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Abstract

The field of quantum metrology concerns the physical measurement of sensors with a pre-

cision comparable to fundamental limits set by quantum mechanics. It is possible to out-

perform näıve interpretations of these limits by using entangled states of the sensor system.

One example is that of a spin-squeezed state, in which the uncertainty of one variable is

decreased at the expense of another while still obeying Heisenberg’s uncertainty principle,

improving rotation sensitivity along a chosen axis. These states are potentially useful in

devices including atomic clocks, inertial sensors, and magnetometers.

Any model of a quantum metrology device must respect the fact that physical measure-

ments are not passive, as imagined classically, but necessarily invasive. Far from being a

negative feature, well-understood quantum measurement can conditionally drive a system

into desirable entangled states, including spin-squeezed states. Furthermore, the fundamen-

tal randomness of this process can, in principle, be removed with real-time feedback control,

motivating an adaptation of classical feedback concepts to the quantum realm.

In this thesis, I describe these ideas in the context of one experimental example. A

laser-cooled cloud of cesium spins is polarized along one axis via optical pumping and,

subsequently, a linearly polarized far-off resonant probe beam traverses the sample. Due

to the interaction Hamiltonian, the optical polarization rotates by an amount nominally

proportional to one spin component of the collective spin state, enacting a weak, continuous,

nondemolition measurement of that collective variable. This optical Faraday rotation is then

measured with a polarimeter and the inherently noisy result used to condition the collective

atomic state via a quantum filter, or stochastic master equation. Ideally, this process is

capable of producing spin-squeezed states via the measurement itself.

The details of this measurement are investigated in depth, including a derivation of the

nonideal polarizability Hamiltonian, an analysis of the projection process with control, and

a derivation of the magnetometry sensitivity. Experimentally, we demonstrate continuous



vii

measurement of the collective spin state with a large single-shot signal-to-noise ratio and

verify many predictions of the model. Finally, we describe attempts to observe the atomic

projection noise, which would infer the preparation of spin-squeezed states.
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Chapter 1

Introduction

Besides the ability to write successful grant proposals, the most important skill of a scientist

is the ability to shamelessly ask simple questions until it becomes clear what is, and what

is not, known about a particular subject. For me, the appeal of physics is the fact that

seemingly simple questions, however well disguised in details, continue to both confuse and

excite those at the leading edge of research.

Prior to graduate school, I became interested with the degree of confusion that basic

questions concerning the role of measurement in quantum mechanics seemed to elicit from

people whom I thought should know better. It seemed that the confusion was greatest the

further removed the discussion was from a particular experiment. Without the context of

a real problem, conversations about quantum measurement and physical uncertainty would

become fruitless and, even worse, philosophical. Thus, I was pushed towards increasingly

applied questions of the theory, grounded in technological relevance. I became less interested

nontestable philosophical questions and even in testable questions that aim to confirm the

theory, many of which have been examined in landmark experiments over the last century.

Rather, I was happy to assume the theory and use it to do something of practical use.

With this attitude, I ended up joining Prof. Hideo Mabuchi’s group at Caltech primarily

for the opportunity to perform experiments motivated by real, technical quantum measure-

ment problems. Hideo’s program was especially appealing for the fact that it aimed to

unify perspectives of quantum measurement to engineering-minded modes of thought from

classical estimation and control theories. Further, it seemed a fun goal to control quan-

tum systems by interpreting the noisy measurement record and using feedback to adjust

an actuator in real time, despite the presence of inherent uncertainty. If this could be done

successfully, we would not have to convince others that we understood the measurement
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process because we would, in effect, be convincing the system itself.

Although these principles are applicable to many technologies, my interests have also

become focused on the subfield of quantum metrology, which concerns the use of quantum

systems as sensors. Like quantum communication, the goals in this field are generally more

near-term than those of quantum computation. In this thesis, I investigate one quantum

metrology problem in depth, as I describe the continuous optical measurement of a cold

atomic spin cloud near fundamental noise limits, with immediate applications to magne-

tometry. As specific as this treatment is, hopefully it will be of use to researchers seeking

a practical implementation of general quantum measurement concepts.

1.1 Getting to the Point

After several related projects, I eventually came to focus on an research problem that

essentially amounts to, “How well can one measure a magnetic field with a compass needle?”

This is related to the question of, “How well can one measure the direction that a compass

needle points?” In this case, the compass needle of interest consists of a collection of laser-

cooled atomic spins all polarized initially along a known direction. (For a discussion of how

gas phase atomic spins differ dynamically from an actual compass needle, where the spins

are fixed to an inertial mass, see [1].) An unknown field can be inferred from a measurement

of the magnetic field induced Larmor precession of the spins. In practice, the measurement

is inherently uncertain because quantum mechanics imposes a limit upon how well one

can measure the direction that a given number of spins point in space. This seemingly

specific scenario is actually representative of the general field of quantum metrology, each

application of which essentially concerns the measurement of rotation angles in the presence

of unavoidable system noise. Many useful devices fall under this basic category, including

magnetometers, atomic clocks, and inertial gravity sensors.

Now, to get more specific about how well a collection of spins can point, consider a

coherent spin-state (CSS), which has all spins aligned along one direction. For a cloud of

N spin-1/2 atoms aligned along the x-axis, this state can be represented as

|Ψ〉 = | ↑1↑2 · · · ↑N 〉x , (1.1)
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Figure 1.1: (A) Graphical representation of the spin-polarized atomic sample as a classical
magnetization vector with transverse quantum uncertainty. (B) Schematic of the transverse
quantum uncertainties for coherent spin-states and spin-squeezed states.

such that the expectation values of the collective spin operators are 〈F̂x〉 = ~N/2 and

〈F̂y〉 = 〈F̂z〉 = 0. From the commutation relations of the spin operators, we have the

Heisenberg uncertainty relation

〈∆F̂ 2
y 〉〈∆F̂ 2

z 〉 ≥
~2〈F̂x〉2

4
, (1.2)

which, for the aligned spin-state, gives

〈∆F̂ 2
y 〉 = 〈∆F̂ 2

z 〉 =
~2N

4
. (1.3)

As depicted in figure 1.1, these uncertainties indicate how fuzzy the tip of the atomic

compass needle is for a given number of atoms. Thus the “sharpness” of the state can be

given by the size of the uncertainty disk divided by the length of the spin vector

√
〈∆F̂ 2

z 〉

〈F̂x〉
=

1√
N
. (1.4)

As a result, we see that with more atoms one can measure rotations of the spin-state more

precisely. Often, we only care about the rotation of the atoms in one direction. In this case,

the performance can be improved beyond the above limit by squeezing the distribution along

one direction and antisqueezing it along the irrelevant direction such that the equality of the
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above uncertainty relation is maintained but 〈∆F̂ 2
z 〉 < 〈∆F̂ 2

y 〉. These states are known as

spin-squeezed states (SSS) and were introduced in the context of improving the performance

of atomic spectroscopy applications by Kitagawa and Ueda [2, 3] and the Wineland group

at NIST [4, 5]. (The idea of spin-squeezed states detailed by Kitagawa and Ueda in [2]

was actually first introduced in their earlier paper regarding fermionic interferometry [3].)

These ideas adapted the well-established idea of optical squeezing to the atomic domain.

The cartoon in figure 1.1 depicts the uncertainty distribution difference between coherent

and spin-squeezed states. One can show that individual spin-1/2 particles comprising a

spin-squeezed state are entangled with each other [6], lending some credence to the oft-made

statement that entanglement is a useful resource for quantum information tasks. (However,

when it comes to similar tasks, such as communicating the direction of a reference frame,

there remain many interesting questions about the entanglement and symmetry properties

of the most useful states [7].)

Given the possibility of spin-squeezed states, we now begin to address the issues of

how to create and use them for practical tasks. For example, given an entangled state

that is rotating due to a field, what is the best possible way to estimate that field using

measurements of the state? How should this state be physically observed during or after

the field induced rotation? Also, how does one actually produce an entangled spin-squeezed

state? Remarkably, one way to create an entangled SSS from the coherent state above is

through a collective measurement of the spin-state. Thus measurement can be used as both

a way of reading the state and shaping it.

The fact that measurement of a collective variable can randomly prepare an entangled

spin-state is easy to demonstrate. Consider the following simple example with two spin-1/2

particles both aligned along the x-direction, but with the total state represented in the

z-basis

|Ψ〉0 = | ↑〉x| ↑〉x

=
1√
2

(| ↑〉z + | ↓〉z)
1√
2

(| ↑〉z + | ↓〉z)

=
1
2
| ↑〉z| ↑〉z +

1√
2

(
1√
2

(| ↑〉z| ↓〉z + | ↓〉z| ↑〉z)
)

+
1
2
| ↓〉z| ↓〉z. (1.5)

Now if we perform a measurement of the collective spin in the z-direction, F̂z, we will get one
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of three results: +1, −1, or 0. The measurement will return the value +1 with probability

1/4, in which case the postmeasurement state will be |Ψ〉c,+1 = | ↑〉z| ↑〉z. Similarly, the

measurement will return the value −1 with probability 1/4, with a postmeasurement state

of |Ψ〉c,−1 = | ↓〉z| ↓〉z. Both of these states are unentangled and equal to the initial state

rotated by 90 degrees. Finally, the measurement will return the value 0 with probability

1/2 and give a postmeasurement state of

|Ψ〉c,0 =
1√
2

(| ↑〉z| ↓〉z + | ↓〉z| ↑〉z) . (1.6)

This state (the m = 0 state of the spin-triplet) is clearly entangled because it cannot be

factored into a product of states for the two spins. Also notice that due to the symmetry of

the initial state and the symmetry of the measurement, all of the (triplet) postmeasurement

states are also symmetric. In chapter 4, we consider how to take advantage of this symmetry

to compute entanglement measures for large numbers of spins.

This example represents one of the core ideas of this thesis, but the experiment we

consider has several key differences. First, the experimental measurement is weak and

continuous rather than strong and discrete. To infer the spin direction, an optical probe

beam traverses and dispersively interacts with the atoms, and the resulting Faraday rotation

of the optical polarization is measured with a polarimeter. Instead of imposing the full

projection at once, this measurement allows us to acquire information slowly such that the

state diffusively and gradually projects onto an entangled subspace. Second, we consider

many atoms (typically billions) so that the entanglement is mostly related to spin-squeezing

in the Gaussian limit. Finally, we use realistic atoms with many sublevels (cesium), which

affects both our model of the atom-light interaction and our representation of the collective

states. A depiction of the Faraday rotation measurement we employ in the lab is shown in

figure 1.2.

As opposed to the discrete example above, with continuous measurement the induced

projection is dilated in time. This allows us to roughly observe where the state is projecting

and, if we do not like it, apply feedback control to guide the projection into a more desirable

location. Feedback can also enhance the measurement of magnetic fields. In chapter 10,

we discuss how a field may be estimated concurrently with the squeezing via measurement

and also how feedback can make this process robust to model uncertainties.
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Figure 1.2: A basic schematic of our experimental apparatus. A polarized beam of off-
resonant light traverses the cold atomic cloud and the resulting Faraday rotation is measured
with a polarimeter.
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Although it is these general ideas of quantum measurement and feedback control that

motivate us, a large part of this thesis is devoted to the accurate modeling of the atom-

light interaction. The true interaction consists of a component that leads to the idealized

spin-squeezing measurement (a collective measurement of F̂z via the vector component of

the polarizability Hamiltonian), but also a complicating component (the tensor component

of the polarizability Hamiltonian) that results from the fact that the cesium spin we use

is f = 4 and not 1/2. Depending on the context, we either assume the simplified ideal

Hamiltonian, or the realistic full version.

Of course, this is largely an experimental thesis, with the experimental goal of confirming

the model and observing the atomic projection noise that implies the preparation of spin-

squeezed states. This is a challenging endeavor that necessitates the preparation of cold

atomic ensembles with large optical depth. This pursuit and attempts to hammer down

technical sources of noise with modulation schemes are detailed in depth only after the

theoretical foundation has been set.

1.2 Personal Lab History

I decided to attend Caltech primarily to work in Hideo’s group and began immediately upon

my arrival in the summer of 2000. I worked on several different projects before beginning

to research what turned out to be the core of this thesis. Here I describe the diffusive

trajectory of my research career at Caltech.

1.2.1 Initial Projects

I began to ramp up to speed theoretically by considering a paper investigating potential

bound spin-states of an experimentally relevant magnetic potential. Due to concerns of

single-valuedness, we discovered that this paper’s results were questionable and composed a

comment to that paper contained in appendix F. Around the same time there was interest

in our group about extending models of quantum position measurement [8] to classically

chaotic systems with phase-space islands of stability and ergodicity [9].

I soon ventured into the lab and started working on a field-programmable gate array

(FPGA) system, which was viewed as a potentially key component in the quantum control

experiments we planned to perform. In general a quantum controller must take a classical
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measurement result, use quantum estimation theory to map that result to an appropriate

feedback response, and deliver that response all within the coherence time of the physical

system. Typically such a quantum controller must be capable of nonlinear calculations and

impose a minimal delay on the feedback signal. It is also desirable to be able to reprogram

the controller algorithm over reasonably fast timescales. Many programmable logic devices

approximately fit this bill, and in [10] we discuss and demonstrate our particular FPGA

system, locking a Fabry-Perot cavity as an example application.

Concurrently with the general FPGA effort, I worked with Mike Armen and John Au

on implementing a proposal by Howard Wiseman to measure the phase of a light pulse

using an adaptive homodyne procedure, where the measurement is optimized by mapping

the measured photocurrent via the FPGA to the local oscillator phase in real time [11]. In

the resulting paper [12], we showed that for a certain set of photon numbers in a pulse, this

measurement procedure was capable of beating the standard heterodyne limit. More on this

experiment can be found in [13]. While developing the FPGA system, I also collaborated

with Kevin Birnbaum in the Kimble group on implementing an FPGA algorithm to radially

cool atoms falling through their cavity [14].

In the adaptive phase measurement experiment, we were measuring coherent states of

the optical field, and because these states are free of correlation between photons, the back-

action and conditional quantum dynamics are relatively trivial. After demonstrating the

effectiveness of the adaptive measurement, we were thus tempted to enrich the experiment

by instead measuring correlated photon states, or squeezed optical states, emanating from

an optical parametric oscillator (OPO). After some consideration of this potential exper-

iment, we ultimately decided that the coherence timescales were too short to perform a

measurement and feedback experiment effectively with available technology. Nevertheless,

a theoretical analysis of the conditional measurement of the squeezed optical state within

an OPO is considered in appendix C following another paper by Wiseman.

1.2.2 MOT Building

Around that time, Wiseman’s group published yet another proposal involving the continuous

measurement and control of an atomic spin ensemble, with the goal of producing spin-

squeezed states deterministically [15, 16]. That idea provided the main motivation for this

thesis and throughout this work we adapt the concept to our experiment, with particular
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concern for modeling the actual atom-light interaction for an optical probe beam interacting

with a cloud of multilevel cesium atoms.

The proposal also gave me the opportunity to build an atomic physics experiment from

scratch, which provided a substantial educational incentive. Towards the end of 2001,

I began to build the experiment including the vacuum and magnetic subsystems, owing

much to the advice of Ben Lev. With substantial help from Andrew Berglund, who helped

build the trapping diode lasers, we achieved a magneto-optical trap (MOT) in February of

2002. The basic experimental apparatus is described in detail in chapter 11.

1.2.3 Theoretical Offshoots

Throughout the experimental effort, we have spent a considerable amount of time looking

into various theoretical aspects of the experiment, writing papers as a means of teaching

ourselves the relevant physics. First, because we were attempting to create spin-squeezed

states, which are internally entangled, we began to ask ourselves how to describe the entan-

glement when billions of particles are involved. These questions eventually led to the paper

[17], summarized in chapter 4, wherein we investigate the entanglement between subsamples

of an ensemble that is symmetric with respect to exchange of particles. In this pursuit we

discovered some highly entangled families of states living in this space and also derived ways

of numerically calculating entanglement measures for large ensembles by taking advantage

of symmetry constraints.

Because spin-squeezed states are supposed to be useful for improving the precision of

rotation measurements, we also became interested in how to measure magnetic fields with

continuous measurement of the atomic spin-state. As opposed to the usual sequential pro-

cedure where the state is initialized, rotated, then projectively measured, we investigated a

procedure where the state is squeezed via continuous measurement but rotated by the un-

known field concurrently. The resulting quantum parameter estimation analysis, essentially

relying on Kalman filters and Bayesian estimation to perform magnetometry, is described

in [18] and was largely inspired by [19]. The addition of feedback to make the procedure

robust to classical parameter uncertainties is analyzed in [20]. These results are summarized

in chapter 10.

If spontaneous emission can be avoided (which it can never be at long timescales), the

continuous measurement equation (stochastic Schrodinger equation, or SSE) of [15] de-
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scribes a continuous version of a measurement that projects the atoms onto an eigenstate

of the collective angular momentum, i.e., a Dicke state. In [21], we investigate this equation

theoretically and numerically demonstrate that, just as feedback can enhance the prepa-

ration of spin-squeezed states, feedback can also make the preparation of particular Dicke

states deterministic. In effect, whether or not the state is Gaussian, feedback can be used

to direct the state diffusion caused by measurement. These ideas, summarized in chapter 9,

were made more analytically precise for few spin systems, mainly by Ramon Van Handel,

in [22]. More recently, Ramon and I have written a more general and mathematical review

of these ideas in [23].

We have also spent a great deal of time modeling the atom-light interaction physics,

much of which is presented here for the first time. The core ideas are presented linearly

in chapters 5–8 although, historically, the order in which we understood the physics was

out of phase with our experimental findings. Much of the point of this thesis is to tell the

combined theoretical and experimental story in logical order.

1.2.4 Experimental Continuous Measurement

In the beginning of 2003, we began to observe the spin-state of the atom cloud via Faraday

rotation of the probe beam. This allowed us to observe both the Larmor precession (due to a

constant magnetic field) and decay dynamics of the spin-state (due to spontaneous emission

among other processes) over millisecond timescales. Around the same time, Poul Jessen’s

group performed similar experiments and described certain effects in terms of the tensor

polarizability interaction Hamiltonian [24]. Subsequently, they, along with the Polzik group,

started to investigate the non-trivial effects of the tensor Hamiltonian on the measurement

dynamics [25, 26].

During this time I was working on the theoretical papers above and also worrying about

controlling the magnetic fields in our experiment (see appendix A and chapter 11). Toward

the end of 2003 and beginning of 2004, with JM Geremia leading the data-taking effort, we

published one paper on experimental spin-squeezing [27] and one on “sub-shotnoise” mag-

netometry [28]. Although the theoretical ideas in those papers are valid, the experimental

results are now considered questionable and inconsistent with later findings, in part due to

the lack of consideration of the tensor terms. More on these papers can be found in section

14.4.
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Our own effort to characterize the effect of the tensor terms eventually resulted in ref-

erence [29]. This effort was also flawed initially, in both the experimental and theoretical

results, but was subsequently corrected before publication. The results of the theoretical

corrections can be found in chapter 6. In the subsequent chapter 7, we consider an uncondi-

tional master equation derivation based upon the entire tensor Hamiltonian, which presents

surprising results. Around this time we also started to appreciate the positive side of the

tensor Hamiltonian, which allows us to measure the pumping efficiency of the quantum

state and also align the optical polarization to the atomic state. Without the nonlinear

(quadratic) terms of the full Hamiltonian, these practical tasks would be impossible. In

chapter 13, we include experimental results from the corrected version of [29] that confirm

the tensor model. We also present several new measurements including spectra of the tensor

Hamiltonian coefficients and a measurement of the the optical pumping efficiency using the

tensor terms.

Much of my subsequent time in lab was spent developing techniques to characterize and

increase the optical depth of the ensemble. I also began to develop a modulated version of

the experiment that avoids the low-frequency noise that plagued previous versions. During

this time, Anthony Miller and Mike Armen helped out substantially while also developing

the next generation version of the experiment. They contributed to the construction of both

a new photodetector and a low-noise battery charger to supply the magnetic field drivers.

Attempts at observing atomic projection noise using these new techniques and equipment

are described in chapter 14.

1.2.5 Qwiki

In 2005, with help from Kartik Srinivasan, Anthony Miller, Kevin McHale and several

other lab members, I launched a group website titled Qwiki (http://qwiki.caltech.edu).

This website is a “quantum wiki” where anyone can collaboratively contribute technical

information. Thus far the site has been useful for both our group and our small quantum

measurement and control community, and it was featured in the Web Watch section of the

July 2006 edition of Physics Today.

All electronic versions of this thesis (original and corrected) and relevant supplemen-

tal information can be found at http://qwiki.caltech.edu/wiki/John_K._Stockton/

Thesis.

http://qwiki.caltech.edu
http://qwiki.caltech.edu/wiki/John_K._Stockton/Thesis
http://qwiki.caltech.edu/wiki/John_K._Stockton/Thesis
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1.3 Chronological History of Concepts

This thesis represents a point of intersection for several historical strands of thought in

physics, which cannot be fully unentangled. Much of what inspires us is the evolution of

ideas in the general field of quantum measurement and open quantum systems. But, by way

of our experiment, we restrict ourselves to the atomic and optical realm and we modestly

expand on centuries of work on the interaction between light and atoms. With regard to

our measurement, this leads us into the history of Faraday rotation, while for preparing

our sample we use techniques from the the field of atom cooling and trapping. Because of

the precision with which we can model and measure these systems, we naturally intersect

with the disciplines of metrology and the continuing quest to make better magnetometers,

clocks, and other practical devices. Here I review some of the key physics milestones in

these separate fields to give our work a sense of historical context.

The particular physics of our experiment can be traced back more than a century. In

1845, Michael Faraday discovered that linearly polarized light could be rotated by sending it

through a material medium with a magnetic field applied along the propagation direction of

the beam. Subsequently, in 1898, Macaluso and Corbino discovered this Faraday effect in a

gas of alkali atoms and investigated its resonant behavior near atomic transitions [30]. The

field of magneto-optics was enabled many decades later by the discovery of optical pumping

[31] and, soon after, the rotation of off-resonant light in an optically pumped vapor cell

was investigated [32]. Historically, vapor cells with thermal distributions of atoms have

been used as the system of study in Faraday rotation measurements, and state-of-the-art

experiments with thermal atoms from magnetometry to fundamental physics continue to

be performed in the groups of Budker, Romalis, and Kitching, among others [33, 34, 35].

It is worth noting that there have been several quantum measurement and entanglement

experiments, similar to ours, performed with thermal ensembles of atoms [36, 37].

While thermal ensembles are adequate for some work, a large number of experiments

rely on the revolutionary advances made in the field of laser cooling and trapping during

the 1980s and 1990s [38]. The ability to produce large numbers of confined cold atoms

continues to enable a whole discipline, including the production of better atomic clocks.

In the early 1990s ideas of spin-squeezed states were introduced [4, 2, 5, 3] with the

aim of improving the standard Ramsey interferometry scheme of atomic clocks. In the
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ensuing decade, spin-squeezing related effects have been experimentally reported via several

methods, including absorption by cold atoms of squeezed light [39] and interactions between

trapped ions [40].

In parallel with these developments of the past few decades, the formalism of quantum

measurement has matured and become more experimentally relevant. In particular, the

notion of quantum nondemolition (QND) measurement [41] has provided a path for the

creation and verification of spin-squeezed states. QND measurements of collective spin

systems via Faraday rotation was suggested in several works [42, 43]. A few years later,

spin-squeezing was reported using QND measurement of a hot thermal ensemble of atoms

[37]. This experiment uses the same technique as ours, but because it uses hot, rather than

cold, atoms its methods of producing spin-squeezing may not be as useful for metrology

applications. In parallel, the Polzik group has reported the entanglement of two spatially

separated cells of atoms with similar techniques (i.e., two-mode spin-squeezed states) [36].

Our work was inspired by this work and a paper by the Wiseman group suggesting

the use of feedback to enhance the QND state preparation process [15, 16]. To distinguish

ourselves from previous work, and for technical reasons, we decided to use cold atoms.

Over the last few years, continuous QND measurement of cold atomic ensembles has been

reported in our own work and also in others, including the Jessen and Takahashi groups

[44, 24, 25]. Currently several groups are working on implementing QND measurement on

the pseudospin associated with the clock transition [45, 46, 47].

1.4 Thesis Organization

This thesis is intended to be read primarily by beginning graduate students with an interest

in experimental quantum measurement and control. The first few chapters outline general

concepts and definitions related to quantum measurement and control, the middle chapters

discuss the theoretical modeling of our particular experiment, and the final several chapters

discuss the experimental implementation of these ideas.

Specifically, the chapters of this thesis are as follows. Chapter 2 is meant to be a gen-

eral quantum measurement primer that reviews the basic literature and introduces general

concepts from open quantum systems theory that motivate much of the work we do.

In chapter 3, I introduce the optical and atomic states and terminology that will be used
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throughout this thesis, with an emphasis on optical polarization operators and collective

spin-states. Chapter 4 is devoted to the question of entanglement in collective spin-states,

but is largely independent of the rest of the thesis, because the entanglement physics is

mostly referred to indirectly.

Chapter 5, chapter 6, and chapter 7 are devoted to theoretically modeling the atom-

light interaction for a multilevel alkali atom. I begin to address the interaction Hamiltonian

in chapter 5, where the polarizability form of the Hamiltonian is derived from the dipole

Hamiltonian by adiabatic elimination of the excited atomic states under the assumption that

the probe is sufficiently far-off resonance. Chapter 6 is devoted to recasting the polarizability

Hamiltonian into a more physically intuitive form in terms of optical Stokes operators and

atomic spin operators. This Hamiltonian is then used to derive an unconditional master

equation for the collective spin-state of the probed atomic cloud in chapter 7.

The stochastic master equation (SME) describing the conditional evolution of the collec-

tive spin-state due to a polarimetry measurement of the probe light is introduced in chapter

8. A full derivation is not given, but justification for the physical applicability of the SME

is provided. Chapter 9 and chapter 10 are detailed replicas of theoretical papers detailing

the theory of the SME and magnetometry respectively. This idealized SME is analyzed in

full numerical detail in chapter 9, where it is shown that feedback can lead to deterministic

entangled state preparation. The focus turns to metrology in chapter 10, where we use the

short-time Gaussian limit of this SME and discuss the application of quantum parameter

estimation techniques to magnetometry.

The experimental apparatus is introduced in full detail in chapter 11. Before turning

to the experimental data, we discuss the relevant atomic physics of trapping and cooling in

chapter 12. Semiclassical experimental results that support the theoretical analysis of the

interaction Hamiltonian are presented in chapter 13. The search for quantum fluctuations

indicative of spin-squeezed state preparation are then detailed in chapter 14. In particular,

a modulation scheme for avoiding low frequency noise sources is presented. At last, I suggest

several potential theoretical and experimental directions to pursue in chapter 15.

The appendices consist of several research projects that either supplement the body of

this thesis or did not fit coherently in the primary story-line. Included are an experimental

primer for managing magnetic fields in the lab (appendix A), tutorial examples of contin-

uous measurement and control (appendix B and appendix C), an adaptation of magnetic
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resonance physics to our experiment (appendix D), an analysis of spin-squeezing with decay

(appendix E), and a discussion of bound states inn magnetic traps (appendix F).



16

Chapter 2

General Quantum Measurement

2.1 Introduction

The field of quantum optics has historically been the domain where experiments with quan-

tum limited measurements were most accessible, with laser-cooled atoms or ions trapped

and isolated from the environment. As a result it was in this field that many of the concepts

describing quantum measurement and control were developed. Now that many other types

of systems (superconducting qubits, quantum dots, etc.) are coming into play, an increasing

proportion of the larger physics community is becoming interested in open quantum system

methods.

Frequently, beginning students are not necessarily given the appropriate background to

readily acquire the most useful aspects of quantum measurement and control, and need to

be referred to relevant background material. In this chapter, I first provide a brief literature

review that places this thesis in the context of the various fields from which it draws. After

this brief review, I go through a common and simple measurement formalism in order to

logically introduce physically intuitive ideas and terminology that might later be clouded

by mathematical or experimental details particular to this thesis.

