addition, this establishes the

equivalence between the partially traced master equation for the atom and the equa-

tions of motion for 〈σx〉, 〈σy〉, 〈σz〉 because the operator expectation triplet together

with the unity trace and Hermitian requirement uniquely determine an atomic den-

sity matrix. Therefore to solve the partially traced atomic master equation for the

time evolution of the atomic density matrix ρa I just need to solve the equations of

motion for 〈σx〉, 〈σy〉, 〈σz〉. We thus have the following factorizable model as a special

case of the master equation

field: partially traced master equation

d

dt
ρf = −i[Hf , ρf ] + 2κ

(
aρfa

† − 1

2
a†aρf −

1

2
ρfa

†a

)
(3.21)

with

Ha = ∆aσ+σ− + g〈x〉σy + g〈y〉σx
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atom: operator expectation equations of motion

d

dt
〈σx〉 = −γ⊥〈σx〉 −∆a〈σy〉+ 2g〈x〉〈σz〉

d

dt
〈σy〉 = −γ⊥〈σy〉+ ∆a〈σx〉 − 2g〈y〉〈σz〉

d

dt
〈σz〉 = −2γ⊥(〈σz〉+ 1)− 2g〈x〉〈σx〉+ 2g〈y〉〈σy〉

(3.22)

Compared with the Maxwell-Bloch equations based on which the small-signal

amplification is established, this model differs in the description of the field. In it the

field is represented by a wave function/density matrix, in contrast with the Maxwell-

Bloch equations in which the field is treated as a classical field—a single complex value

is used to represent the state of the field just as in the classical electrodynamics. We

can test whether the amplification is lost in this adoption of quantum description of

the field. The computed amplitude gains for this factorizable model at E0 = 15.11808

for a signal amplitude of S = 7.071 × 10−5 and S = 7.071 × 10−4 respectively are

compared with those of the master equation and the Maxwell-Bloch equations and

plotted in Fig. 3.18 and Fig. 3.19 below.

From the amplitude gain comparison plots one can see that the factorizable model

produces nearly the same amount of amplification as that of the Maxwell-Bloch equa-

tions. This implies that the quantum description of the field does not destroy the

amplification. A closer examination of the steady state solution to the partially

traced field master equation reveals that throughout the oscillation the field is close

to a coherent state. This again suggests the adequacy of using mean field equation

for coherent state dynamics, as I have discovered when attempting to derive a re-

duced order model for describing the automatic switching in the quantum analog of

absorptive bistability. It thus seems that the absence of amplification is probably

due to the non-factorizable nature of the atom-field density matrix which implies

nonzero correlation between the atomic and field operator expectations invalidating

the factorization approximation that I adopted in deriving the Maxwell-Bloch equa-

tions2 (this is also confirmed by the numerical solution to the master equation) as

2any state which is not factorizable possesses some kind of correlation because the von Neumann
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Figure 3.18: Amplitude gain comparison between the factorizable model, the master
equation and the Maxwell-Bloch equations for an signal amplitude of S = 7.071×10−5

at a pumping level of E0 = 15.11808

well as the feedback control model based on them for explaining the field intensity

self-oscillation.

At this point, a natural step to take to address the nonfactorizable expectations

of operator products is to expand the repository of variables of the Maxwell-Bloch

equations i.e. treat 〈xσz〉 etc. as variables and also derive equations of motion for

them. After that find some prudent way of closing the resulted operator expecta-

tion equations by adopting some approximations for the expectations of higher order

operator products. And then one can ask if such an expanded set of equations of mo-

tion could fail to yield the amplification predicted by the Maxwell-Bloch equations.

With the expectations of higher order operator products approximated by functions

of those of lower order operator products suggested by the numerical solution to the

master equation, I found the following equations of motion which manage to yield

steady state solutions of 〈x〉, 〈y〉, 〈σx〉, 〈σy〉, 〈σz〉 close to those of the master equation

entropy, a measure of mutual information, I = Tr[ρ] ln ρ − Tr[ρa] ln ρa − Tr[ρb] ln ρb vanishes if and
only if ρ = ρa ⊗ ρb where ρa = Tra[ρ] and ρb = Trb[ρ] [21]
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Figure 3.19: Amplitude gain comparison between the factorizable model, the master
equation and the Maxwell-Bloch equations for an signal amplitude of S = 7.071×10−4

at a pumping level of E0 = 15.11808

in the non-Hopf regime (i.e. regime with stationary steady state solutions) yet fail to

produce Hopf bifurcation not to mention pre-Hopf small-signal amplification

d

dt
〈x〉 = −κ〈x〉+ Θ〈y〉+

g

2
〈σx〉+ Re[E ]

d

dt
〈y〉 = −κ〈y〉 −Θ〈x〉 − g

2
〈σy〉+ Im[E ]

d

dt
〈σx〉 = −γ〈σx〉 −∆〈σy〉+ 2g〈xσz〉

d

dt
〈σy〉 = −γ〈σy〉+ ∆〈σx〉 − 2g〈yσz〉

d

dt
〈σz〉 = −2γ(1 + 〈σz〉)− 2g〈xσx〉+ 2g〈yσy〉

d

dt
〈xσz〉 = −(κ+ 2γ)〈xσz〉+ Θ〈yσz〉 − 2γ〈x〉+ Re[E ]〈σz〉 − 2g〈xx〉〈σx〉+ 2g〈y〉〈xσy〉

d

dt
〈yσz〉 = −(κ+ 2γ)〈yσz〉 −Θ〈xσz〉 − 2γ〈y〉+ Im[E ]〈σz〉+ 2g〈y〉〈yσy〉 − 2g〈y〉〈xσx〉

d

dt
〈xσx〉 = −(γ + κ)〈xσx〉+ Θ〈yσx〉 −∆〈xσy〉+ Re[E ]〈σx〉+ 2g

(
〈xxσz〉+

1

4

)
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d

dt
〈yσy〉 = −(γ + κ)〈yσy〉 −Θ〈xσy〉+ ∆〈yσx〉+ Im[E ]〈σy〉 − 2g

(
〈yyσz〉+

1

4

)
d

dt
〈xσy〉 = −(γ + κ)〈xσy〉+ Θ〈yσy〉+ ∆〈xσx〉+ Re[E ]〈σy〉 − g〈(xy + yx)σz〉

d

dt
〈yσx〉 = −(γ + κ)〈yσx〉 −Θ〈xσx〉 −∆〈yσy〉+ Im[E ]〈σx〉+ g〈(xy + yx)σz〉

d

dt
〈xy + yx〉 = −2κ〈xy + yx〉 − 2Θ〈xx〉+ 2Θ〈yy〉+ 2Re[E ]〈y〉+ 2Im[E ]〈x〉 − g〈xσy〉+ g〈yσx〉

d

dt
〈xx〉 = −2κ

(
〈xx〉 − 1

4

)
+ Θ〈xy + yx〉+ g〈xσx〉+ 2Re[E ]〈x〉

d

dt
〈yy〉 = −2κ

(
〈yy〉 − 1

4

)
−Θ〈xy + yx〉 − g〈yσy〉+ 2Im[E ]〈y〉

d

dt
〈xxσz〉 = −2(κ+ γ)〈xxσz〉+

1

2
κ〈σz〉 − 2γ〈xx〉+ Θ〈(xy + yx)σz〉+ 2Re[E ]〈xσz〉

− 2g〈xx〉〈xσx〉+ 2g〈xx〉〈yσy〉
d

dt
〈yyσz〉 = −2(κ+ γ)〈yyσz〉+

1

2
κ〈σz〉 − 2γ〈yy〉 −Θ〈(xy + yx)σz〉+ 2Im[E ]〈yσz〉

+ 2g〈yy〉〈yσy〉 − 2g〈yy〉〈xσx〉
d

dt
〈(xy + yx)σz〉 = −2(κ+ γ)〈(xy + yx)σz〉 − 2γ〈xy + yx〉 − 2Θ〈xxσz〉+ 2Θ〈yyσz〉

+ 2Im[E ]〈xσz〉+ 2Re[E ]〈yσz〉 − 4g〈xx〉〈yσx〉+ 4g〈yy〉〈xσy〉 (3.23)

Note that I am not claiming that the above 17D equations of motion represent a

good approximate model for the master equation. These equations of motion simply

demonstrate the possibility of the absence of Hopf bifurcation and hence the absence

of pre-Hopf amplification as a consequence of adding more operator expectation vari-

ables into the Maxwell-Bloch equations for obtaining better approximate mean field

equations.

3.6 Conclusion and Discussion

In this chapter I demonstrated that the supercritical Hopf bifurcation produced by

the semi-classical Maxwell-Bloch equations is the onset of loop instability for the

closed loop feedback system formed by the atom and the cavity field. I also showed
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that, modeled by the semi-classical Maxwell-Bloch equations a weak coherent light

field driving a damped cavity QED system near supercritical Hopf bifurcation can

be amplified, in accordance with Wiesenfeld and McNamara’s proposal. However the

quantum master equation does not exhibit significant amplification and the input-

output relation is essentially linear, in contrast with the semi-classical prediction.

Currently we do not have a good explanation to this quantum-classical discrepancy.

But the success of reproducing the amplification as in the Maxwell-Bloch equations

by assuming a factorizable atom-field density matrix, together with the possibility

of existing an expanded operator expectation equations of motion which do not pro-

duce Hopf bifurcation thus pre-Hopf amplification, suggests the absence of gain be

attributed to the atom-field correlation.

The failure of the quantum model in reproducing the semi-classical prediction of

small-signal amplification, however, should not be interpreted as a disproof of the am-

plifier proposal. As has already been pointed out in the chapter of theoretical model-

ing, the semi-classical Maxwell-Bloch equations are also applicable to non-interacting

multi-atom case. Thus by increasing the number of atoms while keeping the overall

interaction between the atoms and the field constant, the system dynamics could

approach the semi-classical limit for which the factorization approximation is valid.

Under this condition the numerical study does suggest ample gain available to signals

with the right frequency. In fact this has already been realized experimentally by

one of our recent works [1]. Fig.3.20 below is extracted from the reference which

plots the power gain calculated from the output oscillation amplitude measurement

for three signal powers at an experimentally realizable Hopf bifurcation parameter

regime. As one can see the actual maximal power gain, although smaller than the

numerical prediction, can still go beyond one hundred and similar gain saturation is

also observed. Thus it is confirmed experimentally that indeed this loop instability

provides a way of small signal amplification.
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Figure 3.20: Gain curve of the experimentally demonstrated optical amplifier, with
2000 effective number of atoms, cavity detuning = −20MHz, atomic detuning =
+5MHz and pump power set at 1400nW [1]



Chapter 4

Multi-atom Cavity Quantum

Electrodynamics and Multi-atom

Bifurcation

A numerical study on multi-atom cavity quantum electrodynamics is conducted to

search for new bifurcation-like phenomenon and the dependence on the number of

atoms investigated, which is examined by keeping the collective interaction between

the atomic ensemble and the field constant and hence the corresponding semi-classical

Maxwell-Bloch equations unchanged. Although due to the limitation of computa-

tional power the simulation stopped at a number of atoms = 8 it already shows new

bifurcation-like phenomenon with clear dependence on the number of atoms. The

2-atom case is examined in more details with the aid of an analytical method called

projected equations of motion which are derived by assuming a certain parametriza-

tion form of the system density matrix [22]. With this flexible tool an interesting

property of the quantum evolution dynamics governed by the master equation is

discovered. This same analytical tool is applied to show why the cooperativity, a

measure of the strength of the collective interaction between the atomic ensemble

and the cavity field, scales with the number of atoms, or equivalently the effective

coupling constant between the atomic ensemble and the cavity field scales with the

square root of the number of atoms.

69
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4.1 A New Bifurcation-like Phenomenon in Multi-

atom Cavity Quantum Electrodynamics and

Its Dependence on the Number of Atoms

The cavity quantum electrodynamics (QED) has been a paradigm for theoretical and

experimental investigation on quantum-classical correspondence [23] and there is a

high volume of studies on the comparison of semi-classical models like the Maxwell-

Bloch equations [4] and full quantum models such as the Jaynes-Cummings master

equation [2]. The correspondence has been demonstrated in many ways and in par-

ticular in predicting bifurcation-like phenomena for the master equation using the

semi-classical Maxwell-Bloch equations [3]. The prediction is even good beyond the

generally accepted applicable regime of the Maxwell-Bloch equations in which many

weakly excited atoms interact with the field [4], into the strong coupling regime in

which the semi-classical factorization approximation (refer to the chapter of theoret-

ical modeling) necessarily breaks down due to the atom-field correlation [3].

Previous study on the quantum-classical correspondence manifested in the pre-

diction of bifurcation-like phenomena has focused on single-atom cavity quantum

electrodynamics [3]. But as was noted in the chapter of theoretical modeling the

semi-classical Maxwell-Bloch equations are applicable to multi-atom cases as well.

In fact their dimensionless forms make no distinction between systems with different

number of atoms; what counts is only the cooperativity as well as the ratios be-

tween the decay rates and detunings. It is therefore interesting to ask the following

questions: if a single-atom cavity QED system and a multi-atom cavity QED system

could, with properly chosen parameter values, correspond to the same Maxwell-Bloch

equations, then what would be the corresponding bifurcation-like phenomenon in the

multi-atom cavity QED system? How would it be different from the single-atom case?

Based on it can we also propose useful devices for all-optical information processing

network just as what I did in the previous two chapters? Whether and if yes how

would it depend on the number of atoms? This last question actually suggests a new

perspective of studying quantum-classical transition, in addition to the decoherence



CHAPTER 4. MULTI-ATOMCAVITY QUANTUMELECTRODYNAMICS ANDMULTI-ATOMBIFURCATION71

approach [24, 25].

To answer the above questions I used the following parameter set (where N is the

number of atoms)

γ⊥ = 1, κ = 3.5769, ∆a = 0.7κ, ∆c = −1.1κ, C = 42.6963, E = 2.6κ×
√
N

at which the Maxwell-Bloch equations produce absorptive bistability [6]. I then solved

the master equation with increasing number of atoms, for which the Wigner function

(another quasi-probabilistic representation of the partially traced field density ma-

trix [20]) of the cavity field was evaluated and plotted for comparison.

Figure 4.1: 3D plot of the Wigner func-
tion of the cavity field for the single-atom
master equation

Figure 4.2: Contour plot of the Wigner
function of the cavity field for the single-
atom master equation

As can be seen from Fig. 4.1 and Fig. 4.2 that the single-atom master equation

produces an absorptive bistable field consistent with the prediction of the Maxwell-

Bloch equations, manifested by the twin-peak structure of the Wigner function, as is

expected. When the number of atoms is increased to 2, there appears one more peak

in the Wigner function plot, as is obvious in Fig. 4.3 and Fig. 4.4.

There is one more peak in the Wigner function of the cavity field with one more

atom added. This trend continues with the number of atom rising to 4, as is shown

in Fig. 4.5 to Fig. 4.8 below.
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Figure 4.3: 3D plot of the Wigner func-
tion of the cavity field for the two-atom
master equation

Figure 4.4: Contour plot of the Wigner
function of the cavity field for the two-
atom master equation

When the number of atoms is increased to 5 and above, the multiple peaks stay too

close to each other to become individually discernible (note that for 5 or more atoms

due to the constraint of MATLAB memory, instead of using the quantum toolbox

to solve directly the steady state solutions to the multi-atom master equations [8] I

simulated hundreds of quantum trajectories and took the ensemble averages of the

trajectories to approximate the steady state solutions), as can be seen in Fig. 4.9 to

Fig. 4.16 below.

This dependence on the number of atoms turns out to be probably due to the

detunings. For another parameter set

γ⊥ = 2.6, κ = 0.0542, ∆a = 0, ∆c = 0, C = 6

at which the Maxwell-Bloch equations also produce absorptive bistability, such de-

pendence on the number of atoms is not observed. There are always two peaks no

matter how many atoms are added. Although due to the constraint of MATLAB

memory the simulation stopped at the number of atoms = 3, the multi-peak struc-

ture should be most easily discernible in these cases but is not. This should argue

strongly against the appearance of multiple peaks at greater number of atoms, as is
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Figure 4.5: 3D plot of the Wigner func-
tion of the cavity field for the three-atom
master equation

Figure 4.6: Contour plot of the Wigner
function of the cavity field for the three-
atom master equation

shown in Fig. 4.17 to Fig. 4.20 below1.

Thus the bifurcation-like phenomena with dependence on the number of atoms

seem to be a new-type in that both absorption and dispersion (associated with the

detunings) play an important role and the interplay between them produces the ob-

served dependence manifested in the structure of the cavity field Wigner function.

4.2 Stable Submanifold in the Parameter Space of

the System Density Matrix in Two-atom Cav-

ity Quantum Electrodynamics

Mabuchi’s recipe for deriving projected equations [22] based on Ramon’s information

geometry formulation of quantum state evolution [26] provides an effective tool for

describing not only single-atom but also multi-atom cavity quantum electrodynamics.

1the reason why Q function instead of Wigner function is plotted for the three-atom resonant
case is that there is some numerical stability problem with the Wigner function evaluation using the
quantum optics toolbox, nonetheless both Wigner function and Q function are quasi-probabilistic
representations of the field and both are capable of demonstrating the coexistence of multiple states
manifested as multi-peak structure albeit Wigner function produces larger separation between the
peaks thus is preferred.
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Figure 4.7: 3D plot of the Wigner func-
tion of the cavity field for the four-atom
master equation

Figure 4.8: Contour plot of the Wigner
function of the cavity field for the four-
atom master equation

The flexibility of assuming a variety of parametrization forms for the system density

matrix allows us to explore the quantum dynamical properties of interest in the

most suitable parametrization form, although it might not be so valuable for single-

atom quantum electrodynamics because of the relatively fewer parameters and thus

parametrization forms. It turns out that two-atom quantum electrodynamics offer

an ideal platform for demonstrating the benefit of this flexibility as a result of the

tractable number of parameters yet still rich varieties in parametrization. As an

example I will show that there exists some unexpected property of the quantum

evolution that can only be properly stated in terms of the parametrization form of

the system density matrix.