2.2 Review of Literature

The best way to learn about a person quickly is to look at their bookshelf. This section is

meant to be a guided glimpse of our lab bookshelves, which will hopefully give the student

reader a number of places to get a feel for our group’s work. Of course, this is just a

small personalized sample of appropriate reading, which is meant to be suggestive but not
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complete, and surely many great references are left out. For more on the rest of the lab’s

reading recommendations, see http://minty.caltech.edu/reading.php.

One of our lab’s basic tenets is that to understand quantum measurement, estimation,

and control theory, it helps a great amount to first understand their classical counterparts.

Unfortunately, most undergraduates are only given the most cursory version of the prob-

ability and estimation theory, prior to being introduced to the noncommutative weirdness

of quantum measurement. An entertaining reference on probability theory from a Bayesian

perspective is given in a book by Ed Jaynes [48]. For an introduction to classical control and

estimation theory from an engineering perspective I refer the reader to a book by Jacobs

[49]. A more sophisticated treatment of control theory can be found in works by Doyle

and co-workers [50, 51], which investigate notions of optimal and robust control. Stochastic

processes and differential equations are ubiquitous in the context of noisy measurement and

are treated mathematically in [52, 53, 54].

While these classical references provide an extreme amount of insight into general estima-

tion and control theory, they mostly neglect the constraints opposed by quantum mechanical

estimation including noncommutativity of observables and fundamental uncertainty. These

constraints are simply put by Caves, Fuchs, and Schack [55]:

In the classical world, maximal information about a physical system is complete

in the sense of providing definite answers for all possible questions that can be

asked of the system. In the quantum world, maximal information is not complete

and cannot be completed.

Our pragmatic Bayesian perspective of quantum measurement is very much the same as this

reference: any quantum measurement scenario is a game of successive measurements, where

the goal is to best predict a measurement result given a history of previous measurement

results. In this sense, the quantum state that is updated via measurement and conditioning

is a state of knowledge that tells us how to place our future bets. A nice “translation” of

concepts from classical to quantum measurement and control is provided in [56].

A long-time reference used by our group that describes the conditioning of a quantum

state via successive measurements is the thesis of our collaborator Howard Wiseman [57].

Howard is currently updating this work in an anticipated book [58]. For a shorter review

article, see [59, 60] for a simple tutorial description of continuous measurement, or [23] for

http://minty.caltech.edu/reading.php
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a more rigorous mathematical approach.

There are several other quite useful open quantum systems books in print, including

[61] (although the second edition is not in print), [41] an older but physically intuitive work

with an analysis of quantum oscillator measurement limits, and [62], which is more modern

and in the spirit of this thesis.

Of course, when studying all of these references it helps to have as many perspectives

from related fields as possible. For discussions of measurement with respect to quantum

information/computing applications the reader is referred to [63, 64]. There are also many

great atomic physics books available relevant to our experiments [65, 1, 38, 66]. Finally,

the reader should have a solid understanding of cavity-QED [67] and traditional quantum

optics [68, 69, 61]. These references are useful for understanding the open systems trajectory

formalism, but many do not discuss conditional measurement and control as much as more

recent works.

2.3 Measurement Operator Formalism

Here we describe a simple measurement formalism adapted heavily from [57] and [63] in

order to introduce basic concepts of quantum measurement. The measurement operator

formalism discussed here is more suited to discrete time measurement events, rather than

the experimental measurement scheme of this thesis, but the general concepts essentially

transfer. An example using this formalism is presented in appendix B, where we analyze an

atom-cavity system with direct photon detection at the output of both sides of the cavity.

Typically, an experimentalist does not directly measure the system of interest. The

system, through a chain of interactions with larger and larger systems, imprints information

about itself on an apparatus of a scale similar to our own. In some cases, this mapping may

be trivial. In others, the connection may not be so obvious. To deduce this mapping, we

must model the measurement apparatus to a sufficient level of accuracy. The more of the

apparatus we describe quantum mechanically the better our predictions will be. Clearly,

the choice of this “Heisenberg cut along the Von Neumann chain” must be pragmatically

chosen. In practice, we essentially always make this cut at the optical photodiode interface

where the probe beam is converted into a classical current.

Here we formally describe the measurement apparatus as the environment (or bath) and
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consider our measurements as being projections of the environment state. These do not,

in general, correspond to projections of the system state. Thus describing the environment

quantum mechanically will fundamentally alter our predictions from a description where we

chose measurement to correspond with direct projections on the system.

The basic measurement scheme is displayed in figure 2.1. The world is divided into

several parts, including the system of interest (S) and the environment (E). In the instance

of our experiment, we imagine the system to be the spin-state of a collection of atoms, and

the environment to be the optical state of a laser beam by which we indirectly measure

the spin-state. The “classical world” consists of the detector (with efficiency η) and the

observer who estimates the spin-state and actuates the system via a controller. There also

exist unobserved environment modes through which the observer can lose information (e.g.,

spontaneous emission). We have also considered the possibility of an unknown Hamiltonian

(with parameter λ) acting on the system, under which case the observer performs quantum

parameter estimation to update a classical distribution Pλ(t). Due to physical interactions,

we graphically indicate in figure 2.1 the presence of correlations between the system and

the outgoing environment modes. There may also be correlations within the system due

to either direct interaction, or via the observer conditioning on the environment detection

(e.g., spin-squeezing).

The total state (system plus environment) is represented as ρ̂T , while the subcomponents

are represented by tracing out the other so that the environment state is ρ̂E = TrS(ρ̂T )

and the system state is ρ̂ = ρ̂S = TrE(ρ̂T ). In a single timestep, the joint state evolves

according to the Hamiltonian ĤT = ĤS + ĤE + ĤSE where ĤS evolves the state, ĤE

evolves the environment, and ĤSE lets the system interact with the environment, allowing

a measurement of the environment to give information about the system. In the time dt,

the joint state then evolves via the propagator Û(dt) = exp[−iĤTdt].

2.3.1 Indirect Measurement

Now we describe the process of inferring the state of the system after allowing the system to

interact with the environment and measuring the environment. The logic of the reduction

is as follows (following section 2.2 of [57]). We describe both the system and environment

as pure states for simplicity. The environment is prepared in the state |ψE〉. The total

state, which we assume to be initially separable, evolves into the generally entangled form
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Figure 2.1: A general quantum measurement and feedback control schematic as described
in the text.

|ψT (t + dt)〉 = Û(dt)|ψE〉|ψS(t)〉. Through measurement, the environment is randomly

projected into a particular state α via the projector P̂α = 1S ⊗ |ψE,α〉〈ψE,α|. So the

resulting unnormalized total state is

|ψT,α(t+ dt)〉 = P̂α|ψT (t+ dt)〉 = |ψE,α〉|ψS,α(t+ dt)〉 (2.1)

where

|ψS,α(t+ dt)〉 = Ω̂α(dt)|ψS(t)〉 (2.2)

Ω̂α(dt) = 〈ψE,α|Û(dt)|ψE〉. (2.3)

Notice that the measurement operator Ω̂α(dt), which acts on only the system subspace, is

not necessarily a projector. Also note that this reduction is only useful if the environment

has certain dynamical properties. If we are to use the same measurement operators for every

timestep, the environment must quickly return to its prepared state (equilibrium approxima-

tion) and never return the measured information to the system (Markovian approximation).

Of course, we may explicitly return information to the system via Hamiltonian feedback,

but here we are considering the open-loop dynamics alone.
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2.3.2 Dynamics of Continuous Measurement

Now we assume the existence of measurement operators Ω̂α(dt) based on an adequate model

of the system-environment interaction and work out the dynamics. The continuous mea-

surement operators are usually specified as follows, with the {L̂i} being the so-called jump

operators

Ω̂i(dt) =
√
dtL̂i (2.4)

Ω̂0(dt) = 1− iĤeffdt = 1− i(ĤS − iK̂)dt (2.5)

with i = 1, 2, 3, ... and K̂ = 1
2

∑
i>0 L̂

†
i L̂i from the Kraus normalization condition.

2.3.2.1 Conditional Evolution

Let us define an effect Υ̂i to be associated with a measurement operator through Υ̂i = Ω̂†
i Ω̂i.

In the simulation of conditional evolution, we imagine flipping a coin weighted according

to Pi = Tr(Υ̂iρ̂) to get a random result i on every timestep dt. In the experiment, we let

nature flip the coin for us, and we measure for time period dt to get a result i. Note that

one possible measurement result is the null measurement of i = 0. In any case, given result

i, the evolution rule is to apply the appropriate jump operator by

ρ̂(t+ dt) =
Ω̂i(dt)ρ̂(t)Ω̂

†
i (dt)

Pi
. (2.6)

The random state evolution described by this formalism is referred to as a quantum tra-

jectory. Given a model of the environment and the interaction this conditional rule for

updating the quantum state is called many things, but here we refer to it as the stochas-

tic master equation (SME), the stochasticity coming from the inherent randomness of the

detection in the environment. Note that if the detection of the environment is perfectly

efficient, then the state changes but remains pure because we have not lost any information.

It is also important to point out that this equation is a experimental filter meant to be

used in the lab: the inputs are the initial state (of both the system and environment), the

model of the interaction, and the measurement record, and the output is the updated system

state. The filtering procedure is shown schematically in figure 2.1. Here the dependence on

the measurement record is somewhat implicit, but later it will be made more clear. This
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point is worth making because some physicists use trajectories as merely a computational

tool to evolve the unconditional master equation, discussed below, and do not associate the

trajectories with any particular measurement. (The advantage is that with the pure state

trajectories one works with the state vector, which is smaller than the state matrix used in

the unconditional master equation evolution.)

Also note that the update rule above is very discrete in nature, as we imagine applying

the rule every dt. This is fine if the number of detection events expected in the time dt

is very small (see appendix B), however often we use another high power beam as a local

oscillator in our measurement scheme. In this case, the number of detection events in any dt

is much larger and we use a different description as discussed below, incorporating Wiener

white noise increments dW to represent the randomness of the measurement [52]. This

limit is mathematically distinct, but the underlying physical intuition remains the same as

above.

2.3.2.2 Unconditional Evolution

In the case where the measurement record is completely ignored, but the system is still

interacting with the environment, our best estimate of the system state must be given by

the average of all possibilities

ρ̂(t+ dt) =
∑

i

Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt) (2.7)

or

dρ̂

dt
= L̂ρ̂ (2.8)

where L̂ is the Liouvillian (i.e., Lindbladian). This is the unconditional master equation.

Note that, by definition, the average of the conditional trajectories should reproduce this

unconditional behavior.

2.3.3 Transforming the Measurement

Formally, one can unitarily rearrange the measurement operators without changing the

unconditional evolution, thus creating what is called a different unravelling of the master
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equation. Thus the transformation

Ω̂′
i =

∑
j

Ûi,jΩ̂j (2.9)

results in no change of the unconditional evolution

ρ̂(t+ dt) =
∑

j

Ω̂j(dt)ρ̂(t)Ω̂
†
j(dt) =

∑
i

Ω̂′
i(dt)ρ̂(t)Ω̂

′†
i (dt) (2.10)

where
∑

r Ûr,sÛ
∗
r,q = δs,q. Whether or not a particular unravelling is physically realizable

is another question. For the detection of a laser beam, different unravellings correspond to

different means of optical detection. Direct detection results in conditional evolution with

jump-like behavior. But by adding a local oscillator to the output field one can perform

a homodyne measurement, which in the large oscillator limit results in diffusive motion

of the conditional state. The switch from direct detection to homodyne (or heterodyne)

corresponds to a unitary rearrangement of the direct detection measurement operators.

This is depicted by the unitary rotation element in figure 2.1. In the case of polarimetry as

discussed in section 8.1 different unravellings can be achieved through different settings of

the wave-plates prior to the polarimeter. In appendix B, a more explicit example is given.

The concept of unravelling is a very intuitive and important: in essence, what we know

about a system depends on how we look at it. Depending on our measurement and control

objective, the choice of unravelling will be critical and should be optimized [70].

2.4 The Continuous Limit

As discussed in chapter 8 and chapter 9, the stochastic master equation describing the

conditional evolution of our collective spin-state (system) due to the detection of a far-off

resonant probe beam (environment) is represented in the formalism of continuous stochastic

measurement. The formal derivation of the SME is beyond the scope of this chapter, but

here we introduce it and show its qualitative similarities to the above analysis.
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The SME describing the conditional evolution is [15, 16]

dρ̂(t) = −i[ĤS , ρ̂(t)]dt+D[
√
MF̂z]ρ̂(t)dt

+
√
ηH[

√
MF̂z]ρ̂(t)

(
2
√
Mη[y(t)dt− 〈F̂z〉dt]

)
(2.11)

where ĤS is the system Hamiltonian (possibly magnetic field rotations), M is the probe

parameter dependent measurement rate, D and H are superoperators, η is the quantum

efficiency of the measurement, and the photocurrent is represented as

y(t)dt = 〈F̂z〉(t)dt+ dW (t)/2
√
Mη. (2.12)

The stochastic quantity dW (t) ≡ 2
√
Mη(y(t)dt − 〈F̂z〉(t)dt) is a Wiener increment and

dW (t)/dt is a Gaussian white noise associated with the shotnoise of the homodyne local

oscillator. See [53, 52] for an introduction to stochastic differential equations (SDE).

There are several features to notice about this equation. First, if M = 0 we recover the

usual Heisenberg equation of motion for the state. If M 6= 0, but the quantum efficiency

of the detector η = 0, then we get the unconditional evolution of the state due to the

measurement. If M 6= 0 and η 6= 0, then the update rule is an explicit function of the

photocurrent y(t). This conditional part of the equation is reminiscent of classical estimators

that take the difference between what the photocurrent is and what the photocurrent is

expected to be, to get an innovation by which the system is updated.

This equation is analyzed extensively in chapter 9, where it is seen that this particular

form of the measurement enacts a projection of the state onto the eigenstates of F̂z at

long times. This form of the SME is quite general and represents the canonical example

of a continuous measurement. It is discussed from a more mathematical perspective in

[71, 72, 23].

2.5 Modeling the Interaction

Clearly the derivation of the filtering equations is wholly dependent on our model of the

interaction between the system and the environment. This includes the Hamiltonian ĤSE ,

which, for our experiment, we spend a great deal of space analyzing and simplifying in

Chapters 4–7 of this thesis. In practice it is always a challenging task to produce a model
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that captures all of the salient features of a physical experiment, while neglecting the su-

perfluous details. For example, in our experiment we often neglect the spatial motion of

the atoms and the fact that they collectively emit into a full three-dimensional mode and

it is our job as physicists to justify these approximations.

Even under the ideal circumstances often considered in this thesis, the exponentially

large Hilbert space used to describe a large number of spins is often prohibitive and model

reduction needs to be used to reduce the size of the state description. One approach is

to use the symmetry, and assume the state is invariant to spin exchange, as discussed in

chapter 4. Another approach is to assume the collective spin-state is in a Gaussian state

and work with only a few moments of the overall distribution. This is discussed in chapter

3 and implied throughout much of this thesis. The Gaussian description often allows us to

make direct connections between results of classical and quantum control as in the recent

work [70].

2.6 QND Measurement

Often in this thesis the term quantum nondemolition, or QND, measurement is used casu-

ally. Here we clarify its definition to avoid confusion. The notion of a QND measurement

was introduced in the context of force detection by Braginsky and others [41]. In a simple

and discrete definition, a QND measurement is one that will project the system into an

eigenstate of the observable such that subsequent measurements of the same observable will

return the same result. One example of a measurement that is not QND is photodetection

at the output of a cavity, because energy is lost from the cavity. In principle, a Stern-

Gerlach apparatus could be QND if the spin carrier were not destroyed, but practically it

often is, removing the possibility of subsequent measurement. Clearly, one must distinguish

between notions of demolition and destruction.

After a completely projective QND measurement, the observed variable is known com-

pletely while complementary observables become less uncertain, hence the inherent uncer-

tainty of the state is physically shunted to other regions of Hilbert space by the measure-

ment. Also, if the system Hamiltonian does not commute with the measured observable,

the measurement will not be QND. For example, if a spin eigenstate of F̂z is prepared then

a magnetic field (along x for example) rotates this eigenstate into another basis, then the
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next measurement result may not be the same as the first.

The notion of QND measurement is already continuous in a sense because it concerns

repeated measurements, but one can also discuss a single continuous QND measurement

where the projection onto an eigenstate is gradual as described by equation (2.11), which

is analyzed in chapter 9. A more mathematical, quantum filtering perspective of the non-

demolition property was introduced by Belavkin, whose early work on quantum filtering

continues to be reproduced in more physical contexts decades later [73, 74, 75]. In that con-

text, nondemolition means that a system observable commutes with all prior observations.

This definition turns out to imply the fact that, given all prior observations, estimating the

system observable is a classical statistical inference problem [23]. This is the basis for the

classical model of the quantum measurement used in chapter 10.

QND measurements have been performed on optical quantum states [76, 77], and the

idea of continuous QND measurement for spin-squeezing was introduced in [42, 43]. In this

thesis, we mostly discuss a continuous QND measurement of the collective F̂z variable of

a spin ensemble, which is measured via an interaction Hamiltonian proportional to that

variable. In particular, we investigate the long-time limit of the measurement in chapter 9,

which produces the results of a discrete projective QND measurement. There are several

places that the QND feature of the measurement is practically compromised, however. First,

the tensor terms introduced in chapter 6 complicate the interaction Hamiltonian such that

it is not simply represented in terms of collective variables. Second, when any magnetic

field is applied in the xy-plane, the measurement is no longer QND because F̂z does not

then commute with the magnetic field dependent Larmor precession Hamiltonian (although

a z-field is acceptable). In chapter 14 and appendix D, we discuss applying an x-field

that destroys the QND nature of a continuous measurement. Because of this, we can then

modulate the measurement strength in time to effectively restore the QND nature of the

measurement.

2.7 Quantum Parameter Estimation

Quantum metrology typically involves the estimation of a classical parameter by the detec-

tion of a quantum system that evolves due to that parameter. Traditionally, there has been

significant interest in detecting classical forces on quantum harmonic oscillators [78, 41].
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These ideas were discussed more recently in the context of more modern techniques in [19].

Following on this paper, we adapted the techniques to the measurement of a magnetic field

with our system in a set of theoretical papers [18, 20] that are summarized in chapter 10.

This work was compared to traditional magnetometers by the Budker group in [79] and

extended by the Mølmer group in several papers, including [80]. For a general view of how

entanglement enhances metrology see [81].

The basic idea of quantum parameter estimation is that system Hamiltonian is depen-

dent on a particular classical parameter, say λ such that ĤS(λ). In addition to evolving the

system state ρ̂(t) however we must simultaneously evolve a classical parameter distribution

Pλ(t) using Bayesian methods as discussed in the references above. The uncertainties char-

acterizing either distribution will be coupled via the evolution. In chapter 10, we make this

coupling explicit and analyze the limits that atomic spin uncertainty place on the magnetic

field uncertainty, and vice versa.

As quantum metrology devices improve, the use of these rigorous parameter estimation

techniques will become as common in the quantum domain as they are in the classical

metrology.

2.8 Quantum Feedback Control

In relation to this thesis, there is an apt quote, attributed to Norbert Wiener, that states

In the absence of uncertainty, there is no need for feedback.

In a certain sense, this implies that feedback control is more fundamental in the inherently

uncertain world of quantum mechanics than in the classical realm, where idealized levels

of certainty and precision can make open-loop control all-powerful and feedback control

pointless.

The application of feedback control concepts to measured quantum systems is discussed

in many recent references, including [56, 23]. In the context of this thesis, the term quantum

feedback control is meant to imply something very specific: during the course of a continuous

measurement as described above, quantum feedback involves the real time mapping of the

measurement record y(t) to the Hamiltonian ĤS to achieve a predefined control goal. This

is to distinguish the use of the term from other meanings often found in the literature.
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The use of feedback is helpful in the quantum domain for many of the same reasons

it is used in the classical world. For example, there are many proposed applications of

quantum control for cooling external, motional degrees of systems, from atoms in a cavity

to nanomechanical oscillators. During the course of this thesis, feedback is used in two

separate but related contexts. In chapter 9, which is based on ideas from [16, 21, 22], we

discuss how feedback can be used to direct the state diffusion from the SME above, allowing

the deterministic preparation of entangled states. Essentially, the feedback allows us to

remove the randomness of the measurement but retain the useful entangling dynamics the

conditioning induces. In some cases, the same states could be prepared with a conditional

postmeasurement feedback step. However, in many cases the continuous measurement with

concurrent feedback is necessary for the preparation of certain states. Second, as discussed

in chapter 10, feedback can make the quantum parameter estimation procedure robust

to classical model uncertainties in other parameters describing the model. For example,

without feedback the magnetometry procedure we describe needs to know the total atom

number used in the experiment, but with feedback we need to know much less information

about the atom number to achieve the same performance.

The magnetometry example is representative of the larger pursuit to analyze robustness

and risk-sensitivity in the context of quantum estimation and control. For more on these

general ideas see [82, 83].
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Chapter 3

Optical and Atomic States

In this chapter, we introduce the notation used throughout this thesis to represent the

optical and atomic states and operators common to our experiment. We begin by reviewing

the basic scheme of the experiment, with atomic spins measured via Faraday rotation of a

probe beam and subsequent polarimetry. Next, we describe the optical states used, with an

emphasis on the quantum Stokes parameter description of optical polarization. After this,

we introduce the atomic spin-states, starting with a description of the individual cesium

spin and moving on to the definition of spin-squeezed states and other collective states.

Here, we state and prove several facts related to spin-squeezing, including the proof that

spin-squeezed states with spin-1/2 particles are necessarily entangled. After describing the

relevant states and operators, we begin to analyze the entanglement properties of collective

atomic states in the next chapter.

3.1 Experimental Scenario

The experimental apparatus described throughout this work is represented in figure 1.2.

A beam of off-resonant probe light is polarized and sent through the atomic ensemble.

As described in later chapters, the interaction between the atoms and light is somewhat

complicated but for now we assume that the atoms act as a generalized waveplate that

rotates the polarization on the Stokes sphere, which includes the possibility of creating

circularly polarized light. The way in which this rotation happens depends on the internal

state of the atoms, and the noise imparted to the light in turn depends on the uncertainty

of the collective atomic state describing the ensemble. Motivated by this scenario, we

now describe the optical polarization operators and states, and subsequently the relevant
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collective atomic states.

3.2 Optical States

We begin by describing the electric field representation of the probe beam with two trans-

verse polarization modes, and then we derive several polarization operators and some of

their properties. The coherent state of the probe beam is specified and related to the

polarimeter detection described in subsequent chapters.

3.2.1 Electric Field Representations

The classical electric field describing a single spatial mode of light with two orthogonal

polarization components σ = 1, 2 is denoted

E = E
∑

σ=1,2

εσeσ exp[iκz − iωt] + c.c. (3.1)

We always consider the beams to be propagating along the z-direction. The power in this

beam is then given by

P/A =
ε0cE2

2
= ε0cE2. (3.2)

The quantized version of this field [68] is defined as

Ê =
√

~g
∑

σ=1,2

âσeσ exp[iκz − iωt] + h.c. (3.3)

where g = ω/(2ε0V ) and V is the volume of the mode. (Note that, in this thesis, I use

a notation where vectors are given boldface and operators are given hats.) The âσ are

the annihilation operators satisfying the usual commutation relation [âi, â
†
j ] = δij . Unless

otherwise noted, we will ignore the spatial dependence and only consider Ê at the spatial

location z = 0. However, this simplification would need to be removed in the consideration

of spatially extended scattering media imparting significant polarization rotation (on the

order of radians).

In quantum optics, it is often convenient to move into the frame rotating at the optical

frequency to remove the time dependence of a particular operator. Explicitly, we transform
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the field operator as

ÊR = exp[iωt(â†1â1 + â†2â2)]Ê exp[−iωt(â†1â1 + â†2â2)] (3.4)

= Ê(−) + Ê(+). (3.5)

where

Ê(−) =
√

~g
[
â†1e

∗
1 + â†2e

∗
2

]
(3.6)

Ê(+) =
√

~g [â1e1 + â2e2] . (3.7)

From now on we will assume the rotating frame is being used and remove the R subscript

from Ê.

3.2.2 Polarization Basis

Now we discuss ways of representing the polarization of the optical beam propagating along

the z-direction. We start in the basis given by ex and ey. In general one can represent the

polarization of the light in an elliptical superposition of these elements [68], but we choose

to limit ourselves to three distinct basis pairs. We denote by ex′ and ey′ the basis pair that

is also real, but at 45 degrees relative to ex and ey. The circular basis is then defined as

the complex superposition of the real basis and denoted by e+ and e−. More specifically,

these vectors are related to each other through the following transformations:

ex = 1√
2
(ex′ − ey′) =

1√
2
(−e+ + e−) (3.8)

ey = 1√
2
(ex′ + ey′) =

i√
2
(e+ + e−) (3.9)

ex′ = 1√
2
(ex + ey) =

1
2
((−1 + i)e+ + (1 + i)e−) (3.10)

ey′ = 1√
2
(−ex + ey) =

1
2
((1 + i)e+ + (−1 + i)e−) (3.11)

e+ = 1√
2
(−ex − iey) =

1
2
((−1− i))ex′ + (1− i)ey′) (3.12)

e− = 1√
2
(ex − iey) =

1
2
((1− i)ex′ + (−1− i)ey′). (3.13)
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3.2.3 Spherical Basis and Tensors

The basis ex′ and ey′ is a trivial real rotation of the original basis ex and ey, however the

circular basis is somewhat less intuitive, so we review some of its properties here. When the

circular basis is combined with the propagation vector along z, we get the spherical basis

e+ = −(ex + iey)/
√

2 (3.14)

e− = (ex − iey)/
√

2 (3.15)

ez = ez, (3.16)

which is often used in atomic physics due to its symmetry properties [84]. When making

the associations + (q = +1), − (q = −1), and z (q = 0) the elements of the spherical basis

have the properties

e∗q = e−q(−1)q (3.17)

eq · e∗q′ = δq,q′ . (3.18)

For an arbitrary vector A we have Aq = eq ·A so that A =
∑

q Aqe∗q =
∑

q(−1)qAqe−q.

Due to the element ez this basis describes any field for any propagation direction and not

just a beam propagating along z.

3.2.4 Stokes Representation

Given these basis pairs, we define the Stokes operators (also known as Schwinger boson

operators) as

Ŝx =
1
2
(â†yây − â†xâx) (3.19)

Ŝy =
1
2
(â†y′ ây′ − â†x′ âx′) (3.20)

Ŝz =
1
2
(â†+â+ − â†−â−) (3.21)

Ŝ0 =
1
2
(â†yây + â†xâx). (3.22)

Clearly, Ŝx measures in one linearly polarized basis, Ŝy measures in the other linearly

polarized basis, and Ŝz measures in the circular basis. Each of these components can be
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measured in a polarimeter using at most two waveplates and a polarizing beamsplitter as

described below. Note that if two polarizations are perpendicular in real space (e.g., along

ex and ey), they will be represented by vectors that are pointing opposite directions on the

Stokes sphere. Using the above transformations of basis, one can show that these operators

can be defined in terms of the other basis pairs as

Ŝx = 1
2(â†yây − â†xâx) =

1
2
(â†y′ âx′ + â†x′ ây′) =

1
2
(â†+â− + â†−â+) (3.23)

Ŝy = 1
2(−â†yâx − â†xây) =

1
2
(â†y′ ây′ − â†x′ âx′) =

i

2
(â†−â+ − â†+â−) (3.24)

Ŝz = i
2(â†yâx − â†xây) =

i

2
(â†y′ âx′ − â†x′ ây′) =

1
2
(â†+â+ − â†−â−) (3.25)

Ŝ0 = 1
2(â†yây + â†xâx) =

1
2
(â†y′ ây′ + â†x′ âx′) =

1
2
(â†+â+ + â†−â−). (3.26)

Using [âi, â
†
j ] = δij one can show that the Stokes operators have the same commutation

relations as angular momentum operators

[
Ŝx, Ŝy

]
= iŜz (3.27)[

Ŝy, Ŝz

]
= iŜx (3.28)[

Ŝz, Ŝx

]
= iŜy (3.29)[

Ŝi, Ŝ0

]
= 0. (3.30)

All of the usual angular momentum relations immediately follow. Other means of describing

the polarization state, e.g., the Jones vector, often assume further constraints and can be

found in [85].