First let’s recap Mabuchi’s recipe for deriving projected equations. The procedure

is as follows

1. start at a point on the prescribed manifold ρt = ρ(τj(t)) defined by a set of

parameters τj which also establish a tangent space at every point of the manifold

spanned by the partial derivatives w.r.t. the parameters τj, ∂ρ/∂τj

2. project the infinitesimal increment in the system density matrix given by the

master equation, dθt = L[ρt], onto the tangent space; denoted the projected

increment by dρt
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Figure 4.9: 3D plot of the Wigner func-
tion of the cavity field for the five-atom
master equation

Figure 4.10: Contour plot of the Wigner
function of the cavity field for the five-
atom master equation

3. as a tangent space is essentially a Euclidean space (∼= RN) I can write the

projected increment dρt as a total differential

dρt =
∂ρ

∂τ1
dτ1 +

∂ρ

∂τ2
dτ2 + · · ·+ ∂ρ

∂τn
dτn (4.1)

4. on both sides of the above expression of the total differential, take inner product

with every spanning vector〈
∂ρ

∂τ1
, dρt

〉
=

〈
∂ρ

∂τ1
, dθt

〉
=

〈
∂ρ

∂τ1
,
∂ρ

∂τ1

〉
dτ1 +

〈
∂ρ

∂τ1
,
∂ρ

∂τ2

〉
dτ2 + · · ·+

〈
∂ρ

∂τ1
,
∂ρ

∂τn

〉
dτn〈

∂ρ

∂τ2
, dρt

〉
=

〈
∂ρ

∂τ2
, dθt

〉
=

〈
∂ρ

∂τ2
,
∂ρ

∂τ1

〉
dτ1 +

〈
∂ρ

∂τ2
,
∂ρ

∂τ2

〉
dτ2 + · · ·+

〈
∂ρ

∂τ2
,
∂ρ

∂τn

〉
dτn

. . .〈
∂ρ

∂τn
, dρt

〉
=

〈
∂ρ

∂τn
, dθt

〉
=

〈
∂ρ

∂τn
,
∂ρ

∂τ1

〉
dτ1 +

〈
∂ρ

∂τn
,
∂ρ

∂τ2

〉
dτ2 + · · ·+

〈
∂ρ

∂τn
,
∂ρ

∂τn

〉
dτn

(4.2)

where 〈 , 〉 represents the inner product defined on the manifold, a common

choice of which is 〈X, Y 〉 = Tr[X∗Y ]; this is also the inner product definition

that will be used in the following. The above equations can also be written in
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Figure 4.11: 3D plot of the Wigner func-
tion of the cavity field for the six-atom
master equation

Figure 4.12: Contour plot of the Wigner
function of the cavity field for the six-
atom master equation

the following matrix form



〈
∂ρ
∂τ1
, dθt

〉〈
∂ρ
∂τ2
, dθt

〉
. . .〈

∂ρ
∂τn
, dθt

〉

 =



〈
∂ρ
∂τ1
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τ1
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τ1
, ∂ρ
∂τn

〉〈
∂ρ
∂τ2
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τ2
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τ2
, ∂ρ
∂τn

〉
...

...
. . .

...〈
∂ρ
∂τn
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τn
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τn
, ∂ρ
∂τn

〉




dτ1

dτ2
...

dτn


(4.3)

from which I can easily write down the solutions to the parameter increments


dτ1

dτ2
...

dτn

 =



〈
∂ρ
∂τ1
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τ1
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τ1
, ∂ρ
∂τn

〉〈
∂ρ
∂τ2
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τ2
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τ2
, ∂ρ
∂τn

〉
...

...
. . .

...〈
∂ρ
∂τn
, ∂ρ
∂τ1

〉 〈
∂ρ
∂τn
, ∂ρ
∂τ2

〉
. . .

〈
∂ρ
∂τn
, ∂ρ
∂τn

〉



−1

〈
∂ρ
∂τ1
, dθt

〉〈
∂ρ
∂τ2
, dθt

〉
. . .〈

∂ρ
∂τn
, dθt

〉


(4.4)

Therefore once I know the inner products between the spanning vectors of the

tangent space—the partial derivatives w.r.t. the various parameters ∂ρ/∂τj—

with the quantum evolution increment dθt, as well as the inner products among

themselves, I then can derive differential equations of motion for τj’s.
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Figure 4.13: 3D plot of the Wigner func-
tion of the cavity field for the seven-atom
master equation

Figure 4.14: Contour plot of the Wigner
function of the cavity field for the seven-
atom master equation

Although irrelevant to what is going to be discussed (because no comparison with

the quantum evolution will be made) some comment on the projection error, which

can be quantified by the norm of dθt − dρt, is due. For the projected equations to

constitute a good approximation of the master equation, in general one needs to show

that the projection error is bounded within a reasonable limit or adopt a “pragmatic

approach” to justify the assumption i.e. verify by examining the numerical solutions

to or analytical properties of the resulted projected equations (in the original paper by

Mabuchi, the validity of the assumption is justified by both of these two approaches).

From the information geometry perspective, however, the projected increment dρt

represents the best possible statistical inference about the evolution of the system

state given the constraint that the information about the system state can only be

gleaned from the values of the various parameters used to parametrize the system

density matrix. Thus the omission of the projection error is not merely an analytical

convenience but represents the fundamental restriction of quantum mechanics when

only a few physical observables can be measured.

Equipped with the above projected equation derivation procedure one now can

explore the power of the manifold projection technique. Start with the two-atom



CHAPTER 4. MULTI-ATOMCAVITY QUANTUMELECTRODYNAMICS ANDMULTI-ATOMBIFURCATION78

Figure 4.15: 3D plot of the Wigner func-
tion of the cavity field for the eight-atom
master equation

Figure 4.16: Contour plot of the Wigner
function of the cavity field for the eight-
atom master equation

master equation which reads

ρ̇ = −i(Hρ− ρH) + κ(2aρa† − a†aρ− ρa†a)

= (γ/2)
(
2σ1
−ρσ

1
+ − σ1

+σ
1
−ρ− ρσ1

+σ
1
−
)

+ (γ/2)
(
2σ2
−ρσ

2
+ − σ2

+σ
2
−ρ− ρσ2

+σ
2
−
)

(4.5)

where

H = ∆ca
†a+∆aσ

1
+σ

1
−+∆aσ

2
+σ

2
−+ig1(a

†σ1
−−aσ1

+)+ig2(a
†σ2
−−aσ2

+)+i(Ea†−E∗a)

(4.6)

Then assume a factorizable system density matrix and the cavity field always being

in a coherent state, i.e. ρ = ρa ⊗ |α〉〈α|. One also needs to parametrize the atomic

density matrix ρa for which one has at least the following two choices

tensor product basis: i.e. σ1i ⊗ σ2j where 1, 2 are labels of the atoms and i, j =

0, 1, 2, 3 are labels of the Pauli matrices (0 for identity matrix, 1 for σx, 2 for

σy, 3 for σz); number the 16 bases and their associated coefficients as follows
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Figure 4.17: 3D plot of the Wigner func-
tion of the cavity field for the two-atom
master equation at E = 0.7495

Figure 4.18: Contour plot of the Wigner
function of the cavity field for the two-
atom master equation at E = 0.7495

label basis parameter physical meaning

P1 I1 ⊗ I2 τ̃1

P2 σ1
x ⊗ I2 τ̃2 x-spin of Atom #1

P3 σ1
y ⊗ I2 τ̃3 y-spin of Atom #1

P4 σ1
z ⊗ I2 τ̃4 z-spin of Atom #1

P5 I1 ⊗ σ2
x τ̃5 x-spin of Atom #2

P6 I1 ⊗ σ2
y τ̃6 y-spin of Atom #2

P7 I1 ⊗ σ2
z τ̃7 z-spin of Atom #2

P8 σ1
x ⊗ σ2

x τ̃8

P9 σ1
x ⊗ σ2

y τ̃9

P10 σ1
x ⊗ σ2

z τ̃10

P11 σ1
y ⊗ σ2

x τ̃11

P12 σ1
y ⊗ σ2

y τ̃12

P13 σ1
y ⊗ σ2

z τ̃13

P14 σ1
z ⊗ σ2

x τ̃14

P15 σ1
z ⊗ σ2

y τ̃15

P16 σ1
z ⊗ σ2

z τ̃16

Then parametrize the atomic density matrix as ρa =
∑16

i=1 τ̃iPi where Pi’s are
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Figure 4.19: 3D plot of the Q function of
the cavity field for the three-atom master
equation at E = 0.9093

Figure 4.20: Contour plot of the Q func-
tion of the cavity field for the three-atom
master equation at E = 0.9093

the bases tabulated above; using the above projection procedure I can derive

the following equations of motion for the various parameters τ̃i

dτ̃1 = 0

dτ̃2 = −γ⊥τ̃2 −∆aτ̃3 + 2g1xrτ̃4

dτ̃3 = −γ⊥τ̃3 + ∆aτ̃2 − 2g1xiτ̃4

dτ̃4 = −2γ⊥τ̃1 − 2γ⊥τ̃4 − 2g1xrτ̃2 + 2g1xiτ̃3

dτ̃5 = −γ⊥τ̃5 −∆aτ̃6 + 2g2xrτ̃7

dτ̃6 = −γ⊥τ̃6 + ∆aτ̃5 − 2g2xiτ̃7

dτ̃7 = −2γ⊥τ̃1 − 2γ⊥τ̃7 − 2g2xrτ̃5 + 2g2xiτ̃6

dτ̃8 = −2γ⊥τ̃8 −∆a(τ̃9 + τ̃11) + 2g2xrτ̃10 + 2g1xrτ̃14

dτ̃9 = −2γ⊥τ̃9 + ∆a(τ̃8 − τ̃12)− 2g2xiτ̃10 + 2g1xrτ̃15

dτ̃10 = −3γ⊥τ̃10 − 2γ⊥τ̃2 −∆aτ̃13 − 2g2xrτ̃8 + 2g2xiτ̃9 + 2g1xrτ̃16

dτ̃11 = −2γ⊥τ̃11 + ∆a(τ̃8 − τ̃12) + 2g2xrτ̃13 − 2g1xiτ̃14

dτ̃12 = −2γ⊥τ̃12 + ∆a(τ̃9 + τ̃11)− 2g2xiτ̃13 − 2g1xiτ̃15

dτ̃13 = −3γ⊥τ̃13 − 2γ⊥τ̃3 + ∆aτ̃10 − 2g2xrτ̃11 + 2g2xiτ̃12 − 2g1xiτ̃16



CHAPTER 4. MULTI-ATOMCAVITY QUANTUMELECTRODYNAMICS ANDMULTI-ATOMBIFURCATION81

dτ̃14 = −3γ⊥τ̃14 − 2γ⊥τ̃5 −∆aτ̃15 − 2g1xrτ̃8 + 2g1xiτ̃11 + 2g2xrτ̃16

dτ̃15 = −3γ⊥τ̃15 − 2γ⊥τ̃6 + ∆aτ̃14 − 2g1xrτ̃9 + 2g1xiτ̃12 − 2g2xiτ̃16

dτ̃16 = −4γ⊥τ̃16 − 2γ⊥τ̃4 − 2γ⊥τ̃7 − 2g1xrτ̃10 + 2g1xiτ̃13 − 2g2xrτ̃14 + 2g2xiτ̃15

(4.7)

factorizable basis: assume ρa = ρa1 ⊗ ρa2 and the standard parametrization of the

atomic density matrices using Pauli matrices, i.e.

ρa = ρa1 ⊗ ρa2 = (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)

= τ1τ5I
1 ⊗ I2 + τ1τ6I

1 ⊗ σ2
x + τ1τ7I

1 ⊗ σ2
y + τ1τ8I

1 ⊗ σ2
z

+ τ2τ5σ
1
x ⊗ I2 + τ2τ6σ

1
x ⊗ σ2

x + τ2τ7σ
1
x ⊗ σ2

y + τ2τ8σ
1
x ⊗ σ2

z

+ τ3τ5σ
1
y ⊗ I2 + τ3τ6σ

1
y ⊗ σ2

x + τ3τ7σ
1
y ⊗ σ2

y + τ3τ8σ
1
y ⊗ σ2

z

+ τ4τ5σ
1
z ⊗ I2 + τ4τ6σ

1
z ⊗ σ2

x + τ4τ7σ
1
z ⊗ σ2

y + τ4τ8σ
1
z ⊗ σ2

z

(4.8)

using the above projection procedure I can derive the following equations of

motion for the various parameters τj

dτ1 = 0

dτ2 = −γ⊥τ2 −∆aτ3 + 2g1τ4xr

dτ3 = −γ⊥τ3 + ∆aτ2 − 2g1τ4xi

dτ4 = −2γ⊥τ1 − 2γ⊥τ4 − 2g1τ2xr + 2g1τ3xi

dτ5 = 0

dτ6 = −γ⊥τ6 −∆aτ7 + 2g2τ8xr

dτ7 = −γ⊥τ7 + ∆aτ6 − 2g2τ8xi

dτ8 = −2γ⊥τ5 − 2γ⊥τ8 − 2g2τ6xr + 2g2τ7xi

(4.9)

Obviously the parametrization based on the factorizable basis is a special case of

the parametrization based on the tensor product basis, in other words the manifold

spanned by the factorizable basis (let’s denote it by N) is a submanifold of the

manifold spanned by the tensor product basis (let’s denote it by M) for which one
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has the following lookup table showing the correspondence between the two bases

tensor product basis parameter physical meaning factorizable basis

I1 ⊗ I2 τ̃1 τ1τ5

σ1
x ⊗ I2 τ̃2 x-spin of Atom #1 τ2τ5

σ1
y ⊗ I2 τ̃3 y-spin of Atom #1 τ3τ5

σ1
z ⊗ I2 τ̃4 z-spin of Atom #1 τ4τ5

I1 ⊗ σ2
x τ̃5 x-spin of Atom #2 τ1τ6

I1 ⊗ σ2
y τ̃6 y-spin of Atom #2 τ1τ7

I1 ⊗ σ2
z τ̃7 z-spin of Atom #2 τ1τ8

σ1
x ⊗ σ2

x τ̃8 τ2τ6

σ1
x ⊗ σ2

y τ̃9 τ2τ7

σ1
x ⊗ σ2

z τ̃10 τ2τ8

σ1
y ⊗ σ2

x τ̃11 τ3τ6

σ1
y ⊗ σ2

y τ̃12 τ3τ7

σ1
y ⊗ σ2

z τ̃13 τ3τ8

σ1
z ⊗ σ2

x τ̃14 τ4τ6

σ1
z ⊗ σ2

y τ̃15 τ4τ7

σ1
z ⊗ σ2

z τ̃16 τ4τ8

Surprisingly, the submanifold seems to be closed w.r.t. the quantum evolution

governed by the master equation, in the sense that the increment dθt projected onto

the tangent space TtM of manifold M would lie within the tangent space TtN of

manifold N which is a subspace of TtM were the system to start from manifold N

i.e. ρt ∈ N . Therefore if the system starts from manifold N then the projection of

its quantum evolution would always remain within manifold N . This is inferred from

the following observation: if I substitute in τ̃i’s in terms of τj’s I then can recover

the atomic projected equations under the tensor product basis using those under the

factorizable basis, i.e. the projection of dθt = L[ρt], where ρt ∈ N , onto the tangent

space of manifold M , TtM , is the same as its projection onto the tangent space of

manifold N , TtN . The detailed proof of the coincidence is as follows

dτ̃1 = d(τ1τ5) = τ1dτ5 + τ5dτ1 = τ1(0) + τ5(0) = 0 (4.10)
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dτ̃2 = d(τ2τ5) = τ2dτ5 + τ5dτ2 = τ2(0) + τ5(−γ⊥τ2 −∆aτ3 + 2g1τ4xr)

= −γ⊥τ2τ5 −∆aτ3τ5 + 2g1xrτ4τ5 = −γ⊥τ̃2 −∆aτ̃3 + 2g1xrτ̃4
(4.11)

dτ̃3 = d(τ3τ5) = τ3dτ5 + τ5dτ3 = τ3(0) + τ5(−γ⊥τ3 + ∆aτ2 − 2g1τ4xi)

= −γ⊥τ3τ5 + ∆aτ2τ5 − 2g1xiτ4τ5 = −γ⊥τ̃3 + ∆aτ̃2 − 2g1xiτ̃4
(4.12)

dτ̃4 = d(τ4τ5) = τ4dτ5 + τ5dτ4 = τ4(0) + τ5(−2γ⊥τ1 − 2γ⊥τ4 − 2g1τ2xr + 2g1τ3xi)

= −2γ⊥τ1τ5 − 2γ⊥τ4τ5 − 2g1xrτ2τ5 + 2g1xiτ3τ5 = −2γ⊥τ̃1 − 2γ⊥τ̃4 − 2g1xrτ̃2 + 2g1xiτ̃3
(4.13)

dτ̃5 = d(τ1τ6) = τ1dτ6 + τ6dτ1 = τ1(−γ⊥τ6 −∆aτ7 + 2g2τ8xr) + τ6(0)

= −γ⊥τ1τ6 −∆aτ1τ7 + 2g2xrτ1τ8 = −γ⊥τ̃5 −∆aτ̃6 + 2g2xrτ̃7
(4.14)

dτ̃6 = d(τ1τ7) = τ1dτ7 + τ7dτ1 = τ1(−γ⊥τ7 + ∆aτ6 − 2g2τ8xi) + τ7(0)

= −γ⊥τ1τ7 + ∆aτ1τ6 − 2g2xiτ1τ8 = −γ⊥τ̃6 + ∆aτ̃5 − 2g2xiτ̃7
(4.15)

dτ̃7 = d(τ1τ8) = τ1dτ8 + τ8dτ1 = τ1(−2γ⊥τ5 − 2γ⊥τ8 − 2g2τ6xr + 2g2τ7xi) + τ8(0)

= −2γ⊥τ1τ5 − 2γ⊥τ1τ8 − 2g2xrτ1τ6 + 2g2xiτ1τ7 = −2γ⊥τ̃1 − 2γ⊥τ̃7 − 2g2xrτ̃5 + 2g2xiτ̃6
(4.16)

dτ̃8 = d(τ2τ6) = τ2dτ6 + τ6dτ2 = τ2(−γ⊥τ6 −∆aτ7 + 2g2τ8xr) + τ6(−γ⊥τ2 −∆aτ3 + 2g1τ4xr)

= (−γ⊥τ2τ6 −∆aτ2τ7 + 2g2xrτ2τ8) + (−γ⊥τ2τ6 −∆aτ3τ6 + 2g1xrτ4τ6)

= (−γ⊥τ̃8 −∆aτ̃9 + 2g2xrτ̃10) + (−γ⊥τ̃8 −∆aτ̃11 + 2g1xrτ̃14)

= −2γ⊥τ̃8 −∆a(τ̃9 + τ̃11) + 2g2xrτ̃10 + 2g1xrτ̃14
(4.17)
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dτ̃9 = d(τ2τ7) = τ2dτ7 + τ7dτ2

= τ2(−γ⊥τ7 + ∆aτ6 − 2g2τ8xi) + τ7(−γ⊥τ2 −∆aτ3 + 2g1τ4xr)

= (−γ⊥τ2τ7 + ∆aτ2τ6 − 2g2xiτ2τ8) + (−γ⊥τ2τ7 −∆aτ3τ7 + 2g1xrτ4τ7)

= (−γ⊥τ̃9 + ∆aτ̃8 − 2g2xiτ̃10) + (−γ⊥τ̃9 −∆aτ̃12 + 2g1xrτ̃15)

= −2γ⊥τ̃9 + ∆a(τ̃8 − τ̃12)− 2g2xiτ̃10 + 2g1xrτ̃15

(4.18)

dτ̃10 = d(τ2τ8) = τ2dτ8 + τ8dτ2

= τ2(−2γ⊥τ5 − 2γ⊥τ8 − 2g2τ6xr + 2g2τ7xi) + τ8(−γ⊥τ2 −∆aτ3 + 2g1τ4xr)

= (−2γ⊥τ2τ5 − 2γ⊥τ2τ8 − 2g2xrτ2τ6 + 2g2xiτ2τ7) + (−γ⊥τ2τ8 −∆aτ3τ8 + 2g1xrτ4τ8)

= (−2γ⊥τ̃2 − 2γ⊥τ̃10 − 2g2xrτ̃8 + 2g2xiτ̃9) + (−γ⊥τ̃10 −∆aτ̃13 + 2g1xrτ̃16)