3.2.5 Arbitrary Vector Operator Rotations

Imagine a polarized beam of light propagating through, or reflecting off, some material. If

the beam is not attenuated, then the material will rotate the polarization of the beam about

some, possibly arbitrary, direction on the Stokes sphere. Thus we can represent the unitary

behavior of the evolution (whether it be due to a waveplate, a mirror, a piece of glass, cold

atoms, etc.) simply by a rotation vector. In this section, we are interested in evaluating the

operation of rotating a Stokes vector about an arbitrary direction by an arbitrary angle.
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Consider the rotation of the vector operator

Ŝ =
[
Ŝx, Ŝy, Ŝz

]
(3.31)

in Cartesian coordinates about an arbitrary direction n = [γx, γy, γz]/γ by the angle γ =√
γ2

x + γ2
y + γ2

z . Using the rotation vector γ = γn = [γx, γy, γz], this rotation can be

represented in the Heisenberg picture as

Ŝ′i = Û ŜiÛ
† (3.32)

where

Û = exp[−iŜ · γ] = exp[−i(γxŜx + γzŜz + γzŜz)]. (3.33)

The Ŝ′i can be derived explicitly using the following equation for the arbitrary rotation of

any vector

Ŝ′i = (Ŝ · i) cos γ + (n · i)(n · Ŝ)(1− cos γ) +
(
(n× i) · Ŝ

)
sin γ. (3.34)
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(See, for example, eq. (3.16) of http://www.phys.vt.edu/~mizutani/quantum/rotations.

pdf.) Expanding and rearranging terms we get

Ŝ′x = Ŝx

(
γ2

x

γ2
(1− cos γ) + cos γ

)
+Ŝy

(
γxγy

γ2
(1− cos γ) +

γz

γ
sin γ

)
+Ŝz

(
γxγz

γ2
(1− cos γ)− γy

γ
sin γ

)
(3.35)

Ŝ′y = Ŝx

(
γyγx

γ2
(1− cos γ)− γz

γ
sin γ

)
+Ŝy

(
γ2

y

γ2
(1− cos γ) + cos γ

)

+Ŝz

(
γyγz

γ2
(1− cos γ) +

γx

γ
sin γ

)
(3.36)

Ŝ′z = Ŝx

(
γzγx

γ2
(1− cos γ) +

γy

γ
sin γ

)
+Ŝy

(
γzγy

γ2
(1− cos γ)− γx

γ
sin γ

)
+Ŝz

(
γ2

z

γ2
(1− cos γ) + cos γ

)
. (3.37)

As an example, a half-waveplate with its primary axis rotated by an angle φ from the

x-axis will correspond to a rotation vector of

γ = π[cos(2φ), sin(2φ), 0]. (3.38)

Similarly a quarter-waveplate with its primary axis rotated φ from the x-axis will correspond

to a rotation vector of

γ =
π

2
[cos(2φ), sin(2φ), 0]. (3.39)

3.2.6 Fock States and Coherent States

We work with the convention that Fock states are represented as |n〉 where n are integers

and coherent states are represented as |α〉 where α are complex numbers. The type of state

should usually be clear by context so distinguishing subscripts are not used.

http://www.phys.vt.edu/~mizutani/quantum/rotations.pdf
http://www.phys.vt.edu/~mizutani/quantum/rotations.pdf
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Fock states of a particular mode have the properties [68]

â|n〉 =
√
n|n− 1〉 (3.40)

â†|n〉 =
√
n+ 1|n+ 1〉 (3.41)

â†â|n〉 = n|n〉. (3.42)

For the same mode, we define the coherent state [68] in terms of the Fock states as

|α〉 = exp
(
−|α|2/2

) ∞∑
n=0

αn

√
n!
|n〉 (3.43)

and it quickly follows from the above that we have

â|α〉 = α|α〉 (3.44)

〈α|â† = 〈α|α∗ (3.45)

〈α|â†â|α〉 = |α|2. (3.46)

The power represented in a beam sliced into modes of length cdt (where c is the speed of

light) is

P = 〈â†â〉~ω/dt = |α|2~ω/dt (3.47)

For computational reasons we will sometimes take the time slice dt small such that α� 1

and expand the coherent state to first-order

|α〉 ≈ (1− |α|2/2)(|0〉+ α|1〉). (3.48)

For an arbitrarily polarized beam propagating along one direction we will represent the

optical state as the tensor product

|Φ〉 = |α1〉1 ⊗ |α2〉2 (3.49)

where 1 and 2 label orthogonal polarization modes. One can then use the representations

of the Ŝi operators and the properties of the coherent state above to calculate 〈Ŝi〉 in terms
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of the αi. The power of this beam is then simply the sum of the powers in each mode

P = 〈â†xâx + â†yây〉~ω/dt (3.50)

= 2〈Ŝ0〉~ω/dt (3.51)

= (|αx|2 + |αy|2)~ω/dt. (3.52)

Throughout this thesis we focus mostly on using coherent states of probe light to create

spin-squeezed states. It turns out that one can also discuss the creation of polarization

squeezed light by multipassing the probe beam through the unsqueezed atomic ensemble

[86], although we do not consider this effect here.

3.2.7 Polarimetry

One can measure any of the above bases or any linear combination thereof (simultaneously

with Ŝ0) with a fixed combination of a quarter-waveplate, a half-waveplate, a polarizing

beamsplitter (PBS), and two independent detectors. The sum current (optical power) will

be Ŝ0 and the difference will be Ŝi where i is the measurement basis. The observable Ŝx

is measured with just a PBS with axes along the directions x and y. The observable Ŝy is

measured with a half-waveplate prior to the PBS with primary axis at 45 degrees relative to

the PBS (x-y) axes (see figure 1.2). The observable Ŝz is measured with a quarter-waveplate

prior to the PBS with primary axis also at 45 degrees relative to the PBS (x-y) axes. We

discuss the theory of polarimeters more in section 8.1 and the experimental implementation

in section 11.6.

3.3 Atomic Spin-States

Turning from light to atoms, we now introduce the language used to describe a collec-

tive atomic spin-state. For the sake of simplicity we assume that the collective states are

symmetric with respect to particle exchange and we also ignore the external degrees of

freedom associated with position. Throughout this analysis we consider the use of actual

spin-particles, where the angular momentum operators represent actual angular momen-

tum. This is in contrast to a treatment of a pseudospin defined with respect to an arbitrary

set of levels, e.g., the clock transition. We use the convention that lower case operators are
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used with individual atoms and capital letters are associated with collective variables.

3.3.1 Cesium

In our experiments, our alkali atom of choice is cesium. Throughout this thesis, we exclu-

sively refer to the only stable isotope of cesium: 133Cs with 55 protons and 78 neutrons.

The choice of cesium over other alkali atoms that can be trapped and cooled is mostly

historical: other Caltech groups have used it and we have available equipment and diode

lasers at the appropriate wavelength. Here I summarize a few of the properties of cesium,

while leaving the details to other works, most notably [84]. The cesium atom consists of a

single valence electron with spin s = 1/2 and a nucleus of spin i = 7/2. Throughout most

of this thesis we consider the D2 optical transition between the ground state with orbital

momentum l = 0 and the excited state with l = 1 and j = l + s = 3/2 (as opposed to

the D1 line with j = l − s = 1/2). The hyperfine levels corresponding to this transition

are displayed in figure 3.1. This fine structure splitting corresponds to a wavelength of 852

nm, which is the coarse setting for all of our trapping and probing lasers. Now consider the

total angular momentum

f̂ = ŝ⊗ 1̂l⊗i + 1̂s ⊗ l̂⊗ 1i + 1̂s⊗l̂i (3.53)

where ŝ, l̂, and î are respectively the electron spin, orbital angular momentum, and the

nuclear spin. For the ground state we have two possible spins f = 7/2 ± 1/2 = 3, 4 (each

with 2f + 1 magnetic sublevels), these ground states have a hyperfine splitting of exactly

9.192631770 GHz, which defines the unit of time. For the D2 line there are four excited

levels f ′ = 2, 3, 4, 5 (each with 2f ′ + 1 sublevels). Thus to simulate the entire ground and

excited state manifold, one needs to keep track of (2 · 3 + 1) + (2 · 4 + 1) = 16 ground state

sublevels and (2 · 2 + 1) + (2 · 3 + 1) + (2 · 4 + 1) + (2 · 5 + 1) = 32 excited state sublevels.

We represent the internal state of the atom in terms of the (Zeeman degenerate) atomic

hyperfine ground states, |f,m〉, and excited states, |f ′,m′〉. Here f and f ′ are the total spin

quantum numbers for the ground and excited hyperfine levels respectively while m and m′

are their projections on the z-axis. That is to say |f,m〉 are eigenstates of the total atomic

angular momentum defined above. The quantum numbers, f , and m, are defined in the
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usual manner,

f̂2|f,m〉 = ~2f(f + 1)|f,m〉 (3.54)

f̂z|f,m〉 = ~m|f,m〉. (3.55)

The projector onto the ground state f is given by

P̂f =
∑
mf

|f,mf 〉〈f,mf | (3.56)

and the projector onto the excited state f ′ is given by

P̂f ′ =
∑
m′

f

|f ′,m′
f 〉〈f ′,m′

f |. (3.57)

Summing over all ground state hyperfine levels gives the ground state projector

P̂g =
∑

f

P̂f (3.58)

and summing over all excited state hyperfine levels gives the excited state projector

P̂e =
∑
f ′

P̂f ′ (3.59)

and adding these two together gives the identity Î = P̂e + P̂g.

We leave a discussion of the fine and hyperfine energy level splittings to chapter 5. The

spectrum and many other properties of cesium can be found in [84].

3.3.2 Ground State Spin Operators

In most of our experiments, the atomic population is primarily among the sublevels of one

of the ground states, usually f = 4. The excited states are populated transiently via the

probing process as discussed in subsequent chapters, and this will eventually lead to state

decay to both ground state levels. However, at any one time all of the spins are in one

level, therefore we restrict the following analysis to a single ground state spin of size f . The
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Figure 3.1: Cesium D2 transition levels as described in the text. The probe and pump laser
configurations are also shown.

individual spin vector operator for an atom labeled i is denoted

f̂ (i) = [f̂ (i)
x , f̂ (i)

y , f̂ (i)
z ] (3.60)

and these spin operators obey the usual commutation relations

[
f̂x, f̂y

]
= i~f̂z (3.61)[

f̂z, f̂x

]
= i~f̂y (3.62)[

f̂y, f̂z

]
= i~f̂x. (3.63)

In terms of these individual operators, we now define the collective spin vector operator as

the sum of all of the individual operators

F̂ =
N∑
i

f̂ (i) = [F̂x, F̂y, F̂z] (3.64)

and these operators satisfy the same commutation relations as above.

In fact, as is clear from above, the “individual spin” is individual from the atomic
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perspective, but also collective because it is composed of the electron spin, orbital and

nuclear spin degrees of freedom. Thus, for larger than spin-1/2 states, like the f = 4 used

here, one can speak of spin-squeezing an individual atom, which corresponds to entangling

the atom’s inner components.

3.3.3 Spin Uncertainty Relations

Now we translate the commutation relations to uncertainty relations via the usual analysis.

From [87], for two operators Â and B̂ we have the general uncertainty relation

〈∆Â2〉〈∆B̂2〉 ≥ |〈∆Â∆B̂〉|2, (3.65)

which can be rewritten as

〈∆Â2〉〈∆B̂2〉 ≥ 1
4
|〈[Â, B̂]〉|2 +

1
4
|〈{∆Â,∆B̂}〉|2. (3.66)

Usually the cross-correlation terms (diagonals of the covariance matrix) can be ignored,

but we include them here for the sake of completeness. In the case of the collective spin

operators, this leads to the uncertainty relations

〈∆F̂ 2
x 〉〈∆F̂ 2

y 〉 ≥ ~2

4
|〈F̂z〉|2 +

1
4
|〈{∆F̂x,∆F̂y}〉|2 (3.67)

〈∆F̂ 2
y 〉〈∆F̂ 2

z 〉 ≥ ~2

4
|〈F̂x〉|2 +

1
4
|〈{∆F̂y,∆F̂z}〉|2 (3.68)

〈∆F̂ 2
z 〉〈∆F̂ 2

x 〉 ≥ ~2

4
|〈F̂y〉|2 +

1
4
|〈{∆F̂z,∆F̂x}〉|2. (3.69)

Below we use these relations to get a sense of the moment distribution on the Bloch sphere

of several representative states, including spin-squeezed states.

3.3.4 Symmetric States and Moments

3.3.4.1 Dicke States

The Dicke states [88, 68], |F,m〉 are simply the eigenstates of F̂z whether or not it is a

collective operator

F̂z|F,m〉 = ~m|F,m〉. (3.70)
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In this section we will calculate some moments of these states for future reference. The

collective spin raising and lowering operators are useful for this purpose and are defined as

F̂± = F̂x ± iF̂y (3.71)

with the inverse being

F̂x = (F̂+ + F̂−)/2 (3.72)

F̂y = −i(F̂+ − F̂−)/2. (3.73)

The property that makes F̂± so useful is that it acts as a raising/lowering operator

F̂±|F,m〉 = ~
√
F (F + 1)−m(m+ 1)|F,m± 1〉, (3.74)

which can be used in expectation value calculations. Now the first-order moments of the

Dicke states are

〈F,m|F̂z|F,m〉 = ~m (3.75)

〈F,m|F̂x|F,m〉 = 〈F,m|F̂y|F,m〉 = 0 (3.76)

and the second-order moments are

〈F,m|F̂ 2
z |F,m〉 = ~2m2 (3.77)

〈F,m|F̂ 2
x |F,m〉 = 〈F,m|F̂ 2

y |F,m〉 =
~2

2
[F (F + 1)−m2]. (3.78)

Here 〈F̂ 2
x 〉 is calculated by expanding F̂x into the raising/lowering operators and using their

properties to simplify.

From these moments, we see that we can visualize each Dicke state m as having a per-

fectly determined z-component ~m and a completely undetermined transverse component

while still respecting the extent of the total sphere. The m = 0 state lives along the equator

of the sphere, while the m = ±F states represent the polar caps, which still have finite

lateral extent. The single atom Dicke states corresponding to the sublevels of the f = 4

ground state of cesium are depicted visually in figure 3.2.
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Figure 3.2: Graphical depiction of Dicke States, |f,m〉z, for the cesium f = 4 ground state.
The highlighted uppermost state is a single-atom coherent spin-state.

We define these extended Dicke states with m = F as the coherent spin-states (CSS),

which obey

〈F, F |F̂z|F, F 〉 = ~F (3.79)

〈F, F |F̂ 2
x |F, F 〉 = 〈F, F |F̂ 2

y |F, F 〉 =
~2

2
F (3.80)

〈{∆F̂x,∆F̂y}〉 = 0. (3.81)

The CSS is a minimum uncertainty state because it satisfies the equality of the uncertainty

inequality

〈∆F̂ 2
x 〉〈∆F̂ 2

y 〉 =
~2

4
|〈F̂z〉|2 +

1
4
|〈{∆F̂x,∆F̂y}〉|2. (3.82)

As opposed to all other Dicke states, the CSS is an unentangled (separable) state, with all

spins pointing in the same direction, i.e., |CSS〉 = |F, F 〉 = | ↑ · · · ↑〉. The entanglement of

non-CSS Dicke States is simply seen by the two spin example in chapter 1 and discussed

more thoroughly in chapter 4.

As discussed in the introduction, the CSS can be turned into a spin-squeezed state if

the x variance can be reduced (squeezed) while the y variance is increased (antisqueezed)



44

to maintain the validity of the uncertainty relation. Below we discuss the definition of

spin-squeezing in more detail.

The two single atom states that are easiest to prepare via optical pumping are the

individual CSS |f, f〉, and the individual m = 0 state |f,m〉. From the above relations we

can see that the difference in variance one expects to see, for f = 4, is

〈f, f |f̂2
x |f, f〉 =

~2

2
f = ~22 (3.83)

〈f, 0|f̂2
x |f, 0〉 =

~2

2
f(f + 1) = ~210. (3.84)

Another important reference state is the completely mixed state defined by incoherently

populating all of the sublevels equally

ρ̂ =
∑
m

1
2f + 1

|f,m〉〈f,m|. (3.85)

With this state, one can then show that the mean square of any moment is

〈f̂2
i 〉 = Tr[f̂2

i ρ̂] =
2~2

2f + 1

f∑
m=1

m2 (3.86)

and for f = 4 this gives

〈f̂2
i 〉 = Tr[f̂2

i ρ̂] = ~220/3 = ~26.67. (3.87)

From above, we see that this variance is intermediate between that of a coherent state and

the m = 0 state as expected.

3.3.4.2 Gaussian States

The Hilbert space describing an ensemble of N spins of size f is ridiculously large, and

without any constraints the state vector would consist of (2f + 1)N complex elements.

When we deal with an ensemble of more than a billion spins, there is no hope of using

the full state space in our description. One option is to restrict the state description to the

symmetric subspace, as discussed in the next chapter, which only has size (2Nf+1), however

this is still a potentially large number. Fortunately, we can use a Gaussian description of
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the state under certain circumstances where we only have to keep track of a few moments

of the distribution. In general, this kind of simplification of the Hilbert space description

is a kind of “model reduction,” used to make simulations and estimation more efficient by

removing unnecessary parts of the full model.

For example, consider the collective CSS just described with a large number of spins.

If this state is aligned along z and we represent it in a perpendicular basis, x or y, then

the populations among the collective sublevels will be distributed in a Gaussian manner,

centered at zero with a variance given by 〈F, F |F̂ 2
x |F, F 〉 = ~2

2 F . Thus the width of this

distribution grows as the square root of the number as the collective Bloch sphere grows

linearly with the number. The more atoms we have, the more localized the state is on the

sphere, and the “flatter” the space on which it lives. Formally, these ideas can be made

precise via the Holstein-Primakoff transformation [89], which is commonly used in the con-

densed matter physics literature and makes it possible to derive the Gaussian approximation

as an expansion in 1/N .

Many other papers, such as [39, 86], make use of this approximation and divide by the

“classical” length of the vector to create effective “position” and “momentum” operators

F̂x√
〈F̂z〉

→ X̂ (3.88)

F̂y√
〈F̂z〉

→ P̂ , (3.89)

which then follows the usual commutation and uncertainty relationship. In this thesis, we

make this analogy in appendix D to simulate a quantum harmonic oscillator with a field

along the same direction as the CSS.

These concepts are also discussed in the context of measurement and control in both

chapter 9 and chapter 10. In section 9.7, I describe how to expand the Gaussian description

naturally in terms of cumulants, which stochastically evolve due to the quantum measure-

ment in an interdependent way.

So far we have only discussed the Dicke states and the CSS, which is an unentangled

Dicke state. As seen in figure 1.1, the spin-squeezed state is merely a perturbation of the

CSS for small degrees of squeezing and is also a Gaussian state. Thus, for much of the

work described in this thesis where the spin-squeezing is relatively small, the Gaussian
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approximation will be used.

3.3.5 Spin-Squeezed States

The notion of spin-squeezing has been introduced via the uncertainty relations in chapter

1 and the cartoon in figure 1.1. In this section, we technically define a spin-squeezed state

and analyze some of its properties.

For a collective spin-state polarized in the x-direction (〈F̂y〉 = 〈F̂z〉 = 0) and with

minimum transverse uncertainty in the z-direction, the spin-squeezing parameter ξ is defined

as

ξ2 =
2F 〈∆F̂ 2

z 〉
〈F̂x〉2

. (3.90)

If a state has ξ2 < 1, then that state is referred to as a spin-squeezed state (SSS). Notice that

the coherent spin-state satisfies ξ2 = 1. The spin-squeezing parameter was introduced in the

context of improving the performance of atomic clocks in [4, 2, 5]. In the next section, we

prove that spin-squeezed states (composed of spin-1/2 particles) are necessarily entangled.

3.3.5.1 Spin-Squeezing Implies Entanglement (Spin-1/2)

Following [6], we now show that any state composed of spin-1/2 particles with ξ2 < 1 is

nonseparable (entangled). First we define some of the spin-operators for a spin-1/2 particle.

The Pauli angular momentum operators for the individual spins are

f̂x =
1
2
(|0〉〈1|+ |1〉〈0|) (3.91)

f̂y =
i

2
(|0〉〈1| − |1〉〈0|) (3.92)

f̂z =
1
2
(|1〉〈1| − |0〉〈0|). (3.93)

The joint/collective angular momentum variables are the sums of the microscopic variables:

F̂i =
∑N

n=1 f̂
(n)
i . The total angular momentum vector will be denoted F̂ = [F̂x, F̂y, F̂z].
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With the definition F̂ij =
∑N

n |i〉n〈j|n, i, j = 0, 1 we see that

F̂x =
1
2
(F̂01 + F̂10) (3.94)

F̂y =
i

2
(F̂10 − F̂01) (3.95)

F̂z =
1
2
(F̂00 − F̂11) (3.96)

N = F̂00 + F̂11. (3.97)

Now, to begin the proof, we use the fact that any separable state can be written in the form

ρ̂ =
∑

k

Pkρ̂
(1)
k ⊗ · · · ⊗ ρ̂

(N)
k . (3.98)

We can then rewrite the variance for a separable state into the useful form

〈F̂ 2
z 〉 = Tr

(
ρ̂F̂ 2

z

)
(3.99)

= Tr

∑
k

Pkρ̂
(1)
k ⊗ · · · ⊗ ρ̂

(N)
k

(
N∑

n=1

f̂ (n)
z

)2
 (3.100)

=
∑

k

Pk

〈
N∑

n=1

f̂ (n)2
z +

N∑
n6=m

f̂ (n)
z f̂ (m)

z

〉
k

(3.101)

=
∑

k

Pk

N
4

+

〈
N∑

n6=m

f̂ (n)
z f̂ (m)

z

〉
k

 (3.102)

=
N

4
+
∑

k

Pk

(
〈F̂z〉2k −

N∑
n=1

〈f̂ (n)
z 〉2k

)
. (3.103)

The relations
∑

k Pk = 1, f̂2
i = 1

4 , and 〈
∑N

n6=m f̂
(n)
z f̂

(m)
z 〉 =

∑N
n6=m〈f̂

(n)
z 〉〈f̂ (m)

z 〉 = 〈F̂z〉2 −∑N
n=1〈f̂

(n)
z 〉2 have all been used, and the last equation follows from separability. So the

variance is now

〈∆F̂ 2
z 〉 = 〈F̂ 2

z 〉 − 〈F̂z〉2 (3.104)

=
N

4
+
∑

k

Pk

(
〈F̂z〉2k −

N∑
n=1

〈f̂ (n)
z 〉2k

)
− 〈F̂z〉2. (3.105)

This is equality 1.
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Another condition 〈f̂ (n)
x 〉2k + 〈f̂ (n)

y 〉2k + 〈f̂ (n)
z 〉2k ≤

1
4 implies that

N

4
−
∑

k

Pk

∑
n

〈f̂ (n)
z 〉2k ≥

∑
k

Pk

∑
n

(
〈f̂ (n)

x 〉2k + 〈f̂ (n)
y 〉2k

)
. (3.106)

This is inequality 1.

Now we use the Cauchy-Schwarz inequality to derive two more useful inequalities. First

notice that

〈F̂i〉2 =

(∑
k

Pk〈F̂i〉k

)2

(3.107)

=

(∑
k

(√
Pk

)(√
Pk〈F̂i〉k

))2

(3.108)

≤

(∑
k

Pk

)(∑
k

Pk〈F̂i〉2k

)
(3.109)

=
∑

k

Pk〈F̂i〉2k. (3.110)

This is inequality 2. Now we continue this inequality and use Cauchy-Schwarz again to get

〈F̂i〉2 ≤
∑

k

Pk〈F̂i〉2k (3.111)

=
∑

k

Pk

(∑
n

〈f̂ (n)
i 〉k

)2

(3.112)

=
∑

k

Pk

(∑
n

1× 〈f̂ (n)
i 〉k

)2

(3.113)

≤
∑

k

Pk

(∑
n

1

)(∑
n

〈f̂ (n)
i 〉2k

)
(3.114)

=
∑

k

PkN
∑

n

〈f̂ (n)
i 〉2k. (3.115)

This is inequality 3.
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Finally, we combine these relations to derive an inequality for the ξ2 of a separable state:

ξ2 =
N〈∆F̂ 2

z 〉
〈F̂x〉2 + 〈F̂y〉2

(3.116)

=
N
(

N
4 +

∑
k Pk

(
〈F̂z〉2k −

∑N
n=1〈f̂

(n)
z 〉2k

)
− 〈F̂z〉2

)
〈F̂x〉2 + 〈F̂y〉2

(3.117)

≥
N
(

N
4 +

∑
k Pk

(
〈F̂z〉2k −

∑N
n=1〈f̂

(n)
z 〉2k

)
− 〈F̂z〉2

)
∑

k PkN
∑

n(〈f̂ (n)
x 〉2k + 〈f̂ (n)

y 〉2k)
(3.118)

≥
N
4 +

∑
k Pk

(
〈F̂z〉2k −

∑N
n=1〈f̂

(n)
z 〉2k

)
−
∑

k Pk〈F̂z〉2k∑
k Pk

∑
n

(
〈f̂ (n)

x 〉2k + 〈f̂ (n)
y 〉2k

) (3.119)

≥
N
4 −

∑
k Pk

∑N
n=1〈f̂

(n)
z 〉2k∑

k Pk
∑

n

(
〈f̂ (n)

x 〉2k + 〈f̂ (n)
y 〉2k

) (3.120)

≥ 1 (3.121)

where equality 1 is used in 3.117, inequality 3 is used in 3.118, inequality 2 is used in 3.119,

and inequality 1 is used in 3.121. Thus separability implies the absence of spin-squeezing.

Conversely, spin-squeezing implies entanglement.

3.3.5.2 Heisenberg Limit of Spin-Squeezing

Optical squeezed states can in principle be infinitely squeezed, although this takes an infinite

amount of energy. For a fixed number of atoms, spin-squeezed states cannot be infinitely

squeezed because of the fact that the collective Bloch sphere is finite in extent, and if one

squeezes too much then the distribution begins to “wrap” around the sphere.

We can describe this quantitatively as follows. Assume the sample is polarized along

x: 〈F̂x〉 = F = N
2 . By standard angular momentum commutation relations we know

〈∆F̂ 2
y 〉〈∆F̂ 2

z 〉 ≥
〈F̂x〉2

4 . So 〈∆F̂ 2
z 〉 ≥ F 2

4〈∆F̂ 2
y 〉

. But because the variance cannot be bigger than

the entire Bloch sphere we have 〈∆F̂ 2
y 〉 ≤ F̂ 2, which implies 〈∆F̂ 2

z 〉 ≥ 1
4 . This gives us

ξ2 = N〈∆F̂ 2
z 〉

〈F̂x〉2+〈F̂y〉2
≥ N/4

F 2 = 1
N . This is the so called Heisenberg limit of spin-squeezing.

3.3.5.3 Spin-Squeezing Under Particle Loss

Here we analytically investigate the spin-squeezing parameter as particles are removed. We

find that the spin-squeezing parameter of a state with Nr spins remaining (ξ2Nr
) is dependent
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on the initial squeezing parameter (ξ2N ) and polarization of the state with all spins remaining

in the following way

ξ2Nr
= ξ21 + (ξ2N − ξ21)

Nr − 1
N − 1

(3.122)

where ξ21 ≡ N2/(4〈F̂z〉2N ). So the loss of squeezing is only linear in the number of particles

that are traced out. Hence the entanglement is rather robust, especially as compared to

the extreme fragility of cat states, described below, to particle loss. The idea of entangled

states that are robust to particle loss is also discussed in chapter 4.

3.3.5.4 Squeezing Generation

As mentioned in the introduction, there are many ways to imagine creating a spin-squeezed

state. Numerically, the easiest way to spin-squeeze a coherent state is to apply either a

twisting Hamiltonian (Ĥ = F̂ 2
x ) or a countertwisting Hamiltonian (Ĥ = −i(F̂ 2

+ − F̂ 2
−)) [2].