= −3γ⊥τ̃10 − 2γ⊥τ̃2 −∆aτ̃13 − 2g2xrτ̃8 + 2g2xiτ̃9 + 2g1xrτ̃16
(4.19)

dτ̃11 = d(τ3τ6) = τ3dτ6 + τ6dτ3

= τ3(−γ⊥τ6 −∆aτ7 + 2g2τ8xr) + τ6(−γ⊥τ3 + ∆aτ2 − 2g1τ4xi)

= (−γ⊥τ3τ6 −∆aτ3τ7 + 2g2xrτ3τ8) + (−γ⊥τ3τ6 + ∆aτ2τ6 − 2g1xiτ4τ6)

= (−γ⊥τ̃11 −∆aτ̃12 + 2g2xrτ̃13) + (−γ⊥τ̃11 + ∆aτ̃8 − 2g1xiτ̃14)

= −2γ⊥τ̃11 + ∆a(τ̃8 − τ̃12) + 2g2xrτ̃13 − 2g1xiτ̃14

(4.20)

dτ̃12 = d(τ3τ7) = τ3dτ7 + τ7dτ3

= τ3(−γ⊥τ7 + ∆aτ6 − 2g2τ8xi) + τ7(−γ⊥τ3 + ∆aτ2 − 2g1τ4xi)

= (−γ⊥τ3τ7 + ∆aτ3τ6 − 2g2xiτ3τ8) + (−γ⊥τ3τ7 + ∆aτ2τ7 − 2g1xiτ4τ7)

= (−γ⊥τ̃12 + ∆aτ̃11 − 2g2xiτ̃13) + (−γ⊥τ̃12 + ∆aτ̃9 − 2g1xiτ̃15)

= −2γ⊥τ̃12 + ∆a(τ̃9 + τ̃11)− 2g2xiτ̃13 − 2g1xiτ̃15

(4.21)
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dτ̃13 = d(τ3τ8) = τ3dτ8 + τ8dτ3

= τ3(−2γ⊥τ5 − 2γ⊥τ8 − 2g2τ6xr + 2g2τ7xi) + τ8(−γ⊥τ3 + ∆aτ2 − 2g1τ4xi)

= (−2γ⊥τ3τ5 − 2γ⊥τ3τ8 − 2g2xrτ3τ6 + 2g2xiτ3τ7) + (−γ⊥τ3τ8 + ∆aτ2τ8 − 2g1xiτ4τ8)

= (−2γ⊥τ̃3 − 2γ⊥1̃3− 2g2xrτ̃11 + 2g2xiτ̃12) + (−γ⊥τ̃13 + ∆aτ̃10 − 2g1xiτ̃16)

= −3γ⊥1̃3− 2γ⊥τ̃3 + ∆aτ̃10 − 2g2xrτ̃11 + 2g2xiτ̃12 − 2g1xiτ̃16
(4.22)

dτ̃14 = d(τ4τ6) = τ4dτ6 + τ6dτ4

= τ4(−γ⊥τ6 −∆aτ7 + 2g2τ8xr) + τ6(−2γ⊥τ1 − 2γ⊥τ4 − 2g1τ2xr + 2g1τ3xi)

= (−γ⊥τ4τ6 −∆aτ4τ7 + 2g2xrτ4τ8) + (−2γ⊥τ1τ6 − 2γ⊥τ4τ6 − 2g1xrτ2τ6 + 2g1xiτ3τ6)

= (−γ⊥τ̃14 −∆aτ̃15 + 2g2xrτ̃16) + (−2γ⊥τ̃5 − 2γ⊥τ̃14 − 2g1xrτ̃8 + 2g1xiτ̃11)

= −3γ⊥τ̃14 − 2γ⊥τ̃5 −∆aτ̃15 − 2g1xrτ̃8 + 2g1xiτ̃11 + 2g2xrτ̃16
(4.23)

dτ̃15 = d(τ4τ7) = τ4dτ7 + τ7dτ4

= τ4(−γ⊥τ7 + ∆aτ6 − 2g2τ8xi) + τ7(−2γ⊥τ1 − 2γ⊥τ4 − 2g1τ2xr + 2g1τ3xi)

= (−γ⊥τ4τ7 + ∆aτ4τ6 − 2g2xiτ4τ8) + (−2γ⊥τ1τ7 − 2γ⊥τ4τ7 − 2g1xrτ2τ7 + 2g1xiτ3τ7)

= (−γ⊥τ̃15 + ∆aτ̃14 − 2g2xiτ̃16) + (−2γ⊥τ̃6 − 2γ⊥τ̃15 − 2g1xrτ̃9 + 2g1xiτ̃12)

= −3γ⊥τ̃15 − 2γ⊥τ̃6 + ∆aτ̃14 − 2g1xrτ̃9 + 2g1xiτ̃12 − 2g2xiτ̃16
(4.24)

dτ̃16 = d(τ4τ8) = τ4dτ8 + τ8dτ4

= τ4(−2γ⊥τ5 − 2γ⊥τ8 − 2g2τ6xr + 2g2τ7xi) + τ8(−2γ⊥τ1 − 2γ⊥τ4 − 2g1τ2xr + 2g1τ3xi)

= (−2γ⊥τ̃4 − 2γ⊥τ̃16 − 2g2xrτ̃14 + 2g2xiτ̃15) + (−2γ⊥τ̃7 − 2γ⊥τ̃16 − 2g1xrτ̃10 + 2g1xiτ̃13)

= −4γ⊥τ̃16 − 2γ⊥τ̃4 − 2γ⊥τ̃7 − 2g1xrτ̃10 + 2g1xiτ̃13 − 2g2xrτ̃14 + 2g2xiτ̃15
(4.25)
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The recovery of the atomic projected equations under the tensor product basis

can be interpreted as follows. Obviously N , the factorized basis projection manifold,

is a submanifold of M , the tensor product basis projection manifold. If I start from

a point ρt ∈ N ( M , I will have two projections of dθt, one ΠTtMdθt associated

with the projected equations under the tensor product basis, and the other ΠTtNdθt

associated with the projected equations under the factorizable basis. Note that since

N ( M , TtN ( TtM thus both ΠTtMdθt and ΠTtNdθt lie in TtM therefore I can

make a comparison. The above derivation demonstrates that ΠTtMdθt = ΠTtNdθt ∈
TtN ( TtM and this holds ∀ρt ∈ N ( M . The implication is that, once the system

starts from a factorizable initial condition (ρ = ρa1⊗ρa2⊗ρf ), the quantum evolution

projected onto manifold M is confined to its submanifold N . Graphically what I have

done is the following

dτ̃j

��

= τkdτl + τldτk

��
ΠTtMdθt

?
= ΠTtNdθt

I showed that the question mark is void and the equality is indeed true.

Note that the field tangential vectors of TtM and TtN are the same for any ρt ∈
N ( M as the differentiations involve no atomic parameters thus do not distinguish

between different parametrizations of ρa.

In fact one can prove directly (albeit tediously) the claim of the projected quantum

evolution confined to the submanifold N . The detailed proof through term-by-term

examination is given in the appendix.

4.3 Proof of the Scaling Law of the Cooperativity

with the Number of Atoms

Here is another example demonstrating the power of assuming a proper parametriza-

tion form of the system density matrix for showing certain properties of the quantum

dynamics. In this section I will extend the manifold projection technique to cavity
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QED systems with arbitrary number of atoms (denoted by N) and show why the co-

operativity, a measure of the strength of the collective interaction between the atoms

and the cavity field, scales linearly with the number of atoms N or equivalently the

effective coupling constant scales linearly with the square root of the number of atoms

under weak excitation condition, the same condition as that at which the factorization

approximation necessary for deriving the Maxwell-Bloch equations is valid.

Under weak excitation assumption, there is at most one out of the N atoms

that can be excited, which suggests the following manifold for projecting the master

equation: again let the system density matrix be in a factorizable form and assume

the cavity field is always in a coherent state i.e. ρ = ρa ⊗ ρf = ρa ⊗ |α〉〈α| where

α = xr + ixi is a complex number representing the amplitude of the coherent state,

and let the atomic density matrix ρa be spanned by the following 4 bases (s1i stands

for transposition (1i) in symmetric group SN)

P1 = |g〉〈g| = | ↓↓ · · · ↓〉〈↓↓ · · · ↓ |

P2 = |g〉〈e| = | ↓↓ · · · ↓〉

(
1√
N

N∑
k=1

〈↑↓ · · · ↓ |s†1k

)

P3 = |e〉〈g| =

(
1√
N

N∑
k=1

s1k| ↑↓ · · · ↓〉

)
〈↓↓ · · · ↓ |

P4 = |e〉〈e| =

(
1√
N

N∑
k=1

s1k| ↑↓ · · · ↓〉

)(
1√
N

N∑
l=1

〈↑↓ · · · ↓ |s†1l

)

i.e. ρa =
∑4

i=1 tiPi. More specifically,

ρa = τ1| ↓↓ · · · ↓〉〈↓↓ · · · ↓ |+ τ2| ↓↓ · · · ↓〉

(
1√
N

N∑
k=1

〈↑↓ · · · ↓ |s†1k

)

+ τ3

(
1√
N

N∑
k=1

s1k| ↑↓ · · · ↓〉

)
〈↓↓ · · · ↓ |

+ τ4

(
1√
N

N∑
k=1

s1k| ↑↓ · · · ↓〉

)(
1√
N

N∑
l=1

〈↑↓ · · · ↓ |s†1l

) (4.26)
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Choose τ1, τ4 to be real numbers and τ2, τ3 complex conjugates thus the Hermiticity

(ρa)
† = ρa is preserved.

Using the following multi-atom master equation

d

dt
ρ = −i(Hρ−ρH)+κ(2aρa†−a†aρ−ρa†a)+(γ/2)

N∑
i=1

(
2σi
−ρσ

i
+ − σi

+σ
i
−ρ− ρσi

+σ
i
−
)

(4.27)

where

H = ∆ca
†a + ∆a

N∑
i=1

σi
+σ

i
− + i

N∑
i=1

gi(a
†σi
− − aσi

+) + i(Ea† − E∗a) (4.28)

with the parametrization form ρ =
∑
τjPj⊗|α〉〈α| for the system density matrix and

the associated partial derivatives

∂ρ

∂τj
= Pj ⊗ |α〉〈α|

∂ρ

∂xr
= ρa ⊗ [(a† − α∗)|α〉〈α|+ |α〉〈α|(a− α)]

∂ρ

∂xi
= ρa ⊗ [i(a† − α∗)|α〉〈α| − i|α〉〈α|(a− α)]

(4.29)

following the recipe for deriving projected equations I have the following differential

equations for the atomic parameters τj

dτj = M−1〈 ∂ρ
∂τj

, dρ〉 = M−1 Tr
[
(Pj)

† ⊗ |α〉〈α|dρ
]

= Tra
[
Trf

[
(Pj)

† ⊗ |α〉〈α|dρ
]]

= M−1 Tra

{
−i∆a(Pj)

†
N∑
i=1

(
σi

+σ
i
−ρa − ρaσi

+σ
i
−
)

+
γ

2
(Pj)

†
N∑
i=1

(
2σi
−ρaσ

i
+ − σi

+σ
i
−ρa − ρaσi

+σ
i
−
)

+(Pj)
†

[
α∗

(
N∑
i=1

giσ
i
−ρa − ρa

N∑
i=1

giσ
i
−

)
− α

(
N∑
i=1

giσ
i
+ρa − ρa

N∑
i=1

giσ
i
+

)]}
(4.30)

where the coefficient matrix Mkl = 〈 ∂ρ
∂τk
, ∂ρ
∂τl
〉, and the following differential equations
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concerning the field parameters xr and xi

dxr = N−1r 〈
∂ρ

∂xr
, dρ〉 = N−1r 〈ρa ⊗ [(a† − α∗)|α〉〈α|+ |α〉〈α|(a− α)], dρ〉

= N−1r Tr
[
(ρa)

† ⊗ [|α〉〈α|(a− α) + (a† − α∗)|α〉〈α|]dρ
]

= −κxr + ∆cxi +N−1r Tra

[
(ρa)

†

(
N∑
i=1

giσ
i
−ρa + ρa

N∑
i=1

giσ
i
+

)]
+ <(E)

(4.31)

where Nr = 2Tr[(ρa)
†ρa], and

dxi = N−1i 〈
∂ρ

∂xi
, dρ〉 = N−1i 〈ρa ⊗ [i(a† − α∗)|α〉〈α| − i|α〉〈α|(a− α)], dρ〉

= N−1i Tr
[
(ρa)

† ⊗ [−i|α〉〈α|(a− α) + i(a† − α∗)|α〉〈α|]dρ
]

= −κxi −∆cxr −N−1i iTra

[
(ρa)

†

(
N∑
i=1

giσ
i
−ρa − ρa

N∑
i=1

giσ
i
+

)]
+ =(E)

(4.32)

where Ni = 2Tr[(ρa)
†ρa].

Substitute in the 4 bases and evaluate the various traces onewould then have the

following projected equations for the atomic parameters τj

dτ1 = +2γ⊥τ4 +
√
Ngτ2α +

√
Ngτ3α

∗

dτ2 = (−γ⊥ + i∆a)τ2 −
√
Ngτ1α

∗ +
√
Ngτ4α

∗

dτ3 = (−γ⊥ − i∆a)τ3 −
√
Ngτ1α +

√
Ngτ4α

dτ4 = −2γ⊥τ4 −
√
Ngτ2α−

√
Ngτ3α

∗

(4.33)

and those for the field parameter xr and xi

dxr = −κxr + ∆cxi +N−1r Tra

[
(ρa)

†

(
N∑
i=1

giσ
i
−ρa + ρa

N∑
i=1

giσ
i
+

)]
+ <(E)

= −κxr + ∆cxi +

√
Ng(τ2 + τ3)(τ1 + τ4)

2(τ1t1 + τ2τ3 + τ3τ2 + τ4t4)
+ <(E)

(4.34)
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dxi = −κxi −∆cxr −N−1i iTra

[
(ρa)

†

(
N∑
i=1

giσ
i
−ρa − ρa

N∑
i=1

giσ
i
+

)]
+ =(E)

= −κxi −∆cxr +

√
Ngi(τ2 − τ3)(τ1 + τ4)

2(τ1t1 + τ2τ3 + τ3τ2 + τ4t4)
+ =(E)

(4.35)

The explicit dependence of the effective coupling constant on the number of

atoms—the effective coupling constant
√
Ng scales with the square root of the number

of atoms—can then been easily seen from the above differential equations.

4.4 Conclusion and Discussion

In this chapter I presented some initial effort in exploring the multi-atom cavity

QED. The number of atoms as an extra degree of freedom complicates the model

yet produces new bifurcation-like phenomenon that invites further investigation. In

addition despite the extra variables introduced with the addition of atoms there is

still chance of deriving useful algebraic properties to facilitate the examination of the

dynamics. Two of such, the closed submanifold and the scaling law of the effective

coupling constant, were presented in this chapter. Future work in this direction is

worthy as the properties would be able to provide insights that cannot be gained via

simulation.



Chapter 5

Summary and Discussion

In this dissertation I have presented two device proposals based on the understanding

of bifurcation-like phenomena in the quantum model as well as its semi-classical

limit. They demonstrate the potential of cavity quantum electrodynamics to serve

as an ideal theoretical platform for designing ultra-low energy all-optical information

processing devices. The study on multi-atom cavity quantum electrodynamics also

suggests the possibility of existing new bifurcation-like phenomenon that can provide

new physical basis for device applications.

In terms of the physics, there seems to be a great difference between the quantum

analog of absorptive bistability and that of Hopf bifurcation. In the former case the

system density matrix is very close to a factorizable form ρ = ρa ⊗ ρf throughout

the dynamics thus permits the factorization of the expectations of operator prod-

ucts. This is confirmed by the goodness of approximation of the reduced order model

derived. In contrast the system density matrix is far from being factorizable in the

latter case, manifested in the difference in the small-signal amplification prediction

of the quantum model and that of the semi-classical model. However it is intuitive

why the atom-field correlation is so important in the latter case—the self-oscillation

mechanism is based on a certain phase relation between the atom and the field and a

definite phase relation requires coherent interaction between them prevailing over the

incoherent dissipation which necessarily gives rise to strong correlation. Nonetheless

in the path of discovering this factorizable/non-factorizable property of the system
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density matrix there seems to emerge three common themes. 1) the cavity field

being in a non-coherent state is closely associated with the system density matrix

being non-factorizable. 2) for coherent state dynamics the quantum description of

the field (i.e. representing the field state by a wave function or a density matrix) is

not necessary and mean field equation is adequate for describing the dynamics. 3)

both investigations rely upon the spin precession picture (spontaneous emission in-

terrupting precession for explaining the automatic switching in absorptive bistability,

and phase lag resulted from finite speed of precession explaining the self-oscillation

in Hopf bifurcation). This suggests spin precession be a not only intuitive but also

useful perspective to take for deciphering new dynamics arisen from the atom-field

interaction.

In addition to the semi-classical Maxwell-Bloch equations and the multi-atom

quantum master equation, the manifold projection technique provides a powerful

analytical tool to explore new bifurcation-like phenomenon in multi-atom quantum

electrodynamics. However this technique is found to be not easily adaptable to ad-

dress the atom-field correlation. This is due to the fact that there are infinitely many

possible quantum states that can yield the same set of operator expectations e.g.

the (〈x〉, 〈σz〉, 〈xσz〉) triplet. In fact close examination of the parametrization reveals

that, although there is much flexibility in assuming a parametrization form for the

system density matrix, the parameters are all the eigenvalues/expectations of physical

observables, which can be regarded as the “rigidity” of the technique. Nevertheless

this is a rather general challenge for deriving a reduced order model. That is, besides

the expectations of operators, what other variables/parameters we can use to describe

the quantum state. This remains an open question and invites further investigation.

There are other open questions that need to be answered by future work, such as

whether and how a reduced order model can help elucidate the underlying physics,

how to explain the quantum-classical discrepancy in the pre-Hopf amplification pro-

posal, what is the origin of the new bifurcation-like phenomenon that exhibits explicit

dependence on the number of atoms. Although the discussions in the respective

chapters provide some clues, there is a lot more work to be done in order to reach a

satisfactory answer.