The latter is designed to ensure that the squeezed axis stays constant in time and does not

“twist” out of alignment.

On the experimental side, one can either apply controlled Hamiltonians to entangle the

internal degrees of freedom as has been achieved for several ions in a trap [40]. One could

also create the correlations in the atoms via absorption of a beam of squeezed light [39].

Finally, one could use QND measurement to prepare spin-squeezed states conditionally

[16, 37, 36] as we mostly discuss in this thesis.

3.3.6 Cat States

As we have mentioned, the Hilbert space describing the collective spin-states is a large

place. So far we have only described a very small but useful subsample of the vast number

of potential states. Other states in the symmetric subspace we have yet to consider include

the GHZ state

|GHZ〉 = (| ↑↑ · · · ↑〉+ | ↓↓ · · · ↓〉)/
√

2, (3.123)

which is alternately known as a cat state, or an EPR state. One can also prepare similar

coherent superpositions of CSS states but with a smaller angle between the two [90]. The

entanglement properties of these states and the states mentioned previously are analyzed

in the next chapter.
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Chapter 4

Entanglement of Collective
Spin-States

This chapter provides a highly abbreviated summary of [17], which discusses the efficient

calculation of entanglement measures for symmetric spin-states. For the sake of brevity, I

left out most of the details and proper references, with the aim of getting across the few

core ideas. Although this work is interesting from a theoretical entanglement perspective, it

is largely independent of the rest of this thesis and can safely be skipped or read separately.

4.1 Introduction

In [17], we investigate entanglement restricted to symmetric spin-states. The collective state

size without restrictions is exponentially large in the atom number. With the symmetry

restriction, on the other hand, the state grows only linearly with number. We show that,

just as the state can be simplified, so can the operations needed to calculate entanglement

measures for bipartite splits of symmetric states. As a result, we can efficiently calculate

entanglement measures for ensemble numbers up to N ≈ 103.

Using this machinery, we can numerically investigate the entanglement properties of

certain parametrized families of symmetric states. This has allowed us to infer certain

properties that can later be proven analytically. When investigating a particular state we

can ask questions of both large scale entanglement (e.g., between halves of the ensemble) and

small scale entanglement (e.g., between two spins removed from the rest of the ensemble).

The small scale entanglement also tells us how robust the original state was to particle

loss. Finally, these tools have allowed us to investigate how entanglement is dynamically
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generated via, for example, a spin-squeezing Hamiltonian.

4.2 Computing Entanglement

The question of how to quantify entanglement is notoriously subtle [91], but the basic idea

under ideal circumstances is very simple. Given a collective pure state, |Ψ〉, and a partition

for the system, {A,B}, the entropy of entanglement is defined as,

E(|Ψ〉, {A,B}) ≡ S(ρ̂A) = S(ρ̂B) (4.1)

where the von Neumann entropy is S(ρ̂) = −Tr(ρ̂ log2 ρ̂) and ρ̂A = TrB(|Ψ〉〈Ψ|). Any

entropy that results from performing a partial trace on the system must be a consequence

of initial entanglement provided that the initial state is pure. For product states, |Ψ〉 =

|Ψ〉A ⊗ |Ψ〉B, the entropy is zero since the single eigenvalue for each of the pure states ρ̂A

and ρ̂B is one. The maximum entropy of entanglement given a partition with dimensions,

dim(A) = dA and dim(B) = dB, with dA ≤ dB, is log2(dA). A state that achieves this

maximum is,

|Ψ〉 = |0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B + · · ·+ |dA − 1〉A ⊗ |dA − 1〉B. (4.2)

For initial pure states, the entropy as a measure of entanglement is very intuitive: the more

two parts of a single system are entangled, the more information is lost from one when

the other is lost. This is the same as with any meaningful relationship in life, quantum

mechanical, personal, or otherwise.

The entropy of entanglement has the attractive feature that it is straightforward to com-

pute; it requires only performing a partial trace, ρ̂A = TrB(ρ̂), then computing eigenvalues

of the result. The drawback of the entropy is that it only qualifies as an entanglement

measure for initially pure states. One can define a set of constraints that all measures

of entanglement, i.e., entanglement monotones, must satisfy [92]. However, in the case of

initial pure states, all entanglement measures must be equivalent to the entropy as defined

above.
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4.3 Computing Entanglement in the Symmetric Subspace

For simplicity we consider the entanglement within a collective state of N spin-1/2 particles.

When working with the symmetric subspace, it is necessary to convert between the large full,

C
⊗N
2 , and small symmetric, CN+1, basis representations of the state. In order to provide

a systematic means for changing bases, it is convenient to define a symmetry operator,

ŜN : C⊗N
2 → CN+1, whose action on the density operator in the 2N -dimensional basis,

˜̂ρN = ŜN ρ̂N Ŝ
†
N (4.3)

projects the state into SN expressed in an (N + 1)-dimensional basis. We have adopted the

notation that ˜̂ρN is the symmetric density matrix represented in CN+1.

ŜN is an (N + 1)× 2N -dimensional matrix that transfers between the bases. It should

be noted that ŜN is not a permutation operator, but rather a projector. Therefore, it is

only appropriate to operate on symmetric states with ŜN as,

ŜN Ŝ
†
N = 1sym (4.4)

Ŝ†N ŜN 6= 1full (4.5)

where 1sym is the identity in the (N + 1)-dimensional symmetric basis and 1full is the

identity in the 2N -dimensional full basis. Consequently, Ŝ†N ŜN ρ̂N Ŝ
†
N ŜN = ρ̂N only if ρ̂N is

symmetric. Acting on a nonsymmetric state with ŜN and Ŝ†N results in a loss of information,

as the nonsymmetric components of that state are lost in the projection onto SN .

For the purpose of making a bipartite split, {A,B}, the essential property of the sym-

metric subspace is that it can be expressed as a tensor product of smaller symmetric spaces.

However, the tensor product of arbitrary symmetric states is not necessarily symmetric,

SN ⊂ SN−k ⊗ Sk (4.6)

where the partition {A,B} has been denoted by the number of spins in each subsystem,

{N − k, k}. SN−k ⊗ Sk is larger than SN . The structure of valid symmetric products is
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given by the relation [93],

|m,N〉 =
k∑

p=0

|m− p,N − k〉 ⊗ |p, k〉 (4.7)

in terms of constituent symmetric states expressed in the large basis.

The above equations raise the point that the N particle symmetric space, SN , is smaller

than the product space, SN−k⊗Sk. Therefore, the entanglement of states in SN will generally

be more restricted than those in the tensor product space. While, it is straightforward to

identify the maximal entanglement bounds for states in, SN−k⊗Sk, the same is not true for

SN . Therefore, it is convenient to use the product space entanglement bounds as an upper

limit, albeit an overestimate, for the scaling of states in SN .

To calculate the entanglement between different partitions, we need to perform the

partial trace. In particular we would like to derive an expression for

˜̂ρN−k = Trk[˜̂ρN ] (4.8)

that avoids expressing any of the density matrices (in any intermediate step) in their large

bases. Staying within the smaller representation will clearly allow calculations of entangle-

ment measures to be considerably more efficient.

Using a formalism involving the projection operators above, we show in [17] that this

is possible, resulting in an expression relating components of the combined and traced out

density matrices:

〈ã|˜̂ρN−k |̃b〉 =
k∑

j=0

〈ã+ j|˜̂ρN |b̃+ j〉C−2
k,j

CN,a+jCN,b+j

CN−k,aCN−k,b
(4.9)

where we use

CN,m =

 N

m

− 1
2

=
[

N !
m!(N −m)!

]− 1
2

. (4.10)

The final state then resides in CN−k+1. Here the |ñ〉 state is just a Dicke state, as presented

in the previous chapter (see figure 3.2), expressed in the notation of [17].

Other operations besides the partial trace, such as the partial transpose, that are nec-

essary to compute certain entanglement measures can also be represented in a similarly
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Figure 4.1: Entropy of entanglement for representative symmetric states with N = 50
particles as a function of the dimension of the bipartite split, {k,N − k}, where k =
1, . . . , bN/2c. The unobtainable bound log2(k+ 1) is the entropy that could be achieved by
a nonsymmetric product of the two symmetric subsystems, {A,B}. Several representative
states nearly achieve this maximum.

efficient way.

4.4 Entanglement of Reference States

After deriving the set of functions that facilitate efficient numerical calculation of entan-

glement measures via symmetry, the rest of [17] concentrates on using these relations to

investigate the entanglement properties of certain families of states for large numbers (sev-

eral hundred spins, which is essentially the asymptotic regime).

For example, in figure 4.1 we plot the entanglement as a function of partition size for a

fixed number of total spins. The maximal bound is provided by the state of equation (4.2),

which does not live in the overall symmetric subspace. We plot the entanglement of several

states including the Dicke states |ñ〉, the GHZ (cat) state (|0̃〉 + |Ñ〉)/
√

2, random states

with a coherent sum of randomly populated Dicke states, and the comb state |C(
√

2N)〉

defined in [17], which nearly attains the maximal bound.

One can also consider only the even split point E(ρ, {N/2, N/2}), which is rightmost

in figure 4.1, and vary the total number to investigate the scaling. This is shown in figure
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Figure 4.2: (A) Plot of the even split entropy of entanglement, E(ρ, {N/2, N/2}), for rep-
resentative states as a function of the number of particles, N (which is also equal to the
entanglement of formation and distillation). Note that the average entropy of 25 ran-
dom states, |R〉, as well as the entropy of |C(

√
2N)〉, nearly attain the unobtainable bound

log2(bN/2c + 1). (B) A plot of the two-particle entanglement of formation, EF (ρ, {1, 1}),
as a function of the number of particles, N . The W state, |1̃〉, maximizes this entanglement
measure, which quantifies robustness to particle loss.

4.2A. While the Dicke states do not scale with the upper bound, it appears that both the

random states and comb states do scale. For the comb states, this numerical observation

was turned into analytical proof in the appendix of [17]. The fact that an overall symmetric

state could have an entanglement that scaled with this upper bound was not known prior

to this paper and is a testament to the power of the numerical tools developed here.

The quantity E(ρ, {N/2, N/2}) can be taken as a notion of “large-scale” entanglement

in the ensemble. By contrast, consider EF (ρ, {1, 1}), which represents the entanglement

between two individual spins with the remaining N − 2 traced out. (Because the state of

two-particles removed from the rest is mixed we use the entanglement of formation rather

than the entropy [17].) We plot the scaled version of this quantity for various states in figure

4.2B, where it is seen that the Dicke states have more pairwise entanglement than those

states with more large scale entanglement. This indicates some sort of trade-off between

large and small scale entanglement. This trade-off is plotted in figure 4.3C for a particular

number of spins using the same representative states.
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Figure 4.3: (A) A plot of the even split entanglement of formation (and entropy),
EF (ρ, {N/2, N/2}), for a system of N spin-1/2 particles evolved under a countertwisting
spin-squeezing Hamiltonian. The state |Ψξ〉 minimizes the squeezing parameter, ξ2. (B) A
similar plot using the scaled entanglement of formation, N2EF (ρ, {1, 1}), for a system with
all but two particles removed. (C) The time evolution of states evolving under both the
countertwisting Hamiltonian (Hct = (F̂ 2

+ − F̂ 2
−)/i) and twisting Hamiltonian (Ht = F̂ 2

x ) in
the space of extremal split entanglement.

4.5 Spin-Squeezing and the Dynamics of Entanglement

One can now plot these entanglement measures with reference to spin-squeezed states as

generated by, for example, the countertwisting Hamiltonian Hct = (F̂ 2
+ − F̂ 2

−)/i. In figure

4.3C, the path of an evolving spin-squeezed state is plotted alongside the reference states

previously discussed. The scalings in number of the optimal spin-squeezed point (denoted

by the dot) for large and small scale entanglement are plotted in figure 4.3A/B.

By looking at these plots it is clear that the spin-squeezed states are particularly robust

to particle loss (as discussed in section 3.3.5.3), like the Dicke states, and unlike the more

even-split entangled states (random, comb, GHZ, etc.). However, the spin-squeezed states

also have a fair amount of large-scale even-split entanglement. Given the observed trade-

off between small and large scale entanglement, it appears that the spin-squeezed states

represent a convenient compromise.

Another interesting venue of investigation using these tools is to investigate how the

entanglement grows on different scales when being dynamically generated. In figure 4.4,

the generation of squeezing is plotted along with the (normalized) small and large scale

entanglement. One can see that the small scale entanglement peaks first, giving way to the
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Figure 4.4: Spin-squeezing evolution for a system of N = 50 spin-1/2 particles evolving by
the countertwisting Hamiltonian as measured by the squeezing parameter, ξ2. The time is
scaled such that maximal spin-squeezing occurs at t = 1. The mean or F̂z (i.e., Jz) and the
entanglements of formation are all independently normalized by their own maximum in the
time period shown. Notice that the small scale correlations, EF (ρ, {1, 1}), peak before the
large scale correlations, EF (ρ, {N/2, N/2}), as the squeezing evolves.

larger scale entanglement at subsequent times. This ordering might be expected, as one

intuitively expects the pairwise correlations to grow first.

Another observation is that for small times, the state gets progressively more entangled

in the sense of majorization [94]. In other words, the eigenvalues of Trk(ρ(t+ dt)) are more

disordered than the eigenvalues of Trk(ρ(t)) for all k ≤ N/2 and small t. Thus, despite

certain ordering difficulties with various entropies, the entanglement of any split is strictly

increasing initially.

The paper [17] on which this chapter is based can be extended in many directions. First,

one can use the tools developed to discover properties of entanglement and its generation

in symmetric states, as we have only begun. Second, one can use the same idea as this

paper to extend the efficient calculation of entanglement measures to other classes of states,

besides the symmetric examples discussed here.
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Chapter 5

The Polarizability Hamiltonian and
Spontaneous Emission from
Adiabatic Elimination

Now that we have described the relevant optical and atomic states, we are equipped to

begin describing the interaction of the optical probe beam with the atomic spin-state. In

this chapter, we derive the master equation describing the unconditional evolution of a

single alkali atom when driven by a far-off resonant beam. Although our goal in subsequent

chapters will be to describe the effect of the atoms on the light (i.e., Faraday rotation),

here we start simple and consider the quantum evolution of the atoms in the presence of

a classical light field. We start with the dipole Hamiltonian and then follow an adiabatic

elimination procedure to remove the excited states, thus representing the dynamics in terms

of the ground states alone. One goal of this chapter is to provide a more expansive treatment

of the adiabatic elimination procedure than is typically given in the literature. However,

the primary goal is to efficiently describe the nontrivial, state-dependent dispersion and

absorption dynamics of the multilevel single atom system.

The resulting master equation consists of the polarizability Hamiltonian (including all

of the hyperfine levels) and also the spontaneous emission terms, corresponding to weighted

jumps between ground state sublevels. As expected, the derived spontaneous emission

terms are state dependent for the multilevel atom and we end this chapter with an anal-

ysis of this dependence for common experimental configurations. This is crucial because

many simplified models of spontaneous emission neglect the potentially important state

dependence.

In the next chapter, we further simplify the polarizability Hamiltonian in terms of
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intuitive atomic angular momentum operators and optical Stokes operators.

5.1 Master Equation Derivation

We begin by stating the relevant Hamiltonians, most importantly the dipole Hamiltonian

describing the atom-light interaction, and then introduce the full master equation, which

adds spontaneous emission from the multiple excited levels. From this point, we follow an

adiabatic elimination procedure that gives the master equation in terms of only the ground

states.

5.1.1 Hamiltonians

The Hamiltonian for the system, with a quantum atom and classical light, is given by

Ĥ = ĤB + Ĥg + Ĥe + Ĥi. (5.1)

Larmor precession due to a magnetic field is given by

ĤB =
∑
f,mf

µBgf

~
f̂ ·B. (5.2)

For the cesium f = 4 ground state the above prefactor gives a Larmor frequency of γB4 =

µBgf=4/h = 350 kHz/G [84]. We work with Hamiltonian and energy units of rad/s and

divide by ~ unless otherwise noted. The energies of the different hyperfine levels are given

by

Ĥg =
∑
f,mf

ωf |f,mf 〉〈f,mf |, (5.3)

Ĥe =
∑

f ′,mf ′

ωf ′ |f ′,mf ′〉〈f ′,mf ′ |, (5.4)

and the dipole Hamiltonian describing the interaction the atom with the field (and the

coupling of the ground and excited levels) is given by

Ĥi = −d̂ ·E/~. (5.5)
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The dipole operator and the classical field can be broken up into their rotating and counter-

rotating components as

d̂ = P̂gd̂P̂e + P̂ed̂P̂g

= d̂− + d̂+ (5.6)

E =
∑

σ

Eεσe−σ exp[−iωt] + h.c.

= E+ + E−. (5.7)

The rotating wave approximation (RWA) is best seen after going into the rotating frame

but the simple result just amounts to leaving out the two sum terms rotating at optical fre-

quencies and keeping the two difference terms, which rotate at the much smaller detunings.

This leads to

Ĥi = −1
~
d̂+ ·E− + h.c.

= −1
~
∑

f,f ′,σ

E exp[iωt]ε−σP̂g(d̂ · e−σ)P̂e + h.c.

= −1
~
∑

f,f ′,σ

∑
mf ,mf ′

E exp[iωt]ε−σ〈f ||d̂||f ′〉〈f,mf |f ′,mf ′ ; 1, σ〉|f,mf 〉〈f ′,mf ′ |+ h.c.

= −Ω
2

exp[iωt]
∑

f,f ′,σ

ε−σÂf,f ′,σ + h.c. (5.8)

Here we have defined the Rabi frequency as

Ω = 2E〈j = 1/2||d̂||j′ = 3/2〉/~ (5.9)

where j is the spin-angular momentum plus the orbital angular momentum as discussed in

chapter 3. We have also defined the jump operators as

Âf,f ′,σ =
∑

mf ,mf ′

〈f,mf |f ′,mf ′ ; 1, σ〉
〈f ||d̂||f ′〉

〈j = 1/2||d̂||j′ = 3/2〉
|f,mf 〉〈f ′,mf ′ |. (5.10)

See reference [84] for finding the ratio of dipole moments in terms of six-j and three-j

symbols. Another indispensable reference for Clebsch-Gordan coefficients and quantum

angular momentum is [95]. In Matlab, we can conveniently create the numerical jump
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operators using

[Âf,f ′,−1, Âf,f ′,0, Âf,f ′,+1] = murelf(f, f′, j, j′, i) (5.11)

with j = 1/2, j′ = 3/2, and i = 7/2. Note that we have the useful identities

∑
f,σ

Â†
f,f ′,σÂf,f ′,σ = P̂f ′ (5.12)

∑
f,f ′,σ

Â†
f,f ′,σÂf,f ′,σ = P̂e, (5.13)

which are used below for simplifying expressions.

5.1.2 Full Master Equation

The unconditional master equation is given by

˙̂ρ = −i[Ĥ, ρ̂] + Γ
∑

f,f ′,σ

D[Âf,f ′,σ]ρ̂ (5.14)

= −i[Ĥ, ρ̂] + Γ
∑

f,f ′,σ

Âf,f ′,σρ̂Â
†
f,f ′,σ −

Γ
2

(P̂eρ̂+ ρ̂P̂e) (5.15)

where we have used the superoperator definition

D[ĉ]ρ̂ = ĉρ̂ĉ† − (ĉ†ĉρ̂+ ρ̂ĉ†ĉ)/2 (5.16)

along with the convenient identity of equation (5.13). Here we have simply asserted without

derivation what the spontaneous emission decay terms are that correspond to the coupling of

the atom with all of the three-dimensional free-space vacuum modes, following the treatment

of [96]. We leave for future work how to derive a conditional master equation that would

provide our description for the atomic state if we were to measure some fraction of the

scattered light. Still, such a treatment should become the same as the case we consider here

under the limit that the measured fraction of scattered light goes to zero.



63

5.1.3 Rotating Frame

Now our goal is to remove the explicit time dependence from the Hamiltonian, so we move

into a frame rotating at the probe frequency ω. This is done by transforming all operators

according to

X̂ → exp[iP̂eωt]X̂ exp[−iP̂eωt]. (5.17)

Notice that the only effect this has is to remove the time dependence from the Hamiltonian

and simultaneously turn the excited energy levels into detunings via the term derived from

the transformation of ˙̂ρ itself. The dynamics are still given by equation (5.15), but with the

Hamiltonian now given by the following (without bothering to change notation)

Ĥ = ĤB + Ĥg + Ĥe + Ĥi (5.18)

ĤB =
∑
f,mf

µBgf

~
B · f̂ (5.19)

Ĥg = −∆3P̂3 (5.20)

Ĥe = −
∑
f ′

∆f ′P̂f ′ (5.21)

Ĥi = −Ω
2

∑
f,f ′,σ

ε−σÂf,f ′,σ + h.c. (5.22)

(notice that we chose the f = 4 state to be the zero energy reference) with the detunings

defined as

∆f ′ = ω − (ωf ′ − ω4) (5.23)

∆3 = ω4 − ω3 = 2π · 9.192631770 GHz. (5.24)

The last detuning is exact because this quantity currently defines the unit of time.

5.1.4 Adiabatic Elimination of Excited Levels

There are two reasons for not wanting to integrate the above master equation numerically.

First, there are terms proportional to the detunings, which can be quite large, meaning

that the numerical integration would have to be done with unreasonably small timesteps.



64

Second, the total Hilbert space is somewhat big with 48 levels as opposed to the 16 levels

describing only the ground states.

Fortunately, with a far-off resonant probe beam, the procedure of adiabatic elimination

[96, 97, 98, 52] allows us to eliminate the excited state levels in our description while retaining

their effect on the physics. The approximation assumes that there is little population in

the excited states, i.e., the saturation parameter

s =
Ω2

2(∆2 + Γ2/4)
� 1 (5.25)

should be small for the detuning under consideration.

Many references exist that partially explain the process of adiabatic elimination, but

most are incomplete, therefore we will attempt to be more forthcoming in our presentation.

The following procedure is by no means rigorous, but at least every step is spelled out. We

proceed as follows, ignoring the Hamiltonian ĤB until the end. First, we decompose ρ̂ into

four parts

ρ̂ = (P̂g + P̂e)ρ̂(P̂g + P̂e) (5.26)

= P̂gρ̂P̂g + P̂gρ̂P̂e + P̂eρ̂P̂g + P̂eρ̂P̂e (5.27)

= ρ̂gg + ρ̂ge + ρ̂eg + ρ̂ee. (5.28)

Now we find ˙̂ρij for each term, by judicious insertion of the identity P̂e + P̂g into the above

master equation

˙̂ρgg = −i[Ĥg, ρ̂gg] + iρ̂geĤiP̂g − iP̂gĤiρ̂eg + Γ
∑

f,f ′,σ

Âf,f ′,σρ̂eeÂ
†
f,f ′,σ (5.29)

˙̂ρge = iρ̂ggĤiP̂e + iρ̂geĤe − iĤgρ̂ge − iP̂gĤiρ̂ee − Γρ̂ge/2 (5.30)

˙̂ρee = −iP̂eĤiρ̂ge + iρ̂egĤiP̂e − i[Ĥe, ρ̂ee]− Γρ̂ee (5.31)

where ˙̂ρge = ( ˙̂ρeg)†.

According to the weak-coupling approximation, s � 1, the order of magnitude of each

of these parts is given by 〈ρ̂ee〉 ∼ s, 〈ρ̂ge〉 ∼
√
s, and 〈ρ̂gg〉 ∼ 1. Using these approximations
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in the decay terms of equations (5.29, 5.30, 5.31) (the last term of each equation) we get

〈 ˙̂ρgg〉/〈ρ̂gg〉 ∼ −Γs (5.32)

〈 ˙̂ρeg〉/〈ρ̂eg〉 ∼ −Γ/2 (5.33)

〈 ˙̂ρee〉/〈ρ̂ee〉 ∼ −Γ. (5.34)

Thus, we see that the decay rate for the ground states ρ̂gg is much smaller than the decay

rate for the cross ρ̂eg and excited ρ̂ee components by a factor of s. In other words, the cross

and excited components reach equilibrium on a timescale much faster than the ground

state component. As a result, we can set ˙̂ρeg = 0 and ˙̂ρee = 0, solve for ρ̂ee in terms

of ρ̂eg, solve ρ̂eg in terms of ρ̂gg, and substitute these results into equation (5.29) to get

the evolution of ρ̂gg in terms of itself. We say that ρ̂ee “adiabatically follows” ρ̂eg, and in

turn ρ̂eg “adiabatically follows” ρ̂gg. The entire process is thus referred to as “adiabatic

elimination” and represents the core idea of this chapter.

There is one more step necessary to make the above procedure work. First, note that

the Hamiltonians are approximately of orders Ĥg ∼ Ĥe ∼ ∆ and Ĥi ∼
√
s∆. So all of the

Hamiltonian (nondecay) terms in equation (5.30) are of order
√
s∆ except for the ρ̂ee term,

which is of order s
√
s∆. Consequently, the latter can be ignored under the limit s� 1.

We now follow this adiabatic elimination procedure in detail to produce the desired

ground-state-only master equation. As mentioned above, we first set ˙̂ρee = 0 and solve for

ρ̂ee in terms of ρ̂eg and ρ̂ge. When doing this we run into an equation that looks like

L̂ρ̂ee ≡ −Γρ̂ee − i[Ĥe, ρ̂ee] = iP̂eĤiρ̂ge − iρ̂egĤiP̂e (5.35)

ρ̂ee = L̂−1(iP̂eĤiρ̂ge − iρ̂egĤiP̂e). (5.36)

Thus we need to somehow invert the superoperator L̂. References [98, 52] give us a clue

how to do this. Using the definition of the superoperator inversion (on arbitrary X̂) we
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have

L̂−1X̂ = −
∫ ∞

0
exp[L̂t]X̂dt (5.37)

= −
∫ ∞

0
exp[−Γt] exp[−iĤet]X̂ exp[iĤet]dt (5.38)

= −
∫ ∞

0
exp[−Γt]

1 +
∑
f ′

(exp[i∆f ′t]− 1)P̂f ′

 X̂

×

1 +
∑
f ′

(exp[−i∆f ′t]− 1)P̂f ′

 dt (5.39)

= −X̂
Γ
−
∑
f ′

((
1

Γ + i∆f ′
− 1

Γ

)
X̂P̂f ′ + h.c.

)

−
∑
f ′1,f ′2

(
1

i(∆f ′1
−∆f ′2

) + Γ
+

1
i∆f ′1

− Γ
+

1
−i∆f ′2

− Γ
+

1
Γ

)
Pf ′1

X̂P̂f ′2
(5.40)

where we have used the definition of Ĥe and the fact that P̂ 2 = P̂ for the projectors.

Actually, what we care about in the end is only the simplification of equation (5.29) and

we do not need to worry about the full inversion of the superoperator. We can rewrite the

only term in equation (5.29) where ρ̂ee appears as

Γ
∑

f,f ′,σ

Âf,f ′,σρ̂eeÂ
†
f,f ′,σ = Γ

∑
f,f ′,σ

Âf,f ′,σ

(
P̂f ′ ρ̂eeP̂f ′

)
Â†

f,f ′,σ

= Γ
∑

f,f ′,σ

Âf,f ′,σ

(
P̂f ′L̂−1(iP̂eĤiρ̂ge − iρ̂egĤiP̂e)P̂f ′

)
Â†

f,f ′,σ

= Γ
∑

f,f ′,σ

Âf,f ′,σ

(
P̂f ′

(
− 1

Γ

)
(iP̂eĤiρ̂ge − iρ̂egĤiP̂e)P̂f ′

)
Â†

f,f ′,σ

= −
∑

f,f ′,σ

Âf,f ′,σ

(
P̂f ′(iP̂eĤiρ̂ge − iρ̂egĤiP̂e)P̂f ′

)
Â†

f,f ′,σ (5.41)

where we have used equation (5.36) in the second line and

Pf ′(L̂−1X̂)Pf ′ = Pf ′

(
−X̂

Γ

)
Pf ′ (5.42)

in the third line, which is evident from equation (5.40). In other words, we do not care

about the coherences between different excited states and we are only concerned with the

block diagonal components.
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Next, as justified above, we set the ρ̂ee term in equation (5.30) to zero, set ˙̂ρge to zero, and

solve for ρ̂ge in terms of ρ̂gg. We again use the inversion definition for a new superoperator,

but this time we do not have to use any projectors to simplify the solution. This gives

ρ̂ge = i
∑
f ′

[
P̂4

Γ/2 + i∆f ′
+

P̂3

Γ/2 + i(∆f ′ −∆3)

]
ρ̂ggĤiP̂f ′ (5.43)

and we say that ρ̂ge adiabatically follows ρ̂gg.