Appendix A

Proof of the Submanifold Closed

under the Projected Quantum

Evolution

Substitute in the two-atom master equation the parametrization under the factoriz-

able basis

ρ = (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

I have

dθt = −i∆c(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†a|α〉〈α|

− i∆aσ
1
+σ

1
−(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− i∆aσ
2
+σ

2
−(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

+ (g1σ
1
− + g2σ

2
−)(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|

− (g1σ
1
+ + g2σ

2
+)(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a|α〉〈α|

+ (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ (Ea†|α〉〈α| − E∗a|α〉〈α|)

+ i∆c(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a†a

+ i∆a(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)σ

1
+σ

1
− ⊗ |α〉〈α|
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+ i∆a(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)σ

2
+σ

2
− ⊗ |α〉〈α|

− (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I
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2
x + τ7σ

2
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2
z)(g1σ

1
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2
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x + τ3σ
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2
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2
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+ + g2σ

2
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2
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Using the algebraic properties of Pauli matrices as well as those of coherent state

vectors a|α〉 = α|α〉 and 〈α|a† = 〈α|α∗, I can simplify dθt to
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1
− +

τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

+ i∆a(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
− + iτ7σ

2
− +

τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

− g1
2

(2τ1σ
1
− + τ2I

1 + τ2σ
1
z − iτ3I1 − iτ3σ1

z − 2τ4σ
1
−)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|α∗

− g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
− + τ6I

2 + τ6σ
2
z − iτ7I2 − iτ7σ2

z − 2τ8σ
2
−)⊗ |α〉〈α|α∗

+
g1
2

(2τ1σ
1
+ + τ2I

1 − τ2σ1
z + iτ3I

1 − iτ3σ1
z + 2τ4σ

1
+)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a

+
g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
+ + τ6I

2 − τ6σ2
z + iτ7I

2 − iτ7σ2
z + 2τ8σ

2
+)⊗ |α〉〈α|a

− (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ (|α〉〈α|Eα∗ − |α〉〈α|E∗a)

+ 2κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ α|α〉〈α|α∗

− κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†α|α〉〈α|

− κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|α∗a

+ γ⊥(τ1I
1 − τ1σ1

z + τ4I
1 − τ4σ1

z)⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− γ⊥(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
+ − iτ3σ1

+ +
τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− γ⊥(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
− + iτ3σ

1
− +

τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

+ γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 − τ5σ2
z + τ8I

2 − τ8σ2
z)⊗ |α〉〈α|

− γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
+ − iτ7σ2

+ +
τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

− γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
− + iτ7σ

2
− +

τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

Notice that every term in the expression of dρ above has an atomic density matrix

component being a linear combination of either σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z) or

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z) ⊗ σ2

j where the subscripts i, j ∈ {0, 1, 2, 3} and 0, 1, 2, 3

denote the Pauli matrices {I, σx, σy, σz} respectively. On the other hand the tangent

space TtN is spanned by the following vectors

σ1
i⊗(τ5I

2+τ6σ
2
x+τ7σ

2
y+τ8σ

2
z)⊗|α〉〈α|, (τ1I

1+τ2σ
1
x+τ3σ

1
y+τ4σ

1
z)⊗σ2

j⊗|α〉〈α|, i, j ∈ {0, 1, 2, 3}

(τ1I
1+τ2σ

1
x+τ3σ

1
y+τ4σ

1
z)⊗(τ5I

2+τ6σ
2
x+τ7σ

2
y+τ8σ

2
z)⊗[(a†−α∗)|α〉〈α|+|α〉〈α|(a−α)]
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(τ1I
1+τ2σ

1
x+τ3σ

1
y+τ4σ

1
z)⊗(τ5I

2+τ6σ
2
x+τ7σ

2
y+τ8σ

2
z)⊗[i(a†−α∗)|α〉〈α|−i|α〉〈α|(a−α)]

Thus it is plausible that, ∀ρt ∈ N the projection of dθt = L[ρt] on the tangent space

TtM , ΠTtMdθt ∈ TtN . The rigorous proof is as follows

Examine term by term. The following terms (the first category) obviously lie in

TtN as they can readily be written as a linear combination of σ1
i ⊗ (τ5I

2 + τ6σ
2
x +

τ7σ
2
y + τ8σ

2
z)⊗ |α〉〈α| and (τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|

− i∆a(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
+ − iτ3σ1

+ +
τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− i∆a(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
+ − iτ7σ2

+ +
τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

− g1
2

(2τ1σ
1
+ + τ2I

1 + τ2σ
1
z + iτ3I

1 + iτ3σ
1
z − 2τ4σ

1
+)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ α|α〉〈α|

− g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
+ + τ6I

2 + τ6σ
2
z + iτ7I

2 + iτ7σ
2
z − 2τ8σ

2
+)⊗ α|α〉〈α|

− (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ (−E∗α|α〉〈α|)

+ i∆a(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
− + iτ3σ

1
− +

τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

+ i∆a(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
− + iτ7σ

2
− +

τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

− g1
2

(2τ1σ
1
− + τ2I

1 + τ2σ
1
z − iτ3I1 − iτ3σ1

z − 2τ4σ
1
−)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|α∗

− g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
− + τ6I

2 + τ6σ
2
z − iτ7I2 − iτ7σ2

z − 2τ8σ
2
−)⊗ |α〉〈α|α∗

− (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|Eα∗

+ 2κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ α|α〉〈α|α∗

+ γ⊥(τ1I
1 − τ1σ1

z + τ4I
1 − τ4σ1

z)⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− γ⊥(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
+ − iτ3σ1

+ +
τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

− γ⊥(
τ1
2
I1 +

τ1
2
σ1
z + τ2σ

1
− + iτ3σ

1
− +

τ4
2
I1 +

τ4
2
σ1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|

+ γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 − τ5σ2
z + τ8I

2 − τ8σ2
z)⊗ |α〉〈α|

− γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
+ − iτ7σ2

+ +
τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

− γ⊥(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (

τ5
2
I2 +

τ5
2
σ2
z + τ6σ

2
− + iτ7σ

2
− +

τ8
2
I2 +

τ8
2
σ2
z)⊗ |α〉〈α|

The following terms (the second category) require a bit of manipulation to prove
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to be in TtN

− i∆c(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†α|α〉〈α|

+ (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ Ea†|α〉〈α|

+ i∆c(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|α∗a

+ (τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|E∗a

− κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†α|α〉〈α|

− κ(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|α∗a

which are proportional to either ρa ⊗ a†|α〉〈α| or ρa ⊗ |α〉〈α|a, where ρa = (τ1I
1 +

τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z). Thus to show that they lie in TtN

it suffices to show ρa ⊗ a†|α〉〈α| ∈ TtN and ρa ⊗ |α〉〈α|a ∈ TtN , which is not hard to

prove by manipulating the following two spanning vectors of TtN

Pr = ρa⊗[(a†−α∗)|α〉〈α|+|α〉〈α|(a−α)], Pi = ρa⊗[i(a†−α∗)|α〉〈α|−i|α〉〈α|(a−α)]

From the above expression I have

iPr + Pi = ρa ⊗ [2i(a† − α∗)|α〉〈α|] = 2iρa ⊗ a†|α〉〈α| − 2iρa ⊗ α∗|α〉〈α| ⇒

2iρa ⊗ a†|α〉〈α| = iPr + Pi + 2iρa ⊗ α∗|α〉〈α| ⇒

ρa ⊗ a†|α〉〈α| =
1

2
(Pr − iPi) + ρa ⊗ α∗|α〉〈α|

=
1

2
(Pr − iPi) + α∗τ1[I

1 ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ α∗τ2[σ
1
x ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ α∗τ3[σ
1
y ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ α∗τ4[σ
1
z ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|] ∈ TtN

similarly

iPr − Pi = ρa ⊗ [2i|α〉〈α|(a− α)] = 2iρa ⊗ |α〉〈α|a− 2iρa ⊗ α|α〉〈α| ⇒

2iρa ⊗ |α〉〈α|a = iPr − Pi + 2iρa ⊗ α|α〉〈α| ⇒
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ρa ⊗ |α〉〈α|a =
1

2
(Pr + iPi) + ρa ⊗ α|α〉〈α|

=
1

2
(Pr − iPi) + ατ1[I

1 ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ ατ2[σ
1
x ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ ατ3[σ
1
y ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|]

+ ατ4[σ
1
z ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|] ∈ TtN

thus indeed ρa ⊗ a†|α〉〈α| ∈ TtN and ρa ⊗ |α〉〈α|a ∈ TtN .

The following terms (the third category) require explicit evaluation of the tangent

component in TtM i.e. need to be projected onto TtM

+
g1
2

(2τ1σ
1
− + τ2I

1 − τ2σ1
z − iτ3I1 + iτ3σ

1
z + 2τ4σ

1
−)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|

+
g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
− + τ6I

2 − τ6σ2
z − iτ7I2 + iτ7σ

2
z + 2τ8σ

2
−)⊗ a†|α〉〈α|

+
g1
2

(2τ1σ
1
+ + τ2I

1 − τ2σ1
z + iτ3I

1 − iτ3σ1
z + 2τ4σ

1
+)⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a

+
g2
2

(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ (2τ5σ

2
+ + τ6I

2 − τ6σ2
z + iτ7I

2 − iτ7σ2
z + 2τ8σ

2
+)⊗ |α〉〈α|a

Notice that these terms are linear combinations of

σ1
i ⊗(τ5I

2 +τ6σ
2
x+τ7σ

2
y +τ8σ

2
z)⊗a†|α〉〈α|, (τ1I

1 +τ2σ
1
x+τ3σ

1
y +τ4σ

1
z)⊗σ2

j ⊗a†|α〉〈α|

σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗|α〉〈α|a, (τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗σ2

j ⊗|α〉〈α|a

where i, j ∈ {0, 1, 2, 3}. Therefore to show that their projected components lie in TtN

it suffices to show that

ΠTtM [σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|] ∈ TtN

ΠTtM [(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|] ∈ TtN

ΠTtM [σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a] ∈ TtN

ΠTtM [(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|a] ∈ TtN



APPENDIX A. PROOFOF THE SUBMANIFOLD CLOSED UNDER THE PROJECTEDQUANTUMEVOLUTION99

To show for example ΠTtM [σ1
i ⊗(τ5I

2+τ6σ
2
x+τ7σ

2
y+τ8σ

2
z)⊗a†|α〉〈α|] ∈ TtN it suffices

to check its projection onto the 16 spanning vectors Pkl = σ1
k ⊗ σ2

l ⊗ |α〉〈α| since the

spanning vectors

Pr = ρa⊗[(a†−α∗)|α〉〈α|+|α〉〈α|(a−α)], Pi = ρa⊗[i(a†−α∗)|α〉〈α|−i|α〉〈α|(a−α)]

are common to TtM and TtN . By the trace property of Pauli matrices, among the

16 spanning vectors, only 4 have nonzero projected components

Tr
{

(Pkl)
†[σ1

i ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|]

}
= Tr

{
(σ1

k ⊗ σ2
l ⊗ |α〉〈α|)[σ1

i ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|]