Finally, we use all of these results to solve for ˙̂ρgg in terms of itself in equation (5.29).

This results in what we have been seeking, a self-contained master equation involving only

the ground states:

˙̂ρgg = −i[Ĥg + ĤB, ρ̂gg]

+iP̂4ρ̂gg

∑
f ′

ĤiP̂f ′Ĥi

∆f ′ − iΓ/2
+ h.c.

+iP̂3ρ̂gg

∑
f ′

ĤiP̂f ′Ĥi

(∆f ′ −∆3)− iΓ/2
+ h.c.

+
∑

f,f ′,σ

Âf,f ′,σĤi
P̂4

i∆f ′ + Γ/2
ρ̂ggĤiÂ

†
f,f ′,σ + h.c.

+
∑

f,f ′,σ

Âf,f ′,σĤi
P̂3

i(∆f ′ −∆3) + Γ/2
ρ̂ggĤiÂ

†
f,f ′,σ + h.c. (5.44)

The key result here is that we have kept the state-dependent spontaneous emission terms (in

the last two lines). Other treatments have found only the effective Hamiltonian for f = 4

(represented here in the second line) and treated spontaneous emission in a nonrigorous way

[25, 29, 26]. Note that, whereas the Â operators were the jump operators on the full Hilbert

space connecting excited states to ground states, now the effective jump operators are of

the form ÂĤi and serve to mix the ground states amongst themselves. We also see that,

despite our approximations, the norm of the state is preserved, Tr[ ˙̂ρgg] = 0. This can be seen

by using both the cyclic property of the trace and the jump-operator identity of equation

(5.12). Finally, notice that in the limit ∆5′ � ∆3 (i.e., the detuning is much larger than

the hyperfine ground state splitting) the probe does not distinguish ground states and we

can group terms to get the same results as reference [96] for j = 1/2 to j′ = 3/2 transition

(for stationary atoms) as we should.
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The second and third lines of the above master equation represent the polarizability

Hamiltonian and describe the coherent, dispersive interaction of the beam with the atoms.

In the next chapter, we start from this point to analyze the evolution of the optical polar-

ization due to the atomic spin-state. In the remaining part of this chapter, however, we

continue to analyze the state dependence of the incoherent spontaneous emission terms.

5.2 Applications of the Master Equation

The master equation of equation (5.44) is useful for many purposes. Quite generally, it

compactly describes the coherent and incoherent evolution of a multilevel atomic state under

arbitrary optical manipulation (in the dipole limit and low saturation parameter limits).

The coherent polarizability Hamiltonian component and the state-dependent spontaneous

emission are considered in detail throughout this thesis. It can also be used to investigate

optical pumping dynamics for a small saturation parameter. Finally, for spatially dependent

fields, it can be used to succinctly describe optical forces on a real multilevel alkali atom.

Equation (5.44) is relatively easy to integrate because the Hilbert space is smaller with-

out the excited states and the timescales involved are relatively large. As long as we keep the

Larmor precession rate and the optical pumping rate (∝ Γs) small, the numerical timesteps

can be made much larger than what would be necessary in simulating the full master equa-

tion. We ignore the Hamiltonian Ĥg as we assume the f = 3 level does not couple coherently

to the f = 4 level and only serves as a population “sink,” or atom loss channel.

The creation of a numerical integration routine is facilitated by the Matlab routines

within the Quantum Optics Toolbox [99], which provides angular momentum operator func-

tions (e.g., murelf) and efficient integration routines with sparse matrices. In this section,

we demonstrate a few examples using this code. Each simulation shown takes only a few

seconds on a reasonably equipped computer.

In the case of an optically thin ensemble, but still with many atoms, the simulated

value of 〈f̂z 〉 represents approximately what the photocurrent would look like without noise

because the Faraday rotation would be proportional to the z-component of the collective spin

as seen in the next chapter. For an optically thick ensemble, where the probe polarization

changes significantly within the cloud, then the situation is more complicated and we refer

the reader to reference [26].
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Figure 5.1: (A) Schematic showing the relative orientation of the spin, magnetic field, and
optical polarization. (B) Simulation of f̂z for an initial state along the x-axis, magnetic
field along the y-axis, probe propagation along the z-axis, probe polarization along the y-
axis. (C) Simulation for an initial state along x-axis, magnetic field along the y-axis, probe
propagation along the z-axis, probe polarization 54.7 degrees from the y-axis. The probe
detuning used is 500 MHz.

When considering the following simulation configurations, keep in mind that we continue

to consider only the evolution of a single atom, but that evolution consists of many parts,

including the polarizability Hamiltonian (which can cause coherent “dephasing”) and the

incoherent spontaneous emission. We do not consider the collective evolution of the spin-

state until chapter 7.

5.2.1 Decay with Larmor Precession

First we consider Larmor precession dynamics and produce results similar to those from

[25]. Figure 5.1A shows the relative orientation of the spin, magnetic field, and optical

polarization directions. Figure 5.1B depicts a situation with an initial state polarized along

the x-axis, a DC magnetic field along the y-axis, and a probe beam propagating along

the z-axis with linear optical polarization along the y-axis. The decay and revivals, or

echoes, are from the tensor Hamiltonian part of the master equation, which is shown to be

nonlinear in the angular momentum operators in the next chapter. Without spontaneous

emission the revival would be complete. Figure 5.1C depicts the same situation, but with

the probe polarization aligned along a “magic” angle (54.7 degrees from the y-axis) where

the nonlinear Hamiltonian term disappears and a more exponential decay is observed. The
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rotating frame analysis used to derive this magic angle effect is presented in section 6.5.

5.2.2 Decay without Larmor Precession

Now we consider the evolution under configurations where either there is no magnetic field

or the field and spin-state remain parallel, hence dynamics at the Larmor frequency are not

observed. We consider two cases, in one the linear optical polarization is parallel to the

initial spin-state, and in the other it is perpendicular.

The simulated evolution under the four possible configurations (two optical polariza-

tions, with and without field) is presented in figure 5.2. For parallel polarizations, the field

and no field cases are not any different because the evolution due to the field does not

break the symmetry of the no field case. For perpendicular polarizations, however, there

is a large difference between the field and no field case. Without a field the length of the

vector dephases quickly (blue curve in figure 5.2A) and displays echoes similar to the ef-

fects demonstrated in the last section. Not surprisingly the perpendicular uncertainties (in

the yz-plane) also behave dramatically and asymmetrically in figure 5.2B–C although there

is no single-atom spin-squeezing in this configuration. In contrast, the parallel spin case

shows simple exponential decay and the uncertainty variances initially grow in time (this is

purely a result of the decay and spontaneous emission, not the tensor Hamiltonian). When

a field is applied to the spins in the perpendicular field case, the dephasing is eliminated

and the resulting spontaneous emission time becomes longer than the parallel field case (as

demonstrated below).

figure 5.2B displays the loss of population to the f = 3 ground state where it is clear

that the spontaneous emission rate is state (or optical polarization) dependent. A more

extreme example of the state dependent pumping could be demonstrated by putting the

atoms in a state that was dark to the probe light, e.g., the state |4, 4〉 with σ+ probe light.

Now we go about calculating the expected spontaneous emission decay rates. In analyz-

ing the decay, we can consider many quantities, including the moment f̂z or the population

among all of the f = 4 sublevels. Here we consider the damping of f̂z . Assume we start

with the atom aligned along the +z direction and consider the quantity d〈f̂z 〉/dt at time

zero calculated from equation (5.44). If we convert this derivative into a scattering rate by
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Figure 5.2: As described in the text, simulations of decay and decoherence via linearly
polarized probe light for an initial coherent spin-state. The blue (b) and cyan (c) curves
represent optical polarizations (along y) perpendicular to the initial spin direction (along
x). The red (r) and magenta (m) curves represent parallel optical polarization (along x).
The blue and red curves are without any field, and the cyan and magenta curves are with a
field along the spin direction x. The moments 〈f̂z 〉 and 〈f̂y〉 are zero. The probe detuning
used is 500 MHz.
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assuming initial exponential decay

d〈f̂z 〉
dt

∣∣∣∣∣
t=0

= −〈f̂z 〉
τsc

∣∣∣∣∣
t=0

(5.45)

we get the decay rate

τ−1
sc =

Iσ0

2~ω

[
Γ2/4

Γ2/4 + ∆2
45

(
|ε0|20.16 + |ε−|20.04 + |ε+|20

)
+

Γ2/4
Γ2/4 + ∆2

44

(
|ε0|20.83 + |ε−|20.41

)
+

Γ2/4
Γ2/4 + ∆2

43

(
|ε−|20.60

)]
. (5.46)

Clearly, we see that this expression respects some expected selection rules by, for example,

not allowing positive circular polarization to produce any decay. This is because such light

either does not couple to a level (4–3’ or 4–4’) or it couples to a cycling transition that

only returns the population to where it started (4–5’). For an optical polarization parallel

to the spins we use: |ε+|2 = |ε+|2 = 0 and |ε0|2 = 1. Under the simulation, we see that

the Hamiltonian terms alone do not cause decay so the calculated exponential from above

works with or without a holding field. For an optical polarization perpendicular to the

spins we use: |ε+|2 = |ε+|2 = 1/2 and |ε0|2 = 0. Under the simulation, we see that there is

substantial Hamiltonian “dephasing” (with echoes) of the moment, but applying a holding

field makes equation (5.46) a valid expression at all times.

When the field is applied in figure 5.2, the coherent dephasing is removed and the re-

sulting decay curves are exponential with time constants given by equation (5.46). Even

though the above expression was only derived for the first timestep, it is seen by simulation

to remain valid at all times with such a holding field. Both equation (5.46) and the sim-

ulations of figure 5.2 show the feature that spontaneous emission occurs faster for parallel

polarizations than perpendicular, which can also be expressed in terms of selection rules

and Clebsch-Gordan coefficients.

Again, we have said nothing about the consequences of this decay or non-QND Hamilto-

nian evolution on the collective spin-squeezed state preparation and we save this discussion

for chapter 7 where both single-atom and collective effects are discussed. In chapter 8, we

also refer back to equation (5.46) to provide an estimate of the decay time in relation to the
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time that it takes to spin-squeeze the atoms via the measurement. The potential for a less

ad hoc combination of spin-squeezing in the presence of decay is discussed in both chapter

15 and appendix E.
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Chapter 6

The Irreducible Representation of
the Polarizability Hamiltonian

In the last chapter, we demonstrated that adiabatic elimination of the dipole Hamiltonian

describing the atom-light interaction produces the polarizability form of the Hamiltonian in

terms of only the ground states. In this chapter, we rewrite the polarizability Hamiltonian

in terms of the angular momentum operators for the ground state, rather than the dipole

operators, and the Stokes operators describing the polarization of the probe beam. There

is an irreducible decomposition of the polarizability tensor into purely scalar, vector, and

tensor terms, and the physics of each corresponding Hamiltonian is discussed. The scalar

term determines the state-independent light shift, which is important in, for example, the

trapping of atoms with an optical lattice. The vector term leads to the QND Hamiltonian we

desire and provides the basis for much of this work. The tensor term arises because the spin

has more than two sublevels and is important at detunings comparable to the hyperfine

splittings. After introducing these terms, and investigating their spectral properties, we

describe the semiclassical evolution of the probe polarization due to the atomic state via

the Hamiltonian components. We then consider the evolution of the spin-state due to

the tensor term in special, experimentally relevant, configurations. While the tensor term

complicates the ideal description of the quantum measurement, it also proves technically

useful because of its nonlinearity. We end by showing how the tensor term provides us with

techniques for aligning the optical and atomic polarizations, as well as measuring the degree

of pumping of the atomic state.

Much of this chapter is adapted from [29], however many sections are new, including

section 6.3, section 6.5, section 6.7, and section 6.8.
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6.1 Deriving the Irreducible Representation

6.1.1 Hamiltonian Approximation

We begin again with the single-particle dipole Hamiltonian H = −d̂·Ê. The dipole operator

d̂ = er̂e can be split into its raising and lowering components

d̂ = d̂(−) + d̂(+) (6.1)

d̂(−) =
∑
f,f ′

P̂f d̂P̂f ′ (6.2)

d̂(+) =
∑
f,f ′

P̂f ′d̂P̂f (6.3)

and the electric field operator can be split into rotating and counter-rotating terms

Ê = Ê(−) + Ê(+) (6.4)

Ê(−) =
√

~g
[
â†−~e

∗
− + â†+~e

∗
+

]
(6.5)

Ê(+) =
√

~g
[
â−~e− + â+~e+

]
. (6.6)

Assuming that the beam interacts weakly with the atom (i.e., the saturation parameter is

small), we can use the rotating wave approximation and one of many available perturba-

tion expansion techniques to express this Hamiltonian only in terms of the atomic ground

states. In the last chapter, an adiabatic elimination procedure resulted in equation (5.44),

which contains both coherent dynamics (a polarizability Hamiltonian) and incoherent dy-

namics (spontaneous emission). The coherent polarizability Hamiltonian component can be

expressed as [65, 100, 31],

Ĥ =
∑
f,f ′

Ê(−) ·
α̂f,f ′

~∆f,f ′
· Ê(+) (6.7)

where we have assumed that ∆f,f ′ � Γ in the denominator. In this far detuned limit

(where the saturation parameter is also small), the beam interacts dispersively with the

atoms while absorption and reemission via spontaneous emission is temporarily ignored.

The atomic polarizability between a particular ground state (f) and excited state (f ′) is
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defined as

α̂f,f ′ = P̂f d̂P̂f ′d̂†P̂f (6.8)

=
∑
m

∑
m′

∑
m′′

|f,m′′〉〈f,m′′|d̂|f ′,m′〉〈f ′,m′|d̂†|f,m〉〈f,m|. (6.9)

This expanded expression involves dipole operator matrix elements of the form, 〈f ′,m′|d̂q|f,m〉

where |f,m〉 is a Zeeman sublevel in the ground state hyperfine manifold, |f ′,m′〉 is a virtual

state in the excited hyperfine manifold, and q = 0,±1 labels the helicity of the electromag-

netic field.

This Hamiltonian has a satisfying physical interpretation as a scattering interaction: the

atom is first brought from its ground state to a virtual excited state via the raising operator,

d̂†, by annihilating a photon from the probe field through Ê(+). Then, the temporarily

excited atom returns to a (potentially different) ground state by emitting a photon into a

(potentially different) scattered probe mode via d̂ and Ê(−).

The central operator in the scattering Hamiltonian,

α̂f,f ′ = P̂f d̂P̂f ′d̂†P̂f , (6.10)

commonly called the atomic polarizability tensor, is a dyad involving vector operators

[101, 32]. Thus α̂f,f ′ is a rank-2 spherical tensor that can be decomposed into irreducible

components,

α̂f,f ′ = α̂
(0)
f,f ′ + α̂

(1)
f,f ′ + α̂

(2)
f,f ′ . (6.11)

The scattering Hamiltonian similarly decomposes into irreducible spherical tensor operators,

Ĥ = Ĥ(0) + Ĥ(1) + Ĥ(2) (6.12)

where

Ĥ(j) =
∑
f,f ′

Ê(−) ·
α̂

(j)
f,f ′

~∆f,f ′
· Ê(+). (6.13)

The Ĥ(0) is a scalar contribution, Ĥ(1) transforms as a vector, and Ĥ(2) transforms as a rank-

2 symmetric tensor in the group representation theory of SO(3). Were the atomic system

composed of spin-1/2 particles, it would be possible to neglect the rank-2 Hamiltonian [100]
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(as will become explicit), however, we cannot do so for higher spin alkali atoms [25, 26, 102].

The above notation is complete, but we temporarily work with only one particular f, f ′

combination and remove the subscripts with the simplifying notation change

P̂f d̂(−)P̂f ′ → d̂ (6.14)

P̂f ′d̂(+)P̂f → d̂† (6.15)

α̂f,f ′ → α̂. (6.16)

However, when the complete Hamiltonian is considered, the summation over all possible

f, f ′ combinations is reestablished.

6.1.2 Matrix Element Decomposition

In order to work with the above expressions, it is advantageous to simplify the dipole

matrix elements as far as possible. By employing the Wigner-Eckart theorem, the angular

dependence of the matrix element, 〈f ′,m′|d̂|f,m〉 can be factored into the product of a

Clebsch-Gordan coefficient and a reduced matrix element,

〈f,m|d̂q|f ′,m′〉 = 〈f,m|1, q; f ′,m− q〉〈f ||d̂||f ′〉. (6.17)

Since the dipole operator acts only on electronic degrees of freedom, it is further possible

to factor out the nuclear spin degrees of freedom via the explicit coupling,

〈f ||d̂||f ′〉 = (−1)f ′+j+i+1
√

(2f ′ + 1)(2j + 1)

 1 j j′

i f ′ f

 〈j||d̂e||j′〉 (6.18)

where i is the nuclear spin quantum number, j and j′ are the ground and excited state fine

structure quantum numbers, and d̂e is the dipole operator with respect to the electronic

degrees of freedom.
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6.1.3 Tensor Decomposition

From equation (17.89) of reference [103] we see that we can form an irreducible tensor, Ẑ(j)
m ,

from a linear combination of tensor operators Û (κ)
q and V̂ (κ′)

q′ via the definition

Ẑ(j)
m =

∑
q,q′

Û (κ)
q V̂

(κ′)
q′ 〈κ, q;κ′, q′|j,m〉 (6.19)

where 〈κ, q;κ′, q′|j,m〉 are Clebsch-Gordan coefficients. This expression can then be inverted

using

Û (κ)
q V̂

(κ′)
q′ =

∑
j,m

Ẑ(j)
m 〈κ, q;κ′, q′|j,m〉. (6.20)

We now specialize to the case where Û = d̂ and V̂ = d̂†. For this particular case,

use the notation Ẑ
(j)
m = T̂

(j)
m . Because we are creating a dyad (with two vectors), we have

κ = κ′ = 1. Inserting these above gives the definition

T̂ (j)
m =

∑
q,q′

d̂qd̂
†
q′〈1, q; 1, q

′|j,m〉 (6.21)

and the inverse

d̂qd̂
†
q′ =

∑
j,m

T̂ (j)
m 〈1, q; 1, q′|j,m〉. (6.22)

We can use this latter expression to write the polarizability as

α̂ = d̂d̂† (6.23)

=
∑
q,q′

~e∗q~e
∗
q′ d̂qd̂

†
q′ (6.24)

=
∑
j,m

∑
q,q′

~e∗q~e
∗
q′ T̂

(j)
m 〈1, q; 1, q′|j,m〉 (6.25)

= α̂(0) ⊕ α̂(1) ⊕ α̂(2) (6.26)

where

α̂(j) =
j∑

m=−j

T̂ (j)
m

∑
q,q′

~e∗q~e
∗
q′〈1, q; 1, q′|j,m〉. (6.27)
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Filling in these Clebsch-Gordan coefficients explicitly, we get

α̂(0) = T̂
(0)
0

[
− 1√

3
~e∗0~e

∗
0 +

1√
3
~e∗+~e

∗
− +

1√
3
~e∗−~e

∗
+

]
(6.28)

α̂(1) = T̂
(1)
0

[
1√
2
~e∗+~e

∗
− −

1√
2
~e∗−~e

∗
+

]
+T̂ (1)

+1

[
− 1√

2
~e∗0~e

∗
+ +

1√
2
~e∗+~e

∗
0

]
+T̂ (1)

−1

[
1√
2
~e∗0~e

∗
− −

1√
2
~e∗−~e

∗
0

]
(6.29)

α̂(2) = T̂
(2)
0

[
2√
6
~e∗0~e

∗
0 +

1√
6
~e∗+~e

∗
− +

1√
6
~e∗−~e

∗
+

]
+T̂ (2)

+1

[
1√
2
~e∗0~e

∗
+ +

1√
2
~e∗+~e

∗
0

]
+T̂ (2)

−1

[
1√
2
~e∗0~e

∗
− +

1√
2
~e∗−~e

∗
0

]
+T̂ (2)

+2

[
~e∗+~e

∗
+

]
+T̂ (2)

−2

[
~e∗−~e

∗
−
]
. (6.30)

Furthermore, using the definition of T̂ (j)
m and filling in the Clebsch-Gordan coefficients

explicitly, we get

T̂
(0)
0 = − 1√

3

(
d̂0d̂

†
0 − d̂+d̂

†
− − d̂−d̂

†
+

)
(6.31)

T̂
(1)
0 =

1√
2

(
d̂+d̂

†
− − d̂−d̂

†
+

)
T̂

(1)
+1 =

1√
2

(
−d̂0d̂

†
+ + d̂+d̂

†
0

)
T̂

(1)
−1 =

1√
2

(
d̂0d̂

†
− − d̂−d̂

†
0

)
T̂

(2)
0 =

1√
6

(
d̂+d̂

†
− + 2d̂0d̂

†
0 + d̂−d̂

†
+

)
T̂

(2)
+1 =

1√
2

(
d̂0d̂

†
+ + d̂+d̂

†
0

)
T̂

(2)
−1 =

1√
2

(
d̂0d̂

†
− + d̂−d̂

†
0

)
T̂

(2)
+2 = d̂+d̂

†
+

T̂
(2)
−2 = d̂−d̂

†
−.

Note that several standard references (including references [103, 87]) contain an error in the
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prefactor of the j = 0 term and in the sign of the j = 1 terms. However, the fundamental

definitions of T̂ (j)
m and its inverse above are valid.

Using recursion relations for the Clebsch-Gordan coefficients we can recast the tensor

operators in terms of more intuitive f̂ operators [26, 95]

T̂
(0)
0 = −α(0)

f,f ′ 1̂f/
√

3 (6.32)

T̂
(1)
0 = +α(1)

f,f ′ f̂z /
√

2

T̂
(1)
+1 = +α(1)

f,f ′ f̂+/
√

2

T̂
(1)
−1 = +α(1)

f,f ′ f̂−/
√

2

T̂
(2)
0 = −α(2)

f,f ′

(
3f̂2

z − f(f + 1)1̂f

)
/
√

6

T̂
(2)
+1 = −α(2)

f,f ′

√
2f̂+

(
f̂z + 1̂f/2

)
T̂

(2)
−1 = −α(2)

f,f ′

√
2f̂−

(
f̂z − 1̂f/2

)
T̂

(2)
+2 = −α(2)

f,f ′ f̂
2
+

T̂
(2)
−2 = −α(2)

f,f ′ f̂
2
− .

Here we have defined

α
(0)
f,f ′ = αf ′

f

(
(2f − 1)δf ′

f−1 + (2f + 1)δf ′

f

+(2f + 3)δf ′

f+1

)
(6.33)

α
(1)
f,f ′ = αf ′

f

(
−2f − 1

f
δf ′

f−1 −
2f + 1
f(f + 1)

δf ′

f

+
2f + 3
f + 1

δf ′

f+1

)
(6.34)

α
(2)
f,f ′ = αf ′

f

(
1
f
δf ′

f−1 −
2f + 1
f(f + 1)

δf ′

f

+
1

f + 1
δf ′

f+1

)
. (6.35)

These definitions have been chosen to make the each of the quantities

∑
f ′

α
(j)
f,f ′

α0∆f,f ′
> 0 (6.36)
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for ∆f,f ′ � 0 for each term j. We have defined the polarizability constants

αf ′

f = α0
(2j′ + 1)2

(2j + 1)2

∣∣∣∣∣∣
 1 j j′

i f ′ f


∣∣∣∣∣∣
2

(6.37)

and

α0 =
3ε0~Γλ3

0

8π2
(6.38)

=
∣∣∣〈j||d̂||j′〉∣∣∣2 (2j + 1)

(2j′ + 1)
,

which involves the atomic the spontaneous emission rate, Γ, and transition wavelength, λ0.

6.1.4 The Irreducible Hamiltonian

Now, to complete the derivation, insert equations (6.32) into the polarizability components

of equations (6.28), then insert this and the definition of the electric field, equation (6.4), into

the Hamiltonian, equations (6.12, 6.13). Expanding, using the properties of the spherical

dot product, and the Stokes component definitions from chapter 3, summing over the f ′,

and defining the detuning dependent prefactors (for i = 0, 1, 2)

α̃i,f =
∑
f ′

α
(i)
f,f ′

∆f,f ′
(6.39)

we get the final form of the Hamiltonians:

Scalar Hamiltonian

Ĥ(0) = gα̃0,f
2
3
Ŝ01̂f (6.40)

Vector Hamiltonian

Ĥ(1) = gα̃1,f Ŝz f̂z (6.41)



82

Tensor Hamiltonian

Ĥ(2) = gα̃2,f

(
Ŝx

(
f̂2
x − f̂2

y

)
+Ŝy

(
f̂x f̂y + f̂y f̂x

)
+Ŝ0

(
3f̂2

z − f(f + 1)1̂f

)
/3
)

(6.42)

6.2 Interpreting the Irreducible Hamiltonian

6.2.1 The Scalar Hamiltonian

This rank-0 Hamiltonian couples the atomic identity operator 1̂f to the field mode number

operator and can be interpreted as an atomic state-independent light shift. It therefore

affects both polarization modes of the probe field in an equivalent manner and will not

influence the measurement process since it does not provide any state-dependent informa-

tion. However, this Hamiltonian would be important if the measurement was meant to

distinguish between populations across hyperfine states (e.g., f = 3 and f = 4 using homo-

dyne detection) instead of across the sublevel populations within one hyperfine state (using

polarimetry, as discussed here). This term is also of importance if the Hamiltonian is being

considered as a spatially dependent potential for the atoms (e.g., in an optical lattice).

6.2.2 The Vector Hamiltonian

The rank-1 Hamiltonian can be interpreted as causing a differential phase shift on the

two circular polarization modes by an amount that is proportional to the z-component of

the atomic angular momentum. Thus the vector Hamiltonian leads to optical activity in

the atomic sample and produces the familiar Faraday rotation effect often used to address

continuous measurement of collective spin [42, 15, 16, 104, 24]. This is the QND Hamiltonian

that enables much of the idealized physics of this thesis, as it is linear in the spin-operator

and the collective Hamiltonian resulting from summing individual Hamiltonians will be

proportional to F̂z.
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6.2.3 The Tensor Hamiltonian

The rank-2 Hamiltonian couples spin coordinates to the elliptical components of the probe

laser field and produces a second-order light shift proportional to the atomic quadrupole

moment. These terms vanish for f = 1/2 (as can be seen by evaluating the operators within

the parentheses above) but are nonzero for any higher spin number. The symmetry of the

tensor term can be seen by noting the identity f̂x f̂y + f̂y f̂x = f̂2
x′ − f̂2

y′ . For a linearly

polarized input beam, the tensor term leads to an elliptically polarized scattered probe field

[32, 26]. The rank-2 interaction potentially limits the validity of any collective measurement

scheme based on the vector Hamiltonian alone. However, in the next section we analyze the

spectral properties of the prefactors on all of these Hamiltonians and see that the tensor

term vanishes for large detunings.

6.3 Coefficient Spectra

As we have seen, it is convenient to break down the Hamiltonian interaction into the scalar,

vector, and tensor components, with the respective detuning dependent prefactors

α̃0,f =
∑
f ′

α0ff ′

∆ff ′
(6.43)

α̃1,f =
∑
f ′

α1ff ′

∆ff ′
(6.44)

α̃2,f =
∑
f ′

α2ff ′

∆ff ′
. (6.45)

In this section, we investigate the spectral properties of these prefactors. The full spectrum

of these quantities for the f = 3 and f = 4 lines are shown in figure 6.1 and figure 6.2

respectively. Experimental results presenting the vector and tensor spectra for the f = 4

line are presented in section 13.5. In figure 6.3 and figure 6.4 it is shown that the tensor

term scales as 1/∆2 at detunings larger than the excited state hyper-fine splittings.