}
= Tr

{
σ1
kσ

1
i ⊗ σ2

l (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a†|α〉〈α|

}
= Tr

{
σ1
kσ

1
i ⊗ σ2

l (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ α∗|α〉〈α|

}
= Tr1[σ

1
kσ

1
i ] · Tr2[σ

2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)] · Trf [α

∗|α〉〈α|]

= 2α∗δki Tr2[σ
2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)]

therefore

ΠTtM [σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|]

=
3∑
l=0

{
3∑

k=0

〈Pkl, (τ5I2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ a†|α〉〈α|〉Pkl

}
+ Pr, Pi components

=
3∑
l=0

{
2α∗Tr2[σ

2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)]Pil

}
+ Pr, Pi components

= 2α∗2τ5(σ
1
i ⊗ I2 ⊗ |α〉〈α|) + 2α∗2τ6(σ

1
i ⊗ σ2

x ⊗ |α〉〈α|)

+ 2α∗2τ7(σ
1
i ⊗ σ2

y ⊗ |α〉〈α|) + 2α∗2τ8(σ
1
i ⊗ σ2

z ⊗ |α〉〈α|) + Pr, Pi components

= 4α∗[σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|] + Pr, Pi components ∈ TtN

Similarly

Tr
{

(Pkl)
†[σ1

i ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a]

}
= Tr

{
(σ1

k ⊗ σ2
l ⊗ |α〉〈α|)[σ1

i ⊗ (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a]

}
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= Tr
{
σ1
kσ

1
i ⊗ σ2

l (τ5I
2 + τ6σ

2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a

}
= Tr1[σ

1
kσ

1
i ] · Tr2[σ

2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)] · Trf [|α〉〈α|a]

= 2αδki Tr2[σ
2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)]

therefore

ΠTtM [σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a]

=
3∑
l=0

{
3∑

k=0

〈Pkl, (τ5I2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|a〉Pkl

}
+ Pr, Pi components

=
3∑
l=0

{
2αTr2[σ

2
l (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)]Pil

}
+ Pr, Pi components

= 2α2τ5(σ
1
i ⊗ I2 ⊗ |α〉〈α|) + 2α2τ6(σ

1
i ⊗ σ2

x ⊗ |α〉〈α|)

+ 2α2τ7(σ
1
i ⊗ σ2

y ⊗ |α〉〈α|) + 2α2τ8(σ
1
i ⊗ σ2

z ⊗ |α〉〈α|) + Pr, Pi components

= 4α[σ1
i ⊗ (τ5I

2 + τ6σ
2
x + τ7σ

2
y + τ8σ

2
z)⊗ |α〉〈α|] + Pr, Pi components ∈ TtN

Also to show ΠTtM [(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|] ∈ TtN it suffices to

check its projection onto the 16 spanning vectors Pkl = σ1
k ⊗ σ2

l ⊗ |α〉〈α| since the

spanning vectors

Pr = ρa⊗[(a†−α∗)|α〉〈α|+|α〉〈α|(a−α)], Pi = ρa⊗[i(a†−α∗)|α〉〈α|−i|α〉〈α|(a−α)]

are common to TtM and TtN . By the trace property of Pauli matrices, among the

16 spanning vectors, only 4 have nonzero projected components

Tr
{

(Pkl)
†[(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|]
}

= Tr
{

(σ1
k ⊗ σ2

l ⊗ |α〉〈α|)[(τ1I1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|]
}

= Tr
{
σ1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

l σ
2
j ⊗ |α〉〈α|a†|α〉〈α|

}
= Tr

{
σ1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

l σ
2
j ⊗ α∗|α〉〈α|

}
= Tr1[σ

1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)] · Tr2[σ

2
l σ

2
j ] · Trf [α

∗|α〉〈α|]

= 2α∗δlj Tr1[σ
1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)]
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therefore

ΠTtM [(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|]

=
3∑

k=0

{
3∑
l=0

〈Pkl, (τ1I1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ a†|α〉〈α|〉Pkl

}
+ Pr, Pi components

=
3∑

k=0

{
2α∗Tr1[σ

1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)]Pkj

}
+ Pr, Pi components

= 2α∗2τ1(I
1 ⊗ σ2

j ⊗ |α〉〈α|) + 2α∗2τ2(σ
1
x ⊗ σ2

j ⊗ |α〉〈α|)

+ 2α∗2τ3(σ
1
y ⊗ σ2

j ⊗ |α〉〈α|) + 2α∗2τ4(σ
1
z ⊗ σ2

j ⊗ |α〉〈α|) + Pr, Pi components

= 4α∗[(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|] + Pr, Pi components ∈ TtN

Similarly

Tr
{

(Pkl)
†[(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|a]
}

= Tr
{

(σ1
k ⊗ σ2

l ⊗ |α〉〈α|)[(τ1I1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|a]
}

= Tr
{
σ1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

l σ
2
j ⊗ |α〉〈α|a

}
= Tr1[σ

1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)] · Tr2[σ

2
l σ

2
j ] · Trf [|α〉〈α|a]

= 2αδlj Tr1[σ
1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)]

therefore

ΠTtM [(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|a]

=
3∑

k=0

{
3∑
l=0

〈Pkl, (τ1I1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|a〉Pkl

}
+ Pr, Pi components

=
3∑

k=0

{
2αTr1[σ

1
k(τ1I

1 + τ2σ
1
x + τ3σ

1
y + τ4σ

1
z)]Pkj

}
+ Pr, Pi components

= 2α2τ1(I
1 ⊗ σ2

j ⊗ |α〉〈α|) + 2α2τ2(σ
1
x ⊗ σ2

j ⊗ |α〉〈α|)

+ 2α2τ3(σ
1
y ⊗ σ2

j ⊗ |α〉〈α|) + 2α2τ4(σ
1
z ⊗ σ2

j ⊗ |α〉〈α|) + Pr, Pi components

= 4α[(τ1I
1 + τ2σ

1
x + τ3σ

1
y + τ4σ

1
z)⊗ σ2

j ⊗ |α〉〈α|] + Pr, Pi components ∈ TtN
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Hence by examining the master equation term by term (which were grouped into

three categories for using different methods to prove) after the substitution of the

parametrization under the factorizable basis, one sees that indeed the M -manifold

projected component of the quantum evolution increment ΠTtMdθt does lie within

the sub-tangent space TtN whenever the system state lies in N .



Bibliography

[1] Yeong-Dae Kwon. Cavity Nonlinear Optics with a Cold Atom Ensemble on an

Atom Chip. PhD thesis, Stanford University, 2013.

[2] H. J. Carmichael. An Open Systems Approach to Quantum Optics. Springer-

Verlag, 1993.

[3] M. A. Armen and H. Mabuchi. Low-lying bifurcations in cavity quantum elec-

trodynamics. Phys. Rev. A, 73:063801, Jun 2006.

[4] Luigi Lugiato. Theory of optical bistability. Progress in Optics, 21:69–216, 1984.

[5] Hideo Mabuchi. Cavity-qed models of switches for attojoule-scale nanophotonic

logic. Phys. Rev. A, 80:045802, Oct 2009.

[6] J. Kerckhoff, M. A. Armen, and H. Mabuchi. Resonance behaviour near hopf

bifurcations in the electrical conductivity of bsn crystals. Opt. Express, 19:24468–

24482, 2011.

[7] Hideo Mabuchi. Coherent-feedback control strategy to suppress spontaneous

switching in ultralow power optical bistability. Appl. Phys. Lett., 98:193109, Oct

2011.

[8] Tan M. Sze. A computational toolbox for quantum and atomic optics. J. Opt.

B: Quantum and Semiclasscal Optics, 1:424, 1999.

[9] E. M. Purcell. Proceedings of the american physical society. Phys. Rev., 69:674–

674, Jun 1946.

103



BIBLIOGRAPHY 104

[10] H. M. Wiseman and G. J. Milburn. Quantum theory of field-quadrature mea-

surements. Phys. Rev. A, 47:642–662, Jan 1993.

[11] P Alsing and HJ Carmichael. Spontaneous dressed-state polarization of a coupled

atom and cavity mode. Quantum Optics: Journal of the European Optical Society

Part B, 3(1):13, 1991.

[12] S. H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry and Engineering. Westview Press, 2001.

[13] L. Perko. Differential Equations and Dynamical Systems. Springer-Verlag, 2006.

[14] Kurt Wiesenfeld and Bruce McNamara. Small-signal amplification in bifurcating

dynamical systems. Phys. Rev. A, 33:629–642, Jan 1986.

[15] R. B. Karabalin, Ron Lifshitz, M. C. Cross, M. H. Matheny, S. C. Masmani-

dis, and M. L. Roukes. Signal amplification by sensitive control of bifurcation

topology. Phys. Rev. Lett., 106:094102, Feb 2011.

[16] C. H. Tseng, D. Enzer, G. Gabrielse, and F. L. Walls. 1-bit memory using one

electron: Parametric oscillations in a penning trap. Phys. Rev. A, 59:2094–2104,

Mar 1999.

[17] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frun-

zio, and M. H. Devoret. Rf-driven josephson bifurcation amplifier for quantum

measurement. Phys. Rev. Lett., 93:207002, Nov 2004.

[18] Martin S. and Martienssen W. Resonance behaviour near hopf bifurcations in the

electrical conductivity of bsn crystals. Z. Phys. B-Condensed Matter, 68:299–304,

Oct 1986.

[19] Karl Johan Aström and Richard M. Murray. Feedback Systems: An Introduction

for Scientists and Engineers. Princeton University Press, 2008.

[20] D. F. Walls and G. J. Milburn. Quantum Optics. Springer, 1995.



BIBLIOGRAPHY 105

[21] Anna Sanpera, Rolf Tarrach, and Guifré Vidal. Local description of quantum
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