Notice that, because of the fact that the αiff ′ can be either positive or negative, there

are certain noninfinite frequencies at which each of the prefactors α̃i,f can be zero, where

the other terms are nonzero. These specific frequencies may be of interest because of the

fact that one can remove one type of evolution while retaining the others. The character of

each type of interaction is, by definition, fundamentally different and choosing a frequency
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Figure 6.1: Plotted, in order, are α̃0,f=3 (A), α̃1,f=3 (B), and α̃2,f=3 (C). The green curve is a
magnified version (×20) of the red curve to better see the zero-crossings. Looking at the axes
of each plot it is clear that the scalar term is approximately an order of magnitude greater
than the vector term, which, in turn, is approximately an order of magnitude greater than
the tensor term. Notice that the vector and tensor terms cross zero close to the forbidden
transition f = 3 to f ′ = 5.

to amplify or suppress one type may be of practical consequence.

Define ∆i,f,n as the nth detuning (with reference to one particular transition) that the

i prefactor in the Hamiltonian is zero: α̃i,f (∆i,f,n) = 0. We introduce n because there can

be many points at which the function attains the value of zero.
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Figure 6.2: Plotted, in order, are α̃0,f=4 (A), α̃1,f=4 (B), and α̃2,f=4 (C). The green curve is a
magnified version (×20) of the red curve to better see the zero-crossings. Looking at the axes
of each plot it is clear that the scalar term is approximately an order of magnitude greater
than the vector term, which, in turn, is approximately an order of magnitude greater than
the tensor term. Notice that the vector and tensor terms cross zero close to the forbidden
transition f = 4 to f ′ = 2.
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Figure 6.3: The top curve is ∝ 1/∆ for reference. Below this in order are α̃0,f=4, α̃1,f=4,
and α̃2,f=4 plotted on a log scale. Notice that between 100 MHz and 1 GHz the tensor term
starts to approach zero faster at a rate ∝ 1/∆2.

Figure 6.4: The ratio α̃2,f=4/α̃1,f=4 is plotted in log space. The close to resonance value is
0.09 and scales down as 1/∆ at large detunings. The 3 dB point where the ratio is 0.09/2
is approximately 300 MHz.
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6.3.1 D2: f = 4 Zeros

Consider the D2 f = 4 line of cesium and define the detuning as that from the f = 4 to

f ′ = 5 transition,

∆45 ≡ ∆ (6.46)

∆44 = ∆H45 + ∆ (6.47)

∆43 = ∆H35 + ∆ (6.48)

where we have defined the hyperfine splittings as

∆H45 = 251.002 MHz (6.49)

∆H35 = 251.002 + 201.242 = 452.244 MHz (6.50)

∆H25 = 251.002 + 201.242 + 151.212 = 603.456 MHz (6.51)

∆i=0,f=4,n=1 = −421.5 MHz (6.52)

∆i=0,f=4,n=2 = −164.6 MHz (6.53)

∆i=1,f=4,n=1 = −602.9 MHz (6.54)

∆i=1,f=4,n=2 = −276.1 MHz (6.55)

∆i=2,f=4,n=1 = −603.4 MHz. (6.56)

Notice that ∆i=1,f=4,n=1 ≈ ∆i=2,f=4,n=1 ≈ ∆H25 to within 1 MHz. This is of interest

because at this frequency the light shift becomes essentially polarization independent. It

is also of interest that this frequency occurs near the frequency of the forbidden f = 4 to

f ′ = 2 transition. The intuitive reason for this “coincidence” is left as an exercise for the

reader (i.e., I am sure there is a reason, but I have not worked it out).
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6.3.2 D2: f = 3 Zeros

Now consider the D2 f = 3 line of cesium and define the detuning as that from the f = 3

to f ′ = 4 transition

∆34 ≡ ∆ (6.57)

∆33 = ∆H34 + ∆ (6.58)

∆32 = ∆H24 + ∆ (6.59)

where we have defined the hyperfine splittings as

∆H45 = 251.002 MHz (6.60)

∆H34 = 201.242 MHz (6.61)

∆H24 = 201.242 + 151.212 = 352.454 MHz (6.62)

∆i=0,f=3,n=1 = −285.9 MHz (6.63)

∆i=0,f=3,n=2 = −66.4 MHz (6.64)

∆i=1,f=3,n=1 = −226.4 MHz (6.65)

∆i=1,f=3,n=2 = 251.7 MHz (6.66)

∆i=2,f=3,n=1 = 251.0 MHz. (6.67)

Similarly to the last section, notice that ∆i=1,f=3,n=2 ≈ ∆i=2,f=4,n=1 ≈ ∆H45 to within

1 MHz. Again the polarization dependence of the light shift can be removed by using a

frequency near the forbidden transition (f = 3 to f ′ = 5).

6.4 Semiclassical Evolution of the Probe State

We can greatly simplify the dynamics by eliminating atomic evolution due to the probe

beam and only considering the evolution of the probe beam due to the atomic state. Under

this semiclassical approximation, we replace all atomic operators with their expectation

values with respect to an assumed fixed spin-state. (This is the opposite of the semiclassical

situation often considered in atom-light interactions where the atomic system is considered
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F
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z

Figure 6.5: Definition of the spherical coordinate angles used to describe the orientation
of the collective atomic magnetization vector, F, relative to the fixed laboratory cartesian
coordinate system. The polarization vector of the input probe light resides in the xy-plane
and forms an angle, φp, with respect to the laboratory x-axis.

quantum mechanically while the optical beam is made classical.) For a large ensemble

of atoms and small interaction times, fixing the atomic state will accurately reproduce

the mean behavior of the measured photocurrent corresponding to one of the Stokes vector

components. This is confirmed experimentally in chapter 13, where the atomic state is fixed

and adiabatically positioned with a magnetic holding field. The holding field serves to both

position the atomic state and protect it from the influence of the probe light, such that the

analysis of this section remains valid even for long interaction times or large optical depth

clouds. Ultimately, however, probe induced decoherence will dominate all interactions. In

chapter 8, we then reconsider the full analysis including the atomic quantum noise (related

to spin-squeezing) for a particular alignment of the collective spin-state.

We approximate the N -atom Hamiltonian, ĤN , by replacing the single-atom operators

with their expectation value taken with respect to an optically pumped spin pointing with

direction θ and ϕ given in spherical coordinates (Fig. 6.5). In other words, for an individual

atom operator Ôf , we take

Ôf → 〈Ôf 〉 = 〈Ψ(θ, ϕ)|Ôf |Ψ(θ, ϕ)〉 (6.68)

where |Ψ(θ, ϕ)〉 = exp[−if̂zϕ] exp[−if̂yθ]|f, f〉z.
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The relevant operators from the Hamiltonian decomposition are given by

〈f̂z 〉 = f cos θ (6.69)

〈f̂2
x − f̂2

y 〉 = f(f − 1/2) sin2 θ cos 2ϕ (6.70)

〈f̂x f̂y + f̂y f̂x〉 = f(f − 1/2) sin2 θ sin 2ϕ. (6.71)

Within the semiclassical approximation, we obtain an effective scattering interaction Hamil-

tonian that only involves operators on the probe field Hilbert space. Ignoring all terms

proportional to Ŝ0 (because it commutes with each term of the semiclassical Hamiltonian)

we have

H̃ = H̃
(1)
N + H̃

(2)
N

= (γxŜx + γyŜy + γzŜz)
~
δt
, (6.72)

which leads to a rotation of the Stokes vector Ŝ about a vector γ = [γx, γy, γz] according to

the evolution operator

Ũδt = exp
[
−iH̃ δt

~

]
(6.73)

= exp
[
−i(γxŜx + γyŜy + γzŜz)

]
(6.74)

where δt = L/c is the interaction (transit) time of the discrete spatial modes of the probe

beam across the atomic cloud of length L. The rotation vector γ is defined by

γx = γ0f(f − 1/2) sin2 θ cos 2ϕ
∑
f ′

α
(2)
f,f ′

α0∆f,f ′
(6.75)

γy = γ0f(f − 1/2) sin2 θ sin 2ϕ
∑
f ′

α
(2)
f,f ′

α0∆f,f ′
(6.76)

γz = γ0f cos θ
∑
f ′

α
(1)
f,f ′

α0∆f,f ′
. (6.77)
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Here we have normalized by the state-independent polarizability constant

α0 =
3ε0~Γλ3

0

8π2
(6.78)

=
∣∣∣〈j||d̂||j′〉∣∣∣2 (2j + 1)

(2j′ + 1)
(6.79)

such that α(j)
f,f ′/α0 is dimensionless. The rotation strength is represented by

γ0 =
Ngδtα0

~
(6.80)

where we have used the field coefficient g = ω0/(2ε0V ), the atomic resonance frequency ω0,

and the interaction volume (the volume of the atomic sample) V = AL. The optical depth

takes on an important role in the spin-squeezing discussion of chapter 8.

From an experimental standpoint, it is useful to note that γ0 is directly related to the

on-resonance optical depth, OD, of the atomic sample and the decay rate Γ via,

γ0 =
(

Γ
4

)
OD (6.81)

where

OD = N
σ0

A
, σ0 =

3λ2
0

2π
. (6.82)

The quantity, σ0, is the resonant atomic scattering cross section and A = πr2 is the cross

sectional area of the atomic sample.

In section 3.2.5, the equations for a general rotation of Ŝ about γ are given. Here we

specialize to the case where the input beam is linearly polarized in the x-direction such that

〈Ŝy〉 = 〈Ŝz〉 = 0. The output expectation values are then given by

〈Ŝ′x〉 = 〈Ŝx〉
(

cos γ +
γ2

x

γ2
(1− cos γ)

)
(6.83)

〈Ŝ′y〉 = 〈Ŝx〉
(
−γz

γ
sin γ +

γyγx

γ2
(1− cos γ)

)
(6.84)

〈Ŝ′z〉 = 〈Ŝx〉
(
γy

γ
sin γ +

γzγx

γ2
(1− cos γ)

)
. (6.85)
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Taking the total rotation angle small (γ � 1) this becomes (to second-order in γ)

〈Ŝ′x〉 ≈ 〈Ŝx〉
(
1− γ2

z/2− γ2
y/2
)

(6.86)

〈Ŝ′y〉 ≈ 〈Ŝx〉
(
−γz +

γyγx

2

)
(6.87)

〈Ŝ′z〉 ≈ 〈Ŝx〉
(
γy +

γzγx

2

)
. (6.88)

In this semiclassical approximation, we have completely neglected any evolution of the

atomic state due to the probe beam. We demonstrate in the next section that the above

model agrees well with experimental data when the spin-state is fixed with a magnetic

holding field.

6.5 Tensor Suppression at the Magic Angle

Now we will write the tensor Hamiltonian in another form to arrive at a more intuitive form

of its dynamics. From before, we have

Ĥ(2) = gα̃2,f

(
Ŝx

(
f̂2
x − f̂2

y

)
+Ŝy

(
f̂x f̂y + f̂y f̂x

)
+Ŝ0

(
3f̂2

z − f(f + 1)1̂f

)
/3
)
. (6.89)

Now let us assume the light to be linearly polarized along the unit vector εp = cos θex +

sin θey such that we have 〈Ŝx〉 = Np(sin2 θ− cos2 θ)/2, 〈Ŝy〉 = −Np sin θ cos θ, and 〈Ŝz〉 = 0

where Np is the number of photons in the mode. Using standard identities it can be shown

that

Ĥ(2) = gα̃2,fNp

(
−(εp · f̂)2 + f(f + 1)1̂f/3

)
. (6.90)

Now we assume a large magnetic field along the y-direction and go into the rotating frame

about y, using the transformation

ˆ̃O = exp[−iωtf̂y ]Ô exp[+iωtf̂y ]. (6.91)
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If we time-average over the timescale given by the frequency ω, then we get (ignoring

identity terms)

ˆ̃H ∝ f̂2
y

(
sin2(θ)− cos2(θ)/2

)
. (6.92)

This time-averaged Hamiltonian clearly vanishes at the so-called magic angle θ = arctan(1/
√

2) =

35.3 degrees relative to the x-axis, or 54.7 degrees relative to the field along the y-axis [25].

The Larmor precession dynamics at the magic angle were discussed earlier in section 5.2.1.

6.6 Tensor Suppression with Parallel Polarizations

In the last section, we considered nulling the effect of the tensor Hamiltonian on average

in the presence of a magnetic field. Here we show another way to avoid the effects of the

tensor Hamiltonian, but without a field, by simply putting the spin-state at a fixed point

of the Hamiltonian evolution. In the case that the linear optical polarization is also along

x (〈Ŝx〉 = −〈Ŝ0〉), it turns out that a spin-state along x does not evolve at all due to the

semiclassical tensor Hamiltonian (taking the expectation of the optical operators before

evolving). This can be easily seen because the Hamiltonian (ignoring terms that obviously

do not cause evolution) becomes proportional to f̂2
z − (f̂2

x − f̂2
y ) = f̂2 − 2f̂2

x of which the

x-polarized state is obviously an eigenstate. In contrast, for perpendicularly polarized light

along y (〈Ŝx〉 = +〈Ŝ0〉) the x-polarized state is not an eigenstate and the state evolves in

a nonlinear way. The dynamics for both of these situations is demonstrated in figure 5.2.

Actually, in that simulation the uncertainties in the parallel configuration grow in time, but

this is purely a spontaneous emission effect and not a result of the tensor Hamiltonian.

Despite the fact that the spin-state does not evolve due to the semiclassical tensor

Hamiltonian in the parallel configuration, it is not necessarily a good idea to try spin-

squeezing close to resonance for several reasons. First, any static or dynamic misalignments

will cause the tensor Hamiltonian to introduce non-QND effects. Second, non-single-atom

collective effects (as shown in chapter 7) can lead to nontrivial evolution of the collective

uncertainty, even in the parallel configuration.
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6.7 Tensor-Driven Oscillations

Here we expand on the last section, but include a field along the spin direction. This is

relevant for the stroboscopic scheme discussed in chapter 14. Consider a single spin aligned

along x-direction, in the state ρ̂x, and apply only the tensor Hamiltonian above, and a field

along x. The relevant expectation values (using the Quantum Optics Toolbox for the case

f = 4) are

Tr(ρ̂x[γ̂i, f̂x ]) = 0 (6.93)

Tr(ρ̂x[γ̂i, f̂y ]) = −4iδi,zα̃1,f
gdt

~
(6.94)

Tr(ρ̂x[γ̂i, f̂z ]) = 28iδi,yα̃2,f
gdt

~
, (6.95)

which give the t = 0 derivatives as

d〈f̂x〉
dt

= 0 (6.96)

d〈f̂y〉
dt

= 4〈Ŝz〉α̃1,f
gdt

~
(6.97)

d〈f̂z 〉
dt

= −28〈Ŝy〉α̃2,f
gdt

~
. (6.98)

By simulation (including Lindblad terms) one can see that both 〈f̂y〉 and 〈f̂z 〉 remain zero

for all time if 〈Ŝy〉 = 〈Ŝz〉 = 0.

In the case that 〈Ŝy〉 is nonzero, then a small oscillation between 〈f̂y〉 and 〈f̂z 〉 is started.

On timescales large compared to the Larmor frequency, the average of this effect is indeed

zero (according to the rotating wave approximation of the previous section). However, in

our scheme where we expect the quantum noise to be oscillating at the Larmor frequency,

this nonzero semiclassical amplitude is a problem because classical multiplicative number

fluctuations will cause a signal that acts like (and masks) the quantum noise signal. In the

search for the quantum noise, the situation is a bit more complicated because you want

to be strobing the probe and filtering appropriately, but the same general considerations

apply.

Although this effect can be negative for these technical reasons, the effect can also be

used to align (orthogonalize) the polarization of the probe beam with the polarization of
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the atomic state. In fact this is how we fine tune this alignment in the lab and experimental

results along these lines are presented in section 13.1.3. The nonlinearity of the tensor term

is also useful in other practical tasks. For example, one can determine the degree of optical

pumping via the tensor dynamics as discussed in the next section.

6.8 Tensor Pumping Tomography

The previous section showed that the tensor Hamiltonian can be useful for aligning the

atomic and optical polarizations. In this section, we show that, as a direct consequence of

the nonlinearity in atomic spin operators, the tensor term can also be used to measure the

atomic pumping efficiency.

Optical pumping is the incoherent process [31] by which an atom absorbs angular mo-

mentum from an optical beam, thus aligning the spin of the atom. We discuss simulations of

this process for a real multilevel cesium atom in section 12.5.9. When it comes to measuring

the spin-state of a single atom, there are various state tomography procedures available. In

section 12.5.5, we discuss a standard Stern-Gerlach technique by which the internal sub-

levels are separated with a sufficiently strong magnetic field gradient and measured via

fluorescence. This technique is used for state tomography in experiments similar to ours,

for example [105]. There are many reasons for not wanting to use this technique however,

including experimental complexity and a limited measurement resolution. In principle, one

can use the continuous measurement as discussed in this work to determine the initial spin-

state. Extended notions on tomography with continuous quantum measurement and control

are discussed in [106, 107].

Mostly we are interested in a very restricted version of the general tomography problem

and we would like to know with what efficiency we have prepared the particular coherent

spin-state |f = 4,mf = 4〉. Here we present a simple example showing how we can do

this by aligning the spin-state along a certain direction, e.g., with a adiabatic holding field,

sending in a beam polarized along x, and measuring a particular output Stokes component.

By following this procedure for two different configurations, the pumping efficiency can be

determined as follows.

Consider first the atomic alignment with θ = φ = 0 and measured Stokes component

〈Ŝ′y〉. Referring to equation (6.77) and making the replacement f → ηf where η is repre-
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sentative of the pumping efficiency, we have

γz,1 ≈ γ0ηf
∑
f ′

α
(1)
f,f ′

α0∆f,f ′
(6.99)

with the γx,1 = γy,1 = 0. Then by specializing equation (6.84) to this case we see that

〈Ŝ′y,1〉 ≈ −〈Ŝx〉γz,1. (6.100)

Next, consider the state with θ = π/2 and φ = π/4 such that

γy,2 ≈ γ0η
2f(f − 1/2)

∑
f ′

α
(2)
f,f ′

α0∆f,f ′
(6.101)

with the others again zero. The measurement of the circular polarization then gives

〈Ŝ′z,2〉 ≈ 〈Ŝx〉γy,2. (6.102)

Now by considering the measured ratio of the measurements we have 〈Ŝ′z,2〉/〈Ŝ′y,1〉 ∝ η,

with some model dependent terms canceling in the ratio. Clearly, this scheme uses the fact

that one interaction is quadratic while the other is only linear.

Of course, mapping the measured ratio to the pumping efficiency will depend on the

model being used for the state population. Our goal is only to prepare a measurement that

is approximately correct near unity pumping efficiency. Consider two models of the state

distribution. In one, given a “temperature parameter” t we populate the states according

to

ρ =
f∑

i=−f

tm|f = 4,m = i〉〈f = 4,m = i| (6.103)

then normalize. In another model, we allow only two levels to have any population and

define the state as

ρ = t|f = 4,m = 4〉〈f = 4,m = 4|+ (1− t)|f = 4,m = 3〉〈f = 4,m = 3|. (6.104)

As seen in figure 6.6, the models give nearly the same result for the measured ratio for

nearly perfect preparation efficiencies greater than 90%. Experimental measurements using
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Figure 6.6: Measurement of pumping efficiency as described in the text. On the left, the
upper plot corresponds to dragging the spins in the xz-plane and measuring 〈Ŝ′y〉. The
lower plot corresponds to dragging the spins in the xy-plane and measuring 〈Ŝ′z〉. The
measurements referred to in the text are the peaks of these curves. On the right the ratio
is mapped to the pumping efficiency via two different models.

this technique are presented in section 13.6.
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Chapter 7

The Unconditional Collective
Master Equation

Thus far we have considered only the semiclassical descriptions of the atom-light interaction.

In chapter 5, we used a classical description of the light to derive a single atom master

equation with spontaneous emission. After that, we discussed the decomposition of the

polarizability Hamiltonian in chapter 6, where we treated the light quantum mechanically,

but only considered one of two semiclassical limits where either the optical moments or spin

moments were considered as classical.

In this chapter, we start from the fully quantum Hamiltonian of the last chapter, with

quantum light and quantum atoms, and derive the unconditional master equation for the

collective state of the atoms. Under these circumstances, we can begin using some of the

quantum measurement language that was introduced in chapter 2. In the case that the

Hamiltonian only consists of the QND vector term, this will result in no entanglement un-

conditionally, only antisqueezing. On the other hand, the conditional solution will produce

spin-squeezing as discussed in the next chapter. However, if we include the tensor terms,

and the assumption that all of the atoms interact with the same optical mode symmetri-

cally, we will see that collective spin-squeezed states can be prepared via the unconditional

master equation described here.

The latter assumption is a significant one, which will not be completely true under

current experimental circumstances, but we continue with it for pedagogical reasons. A

more realistic, and complicated, examination of the effect of the tensor term in a spatially

extended atomic cloud is analyzed in [26]. For simplicity, we also continue to neglect the

spontaneous emission, and other three-dimensional effects, discussed in chapter 5.
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7.1 Collective Master Equation Derivation

Now we derive the unconditional master equation describing a collection of cesium atoms

being probed by an arbitrarily polarized beam with detuning comparable to the hyperfine

splitting between the excited states of the atom, such that the tensor Hamiltonian terms

are significant. We neglect spontaneous emission and assume symmetry of the cloud so all

atoms are sitting at one point and are completely forward scattering.

We begin with the Hamiltonian as derived in the previous chapter

Ĥ =
~
dt

(γ̂0Ŝ0 + γ̂xŜx + γ̂yŜy + γ̂zŜz) (7.1)

where the γ̂i are atomic operators and the Ŝi are the Stokes operators representing the

polarization of the probe beam. The γ̂i are defined as

γ̂0 = c0Î + c2
∑

i

f̂2
z,i (7.2)

γ̂x = c2
∑

i

(f̂2
x,i − f̂2

y,i) (7.3)

γ̂y = c2
∑

i

(f̂x,if̂y,i + f̂y,if̂x,i) (7.4)

γ̂z = c1
∑

i

f̂z,i = c1F̂z (7.5)

with the detuning dependent coefficients

c0 =
dt

~
g
∑
f ′

(
α0ff ′

∆ff ′

2
3
−
α2ff ′

∆ff ′

f(f + 1)
3

)
(7.6)

c1 =
dt

~
g
∑
f ′

α1ff ′

∆ff ′
(7.7)

c2 =
dt

~
g
∑
f ′

α2ff ′

∆ff ′
(7.8)

where we have removed the f subscripts for convenience. Unless otherwise stated, we

assume the f = 4 ground state of cesium.

Now we go through a standard master equation derivation assuming each of the polar-

ization modes to be sparsely populated in a time-slice dt, then expanding to second-order

in the coherent state amplitude of each of the polarization modes [104]. This includes the
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quantum effects of the light. We start at time ti, just as a slice of laser light of width dt,

with state ρ̂L,i begins to pass over the collective atomic sample with initial state ρ̂A(ti). At

the beginning of each timestep ρ̂L,i for a new i is always the same, while ρ̂A(ti) depends

on past interactions. The total system state, ρ̂T (ti) at this time is separable because the

incoming optical state has yet to interact with the atoms

ρ̂T (ti) = ρ̂L,i ⊗ ρ̂A(ti). (7.9)

After interacting for a time dt, via the Hamiltonian Ĥ the total system state before the

next timestep is then,

ρ̂T (ti + dt) = Û ρ̂T (ti)Û † (7.10)

where Û = exp[−iĤdt/~]. At this stage the joint atom-light system is potentially entangled

as the traveling light mode leaves the atoms and ceases to interact. Now we can either

measure this light mode or ignore it. In the next chapter we consider measuring it but

for now we simply ignore it. Tracing over the light mode after the dt interaction gives the

atomic state at the next timestep ti+1 = ti + dt as

ρ̂A(ti+1) = TrL[ρ̂T (ti+1)] (7.11)

= TrL[Û ρ̂L,i ⊗ ρ̂A(ti)Û †]. (7.12)

Henceforth we assume that the initial optical state is the same on every timestep ti and

simplify this equation to derive the unconditional master equation describing the atomic

spins. First we define the initial optical state (on every timestep) as

|Φ〉L = |αx〉x ⊗ |αy〉y (7.13)

where the |αi〉i are coherent states in the i polarization basis as defined in chapter 3. We

leave the polarization of the state in its most general form. This is a key generalization

beyond [104] because, with a vector interaction alone, the angle of linear polarization does

not matter, but with the tensor interaction considered here the resulting dynamics will be

highly polarization dependent.

Using the definition of the coherent state, and taking αi small because the timestep dt
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is small, we expand to first-order in αi to get

|Φ〉L ≈
(
(1− |αx|2/2)|0〉x + αx|1〉x

)
⊗
(
(1− |αy|2/2)|0〉y + αy|1〉y

)
(7.14)

= (1− |αx|2/2− |αy|2/2)|0〉x|0〉y + αx|1〉x|0〉y + αy|0〉x|0〉y. (7.15)

The |αi|2 terms are necessary to maintain normalization. Now we expand the propagator

to second-order in γ (which is the same as taking dt small) to get

Û = exp[−iĤdt/~] (7.16)

= exp[−i(γ̂0Ŝ0 + γ̂xŜx + γ̂yŜy + γ̂zŜz)] (7.17)

≈ 1− i(γ̂0Ŝ0 + γ̂xŜx + γ̂yŜy + γ̂zŜz)

−1
2
(γ̂0Ŝ0 + γ̂xŜx + γ̂yŜy + γ̂zŜz)2. (7.18)

Combining these two expansions and using the Ŝi and the properties of coherent states from

chapter 3, we can show that

Û |Φ〉L ≈
[
(1− |αx|2/2− |αy|2/2)|0〉x|0〉y + αx|1〉x|0〉y + αy|0〉x|0〉y

]
(7.19)

−iγ̂0

[αx

2
|1〉x|0〉y +

αy

2
|0〉x|1〉y

]
(7.20)

−iγ̂x

[
−αx

2
|1〉x|0〉y +

αy

2
|0〉x|1〉y

]
(7.21)

−iγ̂y

[
−αx′

2
|1〉x′ |0〉y′ +

αy′

2
|0〉x′ |1〉y′

]
(7.22)

−iγ̂z

[
−α−

2
|1〉−|0〉+ +

α+

2
|0〉−|1〉+

]
(7.23)

+
1
2
γ̂2

0

[αx

4
|1〉x|0〉y +

αy

4
|0〉x|1〉y

]
(7.24)

+
1
2
γ̂2

x

[αx

4
|1〉x|0〉y +

αy

4
|0〉x|1〉y

]
(7.25)

+
1
2
γ̂2

y

[αx′

4
|1〉x′ |0〉y′ +

αy′

4
|0〉x′ |1〉y′

]
(7.26)

+
1
2
γ̂2

z

[α−
4
|1〉−|0〉+ +

α+

4
|0〉−|1〉+

]
(7.27)

+12 more terms. (7.28)

Now we insert this into equation (7.12) and expand while minding the fact that the γ̂i

terms do not necessarily commute. After some amount of work, we arrive at the following
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master equation for the atoms alone (without the A subscript):

ρ̂(t+ dt) = ρ̂(t)− i

~
[〈Ĥ〉L, ρ̂]dt

+
∑

i=0,x,y,z

dt
〈Ŝ0〉
2dt

D[γ̂i]ρ̂

+
∑

i=x,y,z

dt
〈Ŝi〉
2dt

(γ̂iρ̂γ̂0 + γ̂0ρ̂γ̂i

−1
2

((γ̂0γ̂i + γ̂iγ̂0)ρ̂+ ρ̂(γ̂0γ̂i + γ̂iγ̂0))

+i(γ̂i+2ρ̂γ̂i+1 − γ̂i+1ρ̂γ̂i+2) +
i

2
{[γ̂i+2, γ̂i+1], ρ̂}) (7.29)

where the semiclassical Hamiltonian (with expectations taken over the light) is defined as

〈H〉L =
~
dt

(
γ̂0〈Ŝ0〉+ γ̂x〈Ŝx〉+ γ̂y〈Ŝy〉+ γ̂z〈Ŝz〉

)
. (7.30)

The master equation of equation (7.29) is the primary result of this chapter. Note that,

because the γ̂i do not commute, there are several cross terms that can evolve the state

in nontrivial ways. We examine the effect of these cross-terms on the collective state for

various configurations in the next section.

Under the limit of large detuning, the master equation becomes considerably simplified.

In this case, c2/c1 → 0 as ∆ � 300 MHz ≈ ∆HFS . In other words, the tensor terms vanish

in the limit that the detuning is larger than the hyperfine splitting as discussed in chapter 6.

We can further simplify by ignoring the global phase shifting γ̂0 terms and assume linearly

polarized input light, to get

Ĥ =
~
dt
γ̂zŜz (7.31)

and

ρ̂(t+ dt) = ρ̂(t) + dt
〈Ŝ0〉
2dt

D[γ̂z]ρ̂. (7.32)

This is a familiar unconditional master equation that unconditionally antisqueezes the initial

coherent spin-state along x. The conditional version of this master equation produces

squeezing as discussed in chapter 8 and chapter 9, where a more intuitive notation is used

for the prefactors.
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A major point of this chapter is that typical experiments in this field often operate

at detunings that are small or comparable to the hyperfine splittings for purely technical

reasons. In this case, the above “large detuning” simplification of the master equation does

not hold and the dynamics are expected to be complicated by the nonnegligible tensor

terms. Many experiments including our own have been performed at detunings around

1 GHz where the tensor terms cannot be fully neglected [37, 36, 29].

7.2 Moment Evolution

In this section, we consider the evolution of various spin moments due to the full master

equation, equation (7.29). We cannot analytically evolve the state beyond the first timestep

because the master equation populates more than just the fully symmetric subspace. Re-

gardless, we show that unconditional spin-squeezing does occur in this first timestep under

certain circumstances. While analyzing the collective uncertainty moments in this section,

keep in mind that the expressions contain both incoherently added single-atom effects (e.g.,

from figure 5.2) and truly collective effects resulting from the atoms residing at the same

location.

For initial coherent spin-state (CSS) aligned along the x-direction, the time zero deriva-

tives of the collective variances are given by

〈 ˙̂
Fx〉|t=0 =

〈Ŝ0〉
2dt

(−126Nc22 − 2Nc21)

+
〈Ŝx〉
2dt

(−28Nc22 + 28Nc1c2) (7.33)

〈 ˙̂
F 2

y 〉|t=0 =
〈Ŝ0〉
2dt

(98Nc22 + (16N2 + 30N)c21)

+
〈Ŝx〉
2dt

(−112Nc1c2 − 112N(N − 1)c1c2) (7.34)

〈 ˙̂
F 2

z 〉|t=0 =
〈Ŝ0〉
2dt

((−616N + 784N2)c22)

+
〈Ŝx〉
2dt

(168Nc22 − 112N(N − 1)c1c2). (7.35)

The equation for 〈 ˙̂
F 2

y 〉|t=0 is intentionally left unsimplified for the sake of comparison to the
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equation for 〈 ˙̂
F 2

z 〉|t=0. We also have the mean moment

〈 ˙̂
Fz〉|t=0 =

〈Ŝy〉
2dt

(28Nc2)

+
〈Ŝz〉
2dt

(490Nc22 − 392N(N − 1)c22), (7.36)

which is consistent with section 6.7. Now we consider the following specializations of these

equations using a large number (N � 1).

7.2.1 Case 1: Near Resonance, Perpendicular Polarizations

Consider a detuning close to resonance (c1/c2 = 11), and with an optical polarization along

the y-axis (〈Ŝx〉 = +〈Ŝ0〉). Even though the expressions below contain only the vector

coefficient c1 for the sake of comparison, they are tensor in origin because we have assumed

c2 = c1/11. This gives the following moment derivatives.

〈 ˙̂
Fx〉|t=0 =

〈Ŝ0〉
2dt

c21N(−0.73) (7.37)

〈 ˙̂
F 2

y 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(5.8) (7.38)

〈 ˙̂
F 2

z 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(−3.7). (7.39)

7.2.2 Case 2: Near Resonance, Parallel Polarizations

Again consider a detuning close to resonance (c1/c2 = 11), but with an optical polarization

along the x-axis (〈Ŝx〉 = −〈Ŝ0〉). Even though the expressions below contain only the vector

coefficient c1 for the sake of comparison, they are tensor in origin because we have assumed

c2 = c1/11. This gives the following moment derivatives.

〈 ˙̂
Fx〉|t=0 =

〈Ŝ0〉
2dt

c21N(−5.36) (7.40)

〈 ˙̂
F 2

y 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(26.2) (7.41)

〈 ˙̂
F 2

z 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(16.6). (7.42)
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7.2.3 Case 3: Far-Off Resonance, Polarization Independent

Finally, consider a detuning far from resonance (c1/c2 = ∞), in which case the polarization

angle does not matter. Because we are far-off resonance, the tensor Hamiltonian is of no

consequence. The moment derivatives are then

〈 ˙̂
Fx〉|t=0 =

〈Ŝ0〉
2dt

c21N(−2) (7.43)

〈 ˙̂
F 2

y 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(16) (7.44)

〈 ˙̂
F 2

z 〉|t=0 =
〈Ŝ0〉
2dt

c21N
2(0). (7.45)

The second line indicates the expected unconditional antisqueezing.

7.3 Unconditional Squeezing via Collective Tensor Terms

At large detunings (case 3), the initial behavior of the antisqueezed component is:

〈F̂ 2
y 〉|t = 〈F̂ 2

y 〉|t=0

(
1 +

t

τss

f

4
OD
)

(7.46)

where we define the spin-squeezing time τss as

τ−1
ss =

〈 ˙̂
F 2

y 〉|t=0

〈F̂ 2
y 〉|t=0

(7.47)

=
2Iσ0

~ω

Γ
4

∑
f ′

α
(1)
f,f ′

α0∆f,f ′

2

. (7.48)

From the analysis of chapter 8 we expect that the conditional value of the z-component will

evolve at a similar rate, but be squeezed rather than antisqueezed

〈F̂ 2
z 〉|t = 〈F̂ 2

z 〉|t=0
1

1 + t
τss

f
4ODη

. (7.49)

With these assumptions, for unity detection efficiency, η = 1, the minimum uncertainty

product remains initially constant

〈F̂ 2
y 〉|t〈F̂ 2

z 〉|t = 〈F̂ 2
y 〉|t=0〈F̂ 2

z 〉|t=0. (7.50)
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As discussed in chapter 3, the spin-squeezing parameter is defined as

ξ2 =
2F 〈∆F̂ 2

z 〉
〈Fx〉2

(7.51)

and its rate of change at time zero is given by

d(ξ2)
dt

=
d

dt

2F 〈∆F̂ 2
z 〉

〈F̂x〉2
(7.52)

= 2F

(
d〈∆F̂ 2

z 〉/dt
〈F̂x〉2

− 2
〈∆F̂ 2

z 〉
〈F̂x〉3

d〈F̂x〉/dt

)
. (7.53)

For Case 3 (with conditional squeezing) the evolution of the spin-squeezing parameter is

given by

d(ξ2)
dt

|0 =
〈Ŝ0〉
dt

c21
f

(−16N + 2) (7.54)

in accordance with the results of the next chapter.

Now consider the evolution of the squeezing parameter due to the unconditional evo-

lution in case 1 and 2. In case 2 (unconditional, close to resonance, parallel light), all of

the perpendicular variances grow initially, thus the state gets antisqueezed in all directions.

However, in case 1 (unconditional, close to resonance, perpendicular light), we get a reduc-

tion of the z variance (〈 ˙̂
F 2

z 〉|t=0 < 0) indicating the preparation of a spin-squeezed state.

Here, the evolution of the spin-squeezing parameter in the initial timestep is given by

d(ξ2)
dt

|0 =
〈Ŝ0〉
dt

c21
f

(−3.7N + 7.2). (7.55)

The question then becomes, where does this unconditional spin-squeezing come from?

First, we note that this is not the result of adding “individually squeezed spins.” This

is mentioned because we are dealing with spins larger than spin-1/2 and the notion of

a individually squeezed spin is indeed possible. Further, the single atom quadratic ten-

sor Hamiltonian is comparable the twisting Hamiltonians used to create spin-squeezing as

discussed in chapter 3. However, when calculating the above expression, we see that the

squeezing is generated by cross-terms in the master equation equation (7.29), and is thus a

truly collective effect. The question is then whether the assumptions leading to this anal-
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ysis, namely that all of the atoms symmetrically couple to the same optical mode, is valid

or not. A more realistic consideration of a beam propagating through a spatially extended

atomic sample, where the assumption is not valid, is considered in [26].

Interestingly, we see that the rate of squeezing for the unconditional case is a factor of

0.23 = 3.7/16 smaller than what is expected in the conditional case discussed in the next

chapter.
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Chapter 8

Polarimetry and Quantum
Measurement

In previous chapters, we have described general quantum measurement concepts (Chapters

1–2) and unconditional descriptions of the probe-atom interaction without measurement

(Chapters 3–7). Now we begin to put the two together to consider how the measurement

of the probe beam allows us to conditionally evolve the collective quantum spin-state of

the atom cloud. A proper description of this quantum estimation process will allow us

to understand the back-action of the measurement and conditional preparation of spin-

squeezed states.

We begin by describing some of the basic concepts behind the detection of optical

polarization rotations with an emphasis on signal-to-noise ratios (SNR). The concept of

shotnoise in a polarimeter is introduced prior to the conditioning section because it is the

fundamental source of noise that the quantum filter estimating the atomic state must fight

against. Then we describe the derivation of the stochastic master equation telling us how to

conditionally update the collective state of the atoms via the inherently noisy measurement

record.

8.1 Polarimetry

In section 3.2.7, we discussed how the Stokes components of an optical beam can be mea-

sured with a polarimeter. Here we discuss in more detail the noise processes associated with

polarimetry to better understand the nature of the conditional dynamics described later.

The input stage of a generalized polarimeter consists of a set of optical waveplates (one
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quarter-waveplate and one half-waveplate), which together can enact a general rotation on

the Stokes sphere as described in section 3.2.5. After passing through the waveplates, the

beam is split with a polarizing beamsplitter (PBS) and each beam is then detected by a

photodiode. The photodiode currents are subtracted and amplified to give the output of

the polarimeter, which is proportional to the measured Stokes component. See section 11.6

for a description of the actual components used in the experiment.

8.1.1 Optical Shotnoise

Consider a photodiode absorbing a continuous power P . The power leads directly to a mean

photocurrent of value

I = RP. (8.1)

The responsivity of a photodiode is defined as

R =
ηe

~ω
[A/W] (8.2)

where η is the quantum efficiency of the detector, e is the electron charge, and ~ω is the single

photon energy. If the quantum efficiency is equal to unity, one can think of each photon

as being converted into an electron that contributes to the current. In a measurement of

the current, there will be random fluctuations in the signal due to the random uncorrelated

arrival times of the electrons, described by a Poisson process. In a given time τ , one can

show via the properties of the Poisson process (see http://qwiki.caltech.edu/wiki/

Shot_Noise or [108]) that the RMS fluctuation is related to the mean current by

i2rms =
eI

τ
. (8.3)

For an averaging filter with time constant τ , the frequency interval is defined as ∆f = 1/2τ

(note the factor of two) [108]. The optical shotnoise floor is then

irms =
√

2eI
[
A/
√

Hz
]√

∆f (8.4)

=
√

2e2ηP/~ω
[
A/
√

Hz
]√

∆f. (8.5)

http://qwiki.caltech.edu/wiki/Shot_Noise
http://qwiki.caltech.edu/wiki/Shot_Noise
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This is consistent with the noise one expects to get from performing photon detection on an

optical coherent state [109, 68]. The goal in the design of the photodiode detector is to get

the optical shotnoise floor significantly larger than the electronic noise floor of the detector

for the power the experiment demands. See chapter 11 for a discussion of the detector used

in our experiment. Note that when representing the optical shotnoise as a Wiener process

we use

I(t)dt = Idt+
√
eIdW (t) (8.6)

where I is a constant representing the mean current. This expression reproduces the rela-

tions above when calculating the RMS current using Itô’s rule [52].

8.1.2 Polarimeter Unravellings

After the the probe beam interacts with the atoms, one can imagine measuring the probe

beam in many different ways, each of which leads to a different unravelling of the conditional

dynamics as discussed in chapter 2. Note that here we consider the case of an input linearly

polarized probe beam of constant power and only change the measurement basis, although

we could also imagine adaptively changing the probe beam state for some purpose.

As discussed in section 3.2.7, one can measure any Stokes component with a polarimeter

(two input waveplates, a PBS, and a subtracting photodetector). The standard balanced

polarimetry measurement is where the linearly polarized probe beam is placed at 45 degrees

with respect to the axes of a polarizing beamsplitter (PBS) and half of the light is put on

each detector. Any rotations of the linear polarized light that keep it linear will then be

measured by the difference output of the photodetectors. In terms of Stokes components,

we say that the input state maximizes Ŝx and we measure Ŝy.

As another example, the polarimeter can be operated in a completely “imbalanced”

configuration, with the input state at Ŝx and measuring Ŝx. In this case the analyzer PBS

is oriented at 45 degrees to the balanced configuration and all of the noninteracted light goes

to one of the detectors. The other detector with less light can then be monitored, possibly in

photon-counting configuration, for a signal from the atoms. Note that in this configuration,

the detector cannot possibly distinguish which way (cw or ccw) the linear polarization

was rotated when a nonzero signal is detected. As a result of this indistinguishability, the

conditional dynamics under this unravelling must respect this lack of knowledge, leading to
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the possibility of conditional cat state production [90].

As a final possible detection scheme, we mention that the rotations of a linearly po-

larized probe beam can considered as coming from a differential phase shift between the

circular basis components composing the linearly polarized light. Thus one could also do

a measurement by physically separating these two components (e.g., with a quarter-wave

plate and a PBS) and then doing a homodyne measurement on each of the components.

The signal-to-noise ratio from this scheme is compared to the balanced polarimetry scheme

in the next section.

8.1.3 SNR Comparisons

Consider two separate schemes for measuring the polarization rotation of a single beam. In

both, we initialize the input beam polarization along Ŝy on the Stokes sphere such that we

can represent its electric field as

Ei =
E0√

2
(ex + ey). (8.7)

We temporarily ignore some constant prefactors and represent the power simply as P =

|Ei|2 = E2
0 . Now suppose that something rotates the polarization by a small angle φ � 1

such that the output field is

E =
E0√

2
(ex(1 + φ) + ey(1− φ)). (8.8)

With this output light, we now consider two different measurement schemes and compare

their signal-to-noise ratios.

8.1.3.1 Balanced Polarimetry

In the balanced polarimetry configuration, we measure the two powers Px and Py and then

subtract to get the signal

Px =
E2

0

2
(1 + φ)2 (8.9)

Py =
E2

0

2
(1− φ)2 (8.10)

∆PP = Px − Py = 2Pφ. (8.11)
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We then represent the optical shotnoise as being the square root of total power measured

(again ignoring constant prefactors)

ζP =
√
P = |E0|. (8.12)

8.1.3.2 Double Homodyne

Now we decompose the output light into its circular components

E = E+e+ + E−e−, (8.13)

which can be represented as

E± =
E0

2
(i(1− φ)∓ (1 + φ)). (8.14)

After splitting these components apart, with the quarter-wave plate and PBS, we perform

a homodyne measurement on each of the components, i.e., we mix one component with a

strong local oscillator ELO at a 50/50 beamsplitter and measure the power difference of the

outputs. After mixing the local oscillator with E− we have

EA = (ELO + E−)/
√

2 (8.15)

EB = (ELO − E−)/
√

2 (8.16)

and

∆P− = PA − PB = ELOE0(1 + φ), (8.17)

which gives the total signal. When we take the PLO � P limit we have for the overall

shotnoise

ζP− = ELO. (8.18)

We also get the same signal from the other homodyne setup (measuring +)

∆P+ = ELOE0(1− φ) (8.19)
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and the same noise

ζP+ = ELO (8.20)

assuming we used the same power local oscillator. To extract the total signal we subtract

the two homodyne outputs to get

∆PH = ∆P− −∆P+ = ELOE02φ (8.21)

and add the noises in quadrature to get

ζH =
√

2|E0|. (8.22)

8.1.3.3 Polarimetry versus Double Homodyne

Comparing the signal-to-noise ratios of the above two analyses we get that the polarimetry

signal-to-noise is a factor of
√

2 greater than the double homodyne measurement

SNRP = ∆PP /ζP = 2|E0|φ (8.23)

SNRH = ∆PH/ζH =
√

2|E0|φ. (8.24)

This difference of
√

2 can be explained by the fact that the local oscillator adds unneces-

sary noise to the measurement. If squeezed local oscillators were used, the SNR of the

polarimetry measurement could be recovered. Also note that if heterodyne measurements

were performed on the ± state, then these would be another
√

2 worse than the homodyne

performance [11, 12].

8.1.4 Polarimeter “Amplification”

We end this section by considering a possibly convenient trick, which can be used to reduce

the total power detected by the polarimeter while keeping the same signal-to-noise ratio. A

major source of technical noise in a balanced polarimeter is offset fluctuations, which are

proportional to the total power into the polarimeter. These can be caused, for example,

by imperfect balancing. Here we briefly analyze an “amplification” scheme that involves

selectively damping the polarization component that does not get measured, as discussed

in [110].
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Consider a polarimeter that measures the power along axes x and y and with input light

of power P aligned mostly along ex′ = (ex + ey)/
√

2. Define θ as the angle of the state

away from ex′ . The polarimeter output is then

Px − Py = P sin(2θ) + ζ(P ) (8.25)

where the shotnoise of power P is represented as ζ(P̂ ) =
√

~ωPdW/dt. Now imagine

selectively damping the ex′-component by a factor of χ < 1 such that

E = E(cos(θ)ex′ + sin θey′) → (8.26)

Ẽ = E(χ cos(θ)ex′ + sin(θ)ey′). (8.27)

Now the new polarimeter output is

P̃x − P̃y = χP sin(2θ) + ζ(P̃ ) (8.28)

where P̃ = P (χ2 cos2(θ) + sin2(θ)). Comparing the signal-to-noise ratios assuming θ � 1

we have

SNR =
Px − Py

ζ(P )
≈ 2θ

√
P

2~ω
(8.29)

S̃NR =
P̃x − P̃y

ζ(P̃ )
≈ 2θ

√
P

2~ω

√
χ2

χ2 + θ2(1− χ2)
. (8.30)

So if we have χ2 � θ2 then we have SNR ≈ S̃NR. Given that the polarization rotation is

going to be small, this technique can be practically useful if, for example, the polarimeter

subtraction is not perfect and there are unwanted power fluctuations. This erroneous signal

would then go down as χ2 while the desired signal only goes down as χ. This effect can

also be useful because in practice detectors often become nonlinear if they absorb too much

power.

One large caveat to this approach is that the electronic noise floor does not get decreased

at all, thus the relative noise-equivalent-power (NEP) of the detector will go up by a factor

of 1/χ2 and the detector becomes less optical shotnoise limited compared to the power of the

total probe light. If there is enough of an initial cushion between optical and the electronic
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noise floors, then this should not be a problem, but in practice the electronic noise floor is

never going to be zero.

8.2 Conditional Dynamics

Given the Hamiltonian interaction and a subsequent detection of the probe via the polarime-

ter, how do we describe the conditional evolution of the atomic spin-state? We discussed

the general problem of conditional evolution in chapter 2 and an outline of the needed

treatment from a more mathematical perspective is provided in [23]. Here we begin by

discussing the stochastic master equation derived in slightly different context. Then we dis-

cuss the measurement signal-to-noise ratio in our experiment and relate that to the master

equation parameterization. From this we physically derive the rate one expects to prepare

spin-squeezed states via QND measurement with real alkali atoms. We end this chapter

by considering the functional dependence of the spin-squeezing and decay timescales on

detuning.

8.2.1 The SME with Homodyne Detection

One of the fundamental ideas presented in this thesis was introduced in a paper by Thomsen,

Mancini, and Wiseman [15, 16]. In that paper, they derived the stochastic master equation

(SME) describing the conditional state of an atomic ensemble within a cavity, when the

output of the cavity is monitored with homodyne detection. This model contains the

basic idea for the rest of this thesis, yet it is different from our experiment in several

respects. The model considers the output of a cavity (whose internal state is adiabatically

eliminated) while our experiment is currently performed in free-space. Furthermore, the

atom-light interaction Hamiltonian (and level scheme) is different and leads to an analysis

of homodyne detection as opposed to our balanced polarimeter detection. As a result of

these differences, the derivation of the stochastic master equation for our experiment is

expected to be quite different and, as yet, this analysis has not been performed.

As introduced briefly in section 2.4, the derivation of [15, 16] results in the stochastic



116

master equation

dρ̂(t) = −i[ĤS , ρ̂(t)]dt+D[
√
MF̂z]ρ̂(t)dt

+
√
ηH[

√
MF̂z]ρ̂(t)

(
2
√
Mη[y(t)dt− 〈F̂z〉dt]

)
(8.31)

where ĤS is the system Hamiltonian, η is the quantum detection efficiency, and M is the

measurement strength, which is physically derived in the next section for our experimental

scheme, but left general here. The superoperators, D and H, are defined as

D[ĉ]ρ̂ ≡ ĉρ̂ĉ† − (ĉ†ĉρ̂+ ρ̂ĉ†ĉ)/2 (8.32)

H[ĉ]ρ̂ ≡ ĉρ̂+ ρ̂ĉ† − Tr[(ĉ+ ĉ†)ρ̂]ρ̂, (8.33)

and the photocurrent is represented as

y(t)dt = 〈F̂z〉(t)dt+ dW (t)/2
√
Mη. (8.34)

The stochastic quantity dW (t) ≡ 2
√
Mη(y(t)dt − 〈F̂z〉(t)dt) is a Wiener increment and

dW (t)/dt is a Gaussian white noise associated with the shotnoise of the homodyne local

oscillator.

As mentioned in section 2.4, there are several intuitive features to notice about this

equation. First, if M = 0 we recover the usual closed-system equation of motion for the

state. If M 6= 0, but the quantum efficiency of the detector η = 0, then we get the

unconditional evolution of the state due to the measurement. If M 6= 0 and η 6= 0, then

the update rule is an explicit function of the photocurrent y(t). This conditional part of

the equation is reminiscent of classical estimators that take the difference between what the

photocurrent is and what the photocurrent is expected to be, to get an innovation dW (t)

by which the system is updated. In fact, this stochastic master equation (or stochastic

Schrodinger equation, SSE) is one of the most general mathematical examples of continuous

quantum measurement and is discussed in many different contexts [71, 72, 23]. We discuss

its properties in more detail in chapter 9.
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8.2.2 Deriving the Measurement Strength from the Polarimeter SNR

The SME above is the filter that essentially describes our polarimetry experiment (far-off

resonance) although we have not derived it in this context. We avoid the derivation, and

identify the physical measurement strength with our experimental parameters, by using

results from previous chapters. In the end, it is the form of M we are interested in, but

we are also interested in the validity of the SME as a model. There are two reasons that

it will not be an exact model. First, if the detuning is not large enough, the tensor terms

will destroy the description, as discussed in the unconditional case in chapter 7. Second, we

only consider the SME as a valid description for times less than the spontaneous emission

time as derived in chapter 5. We end this chapter with a discussion related to these crudely

modeled, but real, effects, although in the next few chapters we largely ignore them for

pedagogical reasons.

(Update: Led by Luc Bouten, our group has recently finished a paper in which the

polarimetry stochastic master equation is derived and shown to be as assumed in this

thesis [111]. The paper uses a formal quantum stochastic differential equation (QSDE)

formalism and also shows that the scheme is equivalent to performing homodyne detection

on the y channel when the probe beam is initially polarized along x. This imbalanced

homodyne detection case is as opposed to the balanced homodyne case considered earlier

in this chapter.)

In chapter 7, equation (7.32), we showed that the (ignoring the tensor Hamiltonian) the

unconditional master equation is simply

dρ̂ =
〈Ŝ0〉
2dt

D[γ̂z]ρ̂dt (8.35)

= D[
√
MF̂z]ρ̂dt. (8.36)

Here, we have now physically identified the measurement strength M in terms of our ex-

perimental parameters as

M =
1

8~2
τ−1
ss

(σ0

A

)
(8.37)
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where we have used the definition, from equation (7.48), of the spin-squeezing time as

τ−1
ss =

2Iσ0

~ω

Γ
4

∑
f ′

α
(1)
f,f ′

α0∆f,f ′

2

. (8.38)

Thus, for the η = 0 case we can identify this measurement strength as having the same

function as the measurement strength in equation (8.31). Notice that the measurement

strength is a rate when ~ is assumed unitless. Also notice that the ratio of areas, the cross

section divided by the beam area, σ0/A ∝ λ2/A can never be greater than one in free-space

due to the diffraction limit.

Rather than this indirect approach for deriving the physical measurement strength, we

can also identify it through a direct expression for the physical photocurrent in units of

power. As shown in section 6.4, the measurement of Ŝy will result in equation (6.87) when

atoms are present. Now we wish to include measurement noise in order to calculate the

signal-to-noise ratio. It is readily shown that all terms not linear in F̂z vanish in equation

(6.87) provided that the state is aligned along x with θ = π/2 and φ = 0. That is, a

pure Faraday rotation Hamiltonian is recovered when the atomic magnetization vector is

oriented along the x-axis. However, rotating F̂ in the xy-plane results in elliptically polarized

scattered probe light, and moving out of this plane results in nonlinear atomic dephasing

due to scattering terms, which are quadratic in the single-particle spin operators, f̂z. These

adverse effects are avoided for the experimental geometry where F̂ is collinear with the

x-axis.

Taking the input probe field to be in an x-polarized optical coherent state, and consid-

ering the small γ limit, equation (6.87) leads to a semiclassical photocurrent (with units of

optical power) of the form,

yt = η
√
S〈F̂z〉+

√
η ζt, (8.39)

where we have made the substitution, ~Nf cos θ → 〈F̂z〉 (see equation (6.69)), and included

the photodetector quantum efficiency, η. We have introduced the scattering strength S

defined as

S =
1
~2

Ipσ0

(
Γ
4

)∑
f ′

α
(1)
f,f ′

α0∆f,f ′

2

, (8.40)
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which depends upon the probe intensity, Ip = P/A, determined by the coherent state

amplitude, P = 2~ω|β|2 and cross sectional area, A = πr2 (for a mode-matched probe

laser). It is useful to note that the scattering strength has units of W2/~2 (power squared

per ~2) and characterizes the degree of coupling between the atoms and the probe field;
√
S

quantifies the polarimeter optical power imbalance per unit spin (as F̂z has units of ~). As

discussed above, we have represented the optical shotnoise by ζt =
√

~ωPdWt/dt such that

∆ζ2 = ~ωP . To convert the above power units to photocurrent units, we simply use the

conversion e/~ω, or the responsivity if the detection efficiency has not been included.

Our expressions are similar to previous results [15, 104, 45, 24]. However, our specific

expressions for γx, γy and γz, and hence M , account for the detailed hyperfine structure

of the atomic excited states, including the fact that the oscillator strengths and signs of

the contributions from different participating excited states are not equal, and doing so is

required for quantitative agreement between theory and experiment.

Finally, we can identify the physical photocurrent equation (8.39) with the photocurrent

from equation (8.34). The measurement strength is then seen to be given by

M =
S

4∆ζ2
, (8.41)

which again matches the above expression for M , in equation (8.37), when expanded.

Now that we have identified the measurement rate, we spend a considerable amount

of time in the next two chapters investigating the SME under ideal circumstances without

spontaneous emission or tensor complications. There it will be clear exactly how the SME

conditionally projects an initial coherent spin-state into a spin-squeezed state. In the next

section, we consider the expected degree of squeezing from a much simpler perspective.

8.2.3 Squeezing by Averaging

Now consider a measurement of F̂z as described above (and displayed in figure 14.1). In

the small time limit where probe induced decoherence can be neglected, the full quantum

filter describing this measurement is equivalent a classical model in which F̂z is simply

a random constant on every trial drawn from a distribution with variance equal to the

quantum variance of 〈∆F̂ 2
z 〉0 [20]. Then the generally complicated full quantum filter [23] is

equivalent to linear regression, or fitting a constant to the noisy measurement record in real
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time. In essence, the optimal filter serves to average away the optical shotnoise to reveal

the underlying value of F̂z. Under these statistical assumptions, with the signal-to-noise

ratios of the previous section, the quantum uncertainty at small times is given by

〈∆F̂ 2
z 〉τ =

〈∆F̂ 2
z 〉0

1 + 4Mη〈∆F̂ 2
z 〉0τ

. (8.42)

This can be shown either with the full quantum filter or by using the equivalent classical

model combined with Bayesian estimation (from which a Kalman filter or linear regression

can be derived). In the filtering terminology, the above expression is seen to be the solution

to a Riccati equation as discussed in chapter 10 [49].

We now define the signal-to-noise ratio as

SNR2 ≡ 4Mη〈∆F̂ 2
z 〉0τ (8.43)

and express the degree of squeezing (ignoring decay of the F̂x) as

W ≡ 〈∆F̂ 2
z 〉t

〈∆F̂ 2
z 〉0

(8.44)

=
1

1 + SNR2 . (8.45)

Using 〈∆F̂ 2
z 〉0 = ~2Nf/2, we can express the signal-to-noise ratio as

SNR2 = ηOD
f

4
τ

τss
(8.46)

where the optical depth is OD = Nσ0/A = ρLσ0, if A is the area and L the length of the

cloud. (This SNR is implied throughout the rest of this thesis, as opposed to the SNR

definitions used earlier.)

To get the most spin-squeezing in an experiment, we want to make the SNR as large as

possible. The quantum efficiency η is typically of order unity for good photodiodes, thus

one cannot gain orders of magnitude by considering better detectors. The optical depth

should be made as large as possible, but typically cold atom densities and cloud sizes are

limited by technical considerations as discussing in chapter 12. Finally, one wants to average

for a long time to make the fit to a random offset buried better resolved, thus the ratio

τ/τss should be as large as possible. Unfortunately, the averaging time is limited both by
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technical considerations (e.g., atoms falling out of the trap) and fundamental considerations,

because the averaging time needs to be less than the spontaneous emission time, τ � τsc

for this entire story to remain valid. With a cavity, the measurement time τss can be made

much smaller than the τsc and more squeezing can be obtained, but in free-space these two

quantities are fixed relative to each other as discussed in the next section.

In appendix E, we consider a filtering model with spontaneous emission, where the ideal

filter is not equivalent to the averaging filter discussed here. There we analyze exactly how

poorly the nonoptimal averaging filter performs in the presence of decay.

8.2.4 Squeezing versus Decay Timescales

Ignoring the tensor Hamiltonian temporarily, it is interesting to consider the ratio of the

timescale τsc from equation (5.46) describing the incoherent decay and the timescale τss

from above, which is related to the rate at which spin-squeezing occurs. The larger the

ratio τsc/τss is, the more squeezing one expects to get. In the following, we assume either

an optical polarization parallel or perpendicular to the atomic spin alignment. In figure 8.1,

these ratios are plotted as a function of detuning.

First consider the parallel polarization case. When plotting the timescale ratio we see

that close to resonance (less than 300 MHz as discussed in chapter 6) the ratio for the cesium

D2 line is nearly an order of magnitude higher than far-off resonance. (The perpendicular

polarization case displays similar behavior but exhibits a higher overall ratio.) The reason

for this behavior is that all of the excited level contributions to τsc are the same sign

(positive), while the contributions to τss are alternating in sign. So näıvely one wants

to be close to the 4–5’ transition, where the negative effect of the 4–4’ transition on the

measurement strength can be neglected, giving a higher expected ratio of times and hence

more spin-squeezing. However, this logic tells us to be close to resonance where all of the

tensor terms are large and, as we have seen in chapter 7, the simple spin-squeezing story gets

considerably more complicated. Thus one has two options: either go to a large detuning

and take the lower ratio of timescales for the sake of simplicity, or try to work close to

resonance and either understand or cancel the tensor terms in some way, e.g., [112]. This

strategy is discussed more in chapter 14.

In the next chapter, we numerically and analytically investigate the behavior of the ideal

SME of equation (8.31). For convenience, we temporarily neglect the spontaneous emission
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Figure 8.1: Comparisons of the of the spontaneous emission timescales (perpendicular po-
larizations τsc,⊥, parallel polarizations τsc,‖) and the spin-squeezing timescale (τss) as a
function of detuning from the f = 4 to f ′ = 5 transition.

and tensor effects.



123

Chapter 9

Eigenstate Preparation with
Measurement and Control

In this chapter, we start with the idealized stochastic master equation of equation (8.31)

and analyze it in full detail, with the addition of feedback to make the preparation of

F̂z eigenstates deterministic. This chapter is adapted directly from [21] and is somewhat

repetitive of previous chapters in order to be self-contained. However, the two sections

section 9.7 and section 9.8 are new and present original analytic results. The idea of this

chapter is made considerably more rigorous, albeit for a spin system of only one spin, in

[22] where notions of stochastic stability with state-based control laws are introduced. That

work and the review [23] also discuss the constructive derivation of adequate control laws

rather than the intuitive process used in this chapter.

9.1 Abstract

We characterize the long-time projective behavior of the stochastic master equation describ-

ing a continuous, collective spin measurement of an atomic ensemble both analytically and

numerically. By adding state-based feedback, we show that it is possible to prepare highly

entangled Dicke states deterministically.

9.2 Introduction

It has long been recognized that measurement can be used as a nondeterministic means

of preparing quantum states that are otherwise difficult to obtain. With projective mea-

surements that are truly discrete in time, the only way an experimentalist can direct the
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outcome of the measurement is by preparing the initial state to make the desired result

most probable. Generally, it is impossible to make this probability equal to one, as the

measurement will, with some nonzero probability, result in other undesirable states. If the

experimentalist can afford to be patient, then accepting a low efficiency is not a problem,

but this is not always the case. In recent years, a theory of continuous quantum measure-

ment has been developed that fundamentally changes the nature of state preparation via

measurement [113]. When a measurement and the corresponding acquisition of informa-

tion are sufficiently gradual, there exists a window of opportunity for the experimentalist

to affect the outcome of the measurement by using feedback control [114]. In this chap-

ter, we demonstrate that it is possible to deterministically prepare highly entangled Dicke

states [88, 68] of an atomic spin ensemble by adding state-based feedback to a continuous

projective measurement.

It has been shown that models of quantum state reduction exist that exhibit the usual

rules of projective measurement except the state reduction occurs in a continuous, stochastic

manner [71]. These models are not without physical relevance as they are the same as

those derived to describe the conditional evolution of atomic spin-states under continuous

quantum nondemolition (QND) measurement [15, 16, 115, 116, 117, 118]. By measuring

the collective angular momentum operator, F̂z, of an initially polarized coherent spin-state

via the phase shift of an off-resonant probe beam, conditional spin-squeezed states can in

principle be produced. These states are of considerable interest for applications in quantum

information processing and precision metrology [5, 45].

In these models, the reduction in variance that initially leads to conditional spin-

squeezing is the precursor of the projection onto a random eigenstate of F̂z at longer times.

Figure 9.1 demonstrates the projection process for a single numerically simulated measure-

ment trajectory.1. Like spin-squeezed states, these Dicke states offer potential for quantum

information applications because of their unique entanglement properties [17]. Although

the experimental difficulties in obtaining these states via QND measurement or other ex-

perimental methods [120, 121, 122] are considerable, the details of the continuous projective

process that leads to them are of fundamental interest.

Whenever the measurement is sufficiently slow, an experimentalist may steer the result
1All numerical simulations shown were performed using the parameters {N = 10, M = 1, T = 5, dt =

0.001} The stochastic integrator used the norm-preserving, nonlinear SSE of equation (9.5) and a weak
second-order derivative-free predictor-corrector structure as can be found in [119].
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Figure 9.1: The results of a single numerical simulation [36] of the SSE, equation (9.5), with
M = 1, η = 1, and N = 10 spins initially aligned along the x-axis. (A) In a quantization
axis perpendicular to the polarization, the level distribution of a coherent spin-state (CSS)
is Gaussian for large N . Under conditional measurement the state evolves at short times
into a spin-squeezed state and, eventually, into a random eigenstate of F̂z. (B) A map of the
state’s angular distribution on the Bloch sphere in spherical coordinates. The uncertainty
in the transverse direction to the measurement axis grows until there is no information
about the perpendicular component direction. (C) At long times, the population is at most
divided among two levels that compete to be the final winner, which in this case appears
to be m = 1. (D) All of the state information is obtained by properly filtering the noisy
photocurrent.

by feeding back the measurement results in real time to a Hamiltonian parameter. Indeed,

the measurement process, as a state preparation process, can be made deterministic with

the use of feedback control [15, 16]. This is just one example of the growing confluence of

quantum measurement with classical estimation and control theory [56, 75]. Other appli-

cations of quantum feedback include parameter estimation, metrology, and quantum error

correction [18, 20, 123, 12, 124].

In this chapter, we focus on the long-time limit of the QND measurement and feedback

process. Just as spin-squeezed states can be deterministically prepared at short times, we

numerically demonstrate that individual Dicke states can be deterministically prepared at

long times with the use of state-based feedback [125]. While our proposed feedback laws

are nonoptimal, they demonstrate the adequacy of intuitive controllers with finite gain for

directing the diffusion of the quantum state towards desirable regions of Hilbert space with



126

unity efficiency. This is in contrast to other proposed schemes using measurement to prepare

Dicke states probabilistically [120, 121]. A more systematic approach utilizing stochastic

notions of stability and convergence in the continuous measurement and control of a single

spin is presented in reference [22].

This chapter is organized as follows. In section 9.3, we introduce the stochastic master

equation that represents the rule for updating the system state in real time via the incoming

measurement record. Here we discuss the various representations of the dynamics in both

the short and long-time limits. Section 9.4 describes the probabilistic preparation of Dicke

states via observation alone. The numerical demonstration of the open-loop projection pro-

cess reveals statistical features that clarify the details of the projection. Feedback is added

to the procedure in section 9.5, where we show that state-based control allows one to pre-

pare the same Dicke state deterministically on every measurement. Finally, in section 10.9,

we discuss future directions and imminent challenges regarding quantum state preparation

via measurement and control.

9.3 Representations of the Conditional Evolution

The physical system we will consider is an ensemble of N spin-1/2 particles contained

within a cavity and interacting with a far-off resonant single field mode. We will denote the

conditional state of the spin ensemble as ρ(t) and the homodyne measurement record of the

output as y(t). The stochastic master equation (SME) describing the conditional evolution

is [15, 16]

dρ(t) = −i[H(t), ρ(t)]dt+D[
√
MF̂z]ρ(t)dt

+
√
ηH[

√
MF̂z]ρ(t)

(
2
√
Mη[y(t)dt− 〈F̂z〉dt]

)
(9.1)

where H(t) = γF̂yb(t) is the control Hamiltonian that we will allow ourselves (without

feedback b(t) = 0), γ is the gyromagnetic ratio, M is the probe parameter dependent

measurement rate, and

D[ĉ]ρ ≡ ĉρĉ† − (ĉ†ĉρ+ ρĉ†ĉ)/2 (9.2)

H[ĉ]ρ ≡ ĉρ+ ρĉ† − Tr[(ĉ+ ĉ†)ρ]ρ. (9.3)
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The (scaled) difference photocurrent is represented as

y(t)dt = 〈F̂z〉(t)dt+ dW (t)/2
√
Mη. (9.4)

The stochastic quantity dW (t) ≡ 2
√
Mη(y(t)dt − 〈F̂z〉(t)dt) is a Wiener increment and

dW (t)/dt is a Gaussian white noise that can be identified with the shotnoise of the homo-

dyne local oscillator. (See [53, 52] for an introduction to stochastic differential equations

(SDE).) The sensitivity of the photodetection per
√

Hz is represented by 1/2
√
Mη, where

the quantity η ∈ [0, 1] represents the quantum efficiency of the detection. If η = 0, we are

essentially ignoring the measurement result and the conditional SME becomes a determin-

istic unconditional master equation. If η = 1, the detectors are maximally efficient. In this

latter case, the conditioned state will remain pure for the entire measurement, thus we can

use a state vector description, and the SME can be replaced with a stochastic Schrodinger

equation (SSE)

d|ψ(t)〉 = (−iH(t)−M(F̂z − 〈F̂z〉(t))2/2)|ψ(t)〉dt

+
√
M(F̂z − 〈F̂z〉(t))|ψ(t)〉dW (t). (9.5)

This SSE was considered in [71] where the motivation was more abstract and less con-

cerned with the experimental filtering perspective presented here. We emphasize that the

SME/SSE is physically derived and is an explicit function of a measured photocurrent vari-

able y(t), through which the randomness enters. The states are considered as states of

knowledge and, in practice, an experimentalist updates the description of the system, ρ(t)

(figure 9.1A-C), as the measurement results, y(t) (figure 9.1D), arrive in time.

The stochastic master equation of equation (B.43) describes only the dispersive part of

the atom-field interaction. Physically, however, any dispersive phase shift must be accompa-

nied by some degree of decohering absorption and spontaneous emission from the auxiliary

excited state level(s). Generally, the dispersive SME will be valid until some time, at which

point spontaneous emission catches up to destroy the validity of the above description. The

resulting cutoff time will impose a limit to the amount of observable squeezing or projection.

In free-space measurements, e.g., free-space Faraday rotation [29, 37, 24, 104], the effects

of spontaneous emission make this cutoff time relatively short. By surrounding the atomic
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cloud with a cavity however, spontaneous emission can be suppressed and the validity of

the SME correspondingly extended.

For a cavity with decay rate κ, N atoms with a decay rate γ, and an atom-cavity coupling

constant g, the requirement to see any spin-squeezing is only g2/κγ > 1/N . On the edge of

the strong-coupling regime, with g2/κγ ≈ 1, spin-variances can be further decreased from

initial values 〈∆F̂ 2
z 〉 ∝ N to levels ∝

√
N [16, 116, 117]. (In free-space, it is in principle

possible to achieve this degree of squeezing with a maximally focused probe beam, but one

can do no better because of the diffraction limit.) To further reduce the uncertainty to the

point where 〈∆F̂ 2
z 〉 ∝ 1 (i.e., the Heisenberg limit of spin-squeezing) the cavity needs to

be in the very strong coupling regime with g2/κγ > N . If one requires that a single F̂z

eigenstate becomes resolvable (〈∆F̂ 2
z 〉 � 1), the cavity coupling requirements become even

more stringent depending on the degree of projection desired.

While there are currently few experimental systems even in the strong coupling regime,

we expect this very strong coupling regime to eventually be reached for moderate numbers

of atoms. With this attitude we continue to focus on the long-time limit of the pure

dispersive SME in the interest of understanding the idealized limits of continuous projective

measurement. For a more complete discussion of the realistic physical limits of this type of

QND measurement, see references [15, 16, 115, 116, 117, 118].

9.3.1 Hilbert Space, Coherent Spin-States, and Dicke States

Under certain idealizations, we can considerably reduce the size of the Hilbert space needed

to describe the conditionally measured ensemble. Throughout this chapter, the initial state

ρ̂(0) will be made equal to a coherent spin-state (CSS) polarized along an arbitrary direction

[68]. For example, a CSS pointing along the z-axis is denoted | ↑1↑2 · · · ↑N 〉z and all others

can be prepared by rotating this state with the angular momentum operators F̂i, with

i ∈ {x, y, z}. A CSS, typically obtained via a dissipative optical pumping process, is an

eigenstate of F̂2 with maximal eigenvalue F (F+1), where F = N/2. Because the SME works

under the QND approximation of negligible absorption (i.e., the large detuning dispersive

limit), no angular momentum will be exchanged between the probe beam and the ensemble.

The only other allowed dynamics possible are rotations of the angular momentum induced

by applied magnetic fields, thus the state will maintain maximal 〈F̂2〉 over the course of the

measurement.
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The Dicke states are defined [68] as the states |l,m〉 that are simultaneous eigenstates

of both F̂2 and F̂z

F̂z|l,m〉 = m|l,m〉 (9.6)

F̂2|l,m〉 = l(l + 1)|l,m〉 (9.7)

where

|m| ≤ l ≤ F = N/2. (9.8)

Under the above approximations, we can neglect any state with l 6= F . We then shorten

the labeling of our complete basis from |F,m〉 to |m〉 so that

F̂z|m〉 = m|m〉 (9.9)

F̂2|m〉 = F (F + 1)|m〉 (9.10)

where m ∈ {−N/2,−N/2 + 1, ..., N/2 − 1, N/2}. We earlier discussed the properties of

Dicke states in chapter 3 and displayed them graphically in figure 3.2.

When the physical evolution is such that the |m〉 states remain complete, we can limit

ourselves to a density matrix of size (N + 1) × (N + 1) rather than the full size 2N × 2N .

This reduced space is referred to as the symmetric subspace, as its states are invariant to

particle exchange [10, 126]. For the case of two spins, the symmetric subspace contains the

triplet states, but not the singlet. States contained within the symmetric subspace can be

described as a pseudospin of size F = N/2.

In the z-basis, the extremal values of m, ±N/2, are simply the coherent spin-states

pointing along the z-axis

|m = +N/2〉 = | ↑1↑2 · · · ↑N 〉 (9.11)

|m = −N/2〉 = | ↓1↓2 · · · ↓N 〉. (9.12)

In terms of the constituent spins, these states are obviously unentangled. In contrast,

consider the state with m = 0 (for N even)

|m = 0〉 = C ΣiPi(| ↑1 · · · ↑N/2↓N/2+1 · · · ↓N 〉) (9.13)
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where the Pi represent all permutations of the spins and C is a normalization constant.

This state is highly entangled in a way that is robust to particle loss [17]. Even though the

expectation values 〈F̂i〉 vanish for this state, it still has maximal F2 eigenvalue. Loosely,

this state represents a state of knowledge where the length of the spin vector is known and

the z-component is known to be zero, but the direction of the spin vector in the xy-plane

is completely indeterminate. Similarly, the entangled states with 0 < |m| < N/2 can be

imagined as living on cones aligned along the z-axis with projection m. The loss of pointing

angle information from the measurement process is diagrammed in figure 9.1B.

Along with their unique entanglement and uncertainty properties, Dicke states are also

of interest for the important role they play in descriptions of collective radiation processes

[68] and for their potential role in quantum information processing tasks [127, 121, 120].

9.3.2 Short-Time Limit

Even when working within the symmetric subspace, for a large number of spins the size

of ρ̂(t) may be too unwieldy for computational efficiency. Because it is often desirable to

update our state description in real time (e.g., for optimal feedback procedures), finding

simple but sufficient descriptors is of considerable importance.

We can derive a reduced model by employing a moment expansion for the observable of

interest. Extracting the conditional expectation values of the first two moments of F̂z from

the SME gives the following scalar stochastic differential equations:

d〈F̂z〉(t) = γ〈F̂x〉(t)b(t) dt

+2
√
Mη〈∆F̂ 2

z 〉(t) dW (t) (9.14)

d〈∆F̂ 2
z 〉(t) = −4Mη〈∆F̂ 2

z 〉2(t) dt

−iγ〈[∆F̂ 2
z , F̂y]〉(t)b(t) dt

+2
√
Mη〈∆F̂ 3

z 〉(t)dW (t). (9.15)

Note that these equations are not closed because higher-order moments couple to them.

At short times, t� 1/ηM , we can make this set of equations closed with the following

approximations. If the spins are initially fully polarized along x then, by using the evolution

equation for the x-component, we can show 〈F̂x〉(t) ≈ F exp[−Mt/2]. Making the Gaussian
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approximation at short times, the third-order terms 〈∆F̂ 3
z 〉 and −iγ〈[∆F̂ 2

z , F̂y]〉(t)b(t) can be

neglected. The Holstein-Primakoff transformation makes it possible to derive this Gaussian

approximation as an expansion in 1/F [89]. Both of the removed terms can be shown to be

approximately 1/F
√
F smaller than the retained nonlinear term. Thus we can approximate

the optimal solution with

d〈F̂z〉s(t) = γF exp[−Mt/2]b(t) dt

+2
√
Mη〈∆F̂ 2

z 〉s(t) dWs(t) (9.16)

d〈∆F̂ 2
z 〉s(t) = −4Mη〈∆F̂ 2

z 〉2s(t) dt (9.17)

where the s subscript denotes the short-time solution and dWs(t) ≡ 2
√
Mη[y(t)dt−〈F̂z〉s(t)dt].

Also b(t) is assumed to be of a form that keeps the total state nearly pointing along x. The

differential equation for the variance 〈∆F̂ 2
z 〉s(t) is now deterministic. It can be solved to

give

〈∆F̂ 2
z 〉s(t) =

〈∆F̂ 2
z 〉(0)

1 + 4Mη〈∆F̂ 2
z 〉(0)t

. (9.18)

The deterministically shrinking value of 〈∆F̂ 2
z 〉s(t) represents the squeezing about the ini-

tially fluctuating value of 〈F̂z〉s(t) as shown in the first two frames of figure 9.1A-B. If

feedback is added, then the value of 〈F̂z〉s(t) can be zeroed via Larmor precession due to a

control field along y and the same centered spin-squeezed state can be prepared on every

trial [15, 16].

The resulting spin-squeezed states can be used in subsequent precision measurements

[5, 45]. It is also worth pointing out that a precision measurement can be performed during

the production of the conditional spin-squeezing. For example, we have shown that the

by properly estimating both the spin-state and an unknown classical field simultaneously

with continuous measurement and Kalman filtering techniques, the field estimation can be

improved over conventional limits by the presence of the simultaneous squeezing [18, 20].

9.3.3 Long-Time Limit

The approximations made in the previous section are no longer valid at times t � 1/ηM .

The third-order terms become nonnegligible at long times, hence the variance becomes

stochastic. Subsequently, other high-order moments couple into the problem and we are
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forced to consider the stochastic differential equation for each. Eventually, any finite num-

bered moment description is no longer useful and it initially appears that we must resort

back to the full symmetric density matrix and the SME, equation (B.43), as our primary

description.

Fortunately, we can take another approach and describe the state in terms of other

sufficient statistics. Without a field, the only statistic of the photocurrent needed to describe

the state at time t is its integral,
∫ t
0 y(s) ds (see section 9.6 or [128]). Knowing that the

state is only a function of this variable and the initial state (prior information) makes the

experimental design of a real time estimator experimentally convenient. For example, we

could use an analog integrator to create this sufficient statistic from the raw photocurrent,

then feed it into a possibly nonlinear device (like an FPGA [10]) to perform the estimation.

With the integrated photocurrent and the initial state

|ψ(0)〉 =
F∑

m=−F

cm|m〉 (9.19)

we can calculate (see section 9.6) the conditional expectation value of any power of F̂z with

the expression

Tr[F̂ k
z

˜̂ρ(t)] =
F∑

m=−F

mk|cm|2 exp[−2Mηm2t

+4mMη

∫ t

0
y(s) ds] (9.20)

where ˜̂ρ(t) is the unnormalized density matrix, and setting k = 0 represents its trace, so

〈F̂ k
z 〉(t) = Tr[F̂ k

z
˜̂ρ(t)]/Tr[F̂ 0

z
˜̂ρ(t)]. (9.21)

Consider the case when the system starts in the x-polarized spin-coherent state. To very

good approximation (with reasonably large F ) we can write for this state in the z-basis

|cm|2 ∝ exp
[
−m

2

F

]
. (9.22)

Using these coefficients, we now have the rule for mapping the photocurrent to the expec-
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tation of F̂z

〈F̂z〉(t) = Tr[F̂ 1
z
˜̂ρ(t)]/Tr[F̂ 0

z
˜̂ρ(t)]. (9.23)

Other than the minor approximation of the initial coefficients, using this estimate is essen-

tially the same as using solution to the full SME, so we do not give it a new subscript.

To simplify further, we can change the sums to integrals, giving

Tr[F̂ k
z

˜̂ρ(t)] '
∫ F

−F
mke−Am2+2Bmdm (9.24)

with

A =
1
F

+ 2Mηt B = 2Mη

∫ t

0
y(s) ds. (9.25)

This approximation produces an estimate

〈F̂z〉i(t) =

∫ F
−F me

−Am2+2Bmdm∫ F
−F e

−Am2+2Bmdm
(9.26)

that performs suboptimally when the distribution of states becomes very narrow at long

times. Interestingly, the integral approximation here numerically appears to give the same

estimate as the one derived previously for short times when no field is present, i.e.,

〈F̂z〉i(t) = 〈F̂z〉s(t). (9.27)

This is not entirely surprising as both of these estimators ignore the discreteness of the

Dicke levels. Also, at long times, it turns out that both of these estimates appear to be

numerically equivalent to the simplest of all estimates: averaging the photocurrent. In other

words, one simple and intuitive approximation to the optimal 〈F̂z〉(t) would be

〈F̂z〉a(t) =

∫ t
0 y(s)ds

t
, (9.28)

which is an estimate one might guess from the form of the photocurrent, equation (9.4).

From simulation, it appears that this estimate is the same as both 〈F̂z〉i(t) and 〈F̂z〉s(t) for

t� 1/ηM . Despite the nonoptimality of these simple estimators, they perform well enough

to resolve the discretization of the Dicke levels at long times.

Unfortunately, the addition of a feedback field makes these simplified estimators inad-
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Figure 9.2: Many open-loop moment trajectories [36] of the SSE, equation (9.5). The
trajectory of figure 9.1 is darkened. (A) At short times, the evolution of the variance
(shown on a log scale) is deterministic and given by 〈∆F̂ 2

z 〉s(t). At long times, the variances
become stochastic but bounded (above by 1/4 and below by exp[−2(Mt − 1)]/4). The
average of all 10, 000 trajectories (only 10 are shown) gives E[〈∆F̂ 2

z 〉(t)]. (B) The projective
nature of the measurement is made clear by the evolution of 100 trajectories of 〈F̂z〉(t).
The distribution of the final results is given by the first histogram of figure 9.1A. (C) The
evolution of the 100 trajectories all starting in an x-polarized CSS. When η = 1, certain
regions of Hilbert space are forbidden by the evolution.

equate at long times, and deriving simple reduced models with a field present is difficult,

thus forcing us to use the full SME in our state-based controller. Despite this difficulty,

during our subsequent feedback analysis we assume sufficient control bandwidth that the

SME can be evolved by the observer in real time.

9.4 Measurement of Evolution without Feedback

In this section, our goal is to describe how the estimates of the last section probabilistically

evolve at long times into Dicke states via observation alone. First, we discuss steady-state

and statistical properties of the SME, equation (B.43). Then, we examine the unconditional

dynamical solution with η = 0, which gives the average state preparation behavior when

η 6= 0. We then consider in detail how individual trajectories behave when η 6= 0. Finally,

we discuss the performance of the nonoptimal estimators relative to the optimal projective

estimator.

9.4.1 Steady-States of the SME and Martingale Properties

The fact that the SME eventually prepares eigenstates of F̂z is rather intuitive from a

projection postulate perspective because F̂z is the quantity being measured. If we insert
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the pure Dicke state, ρ̂ = |m〉〈m|, into the SME with no Hamiltonian (or only a field along

z), we find that it is a steady-state, dρ̂ = 0, no matter what happens with the subsequent

measurement record. Of course, this does not yet prove that the state will eventually be

obtained, as we have not discussed the stability of attractors in stochastic systems.

Without a field present, the SME has several convenient properties. First of all, from

the evolution equation for the variance notice that the variance is a stochastic process that

decreases on average. In fact it is a supermartingale, in that for times s ≤ t we have

Es[〈∆F̂ 2
z 〉(t)] ≤ 〈∆F̂ 2

z 〉(s) (9.29)

where the notation E[x(t)] denotes the average of the stochastic variable x(t) at time t and

the s subscript represents conditional expectation given a particular stochastic trajectory

up to the time s. Additionally, it can be shown [71] that the average variance obeys the

equation

E[〈∆F̂ 2
z 〉(t)] =

〈∆F̂ 2
z 〉(0)

1 + 4Mη〈∆F̂ 2
z 〉(0)(t+ ξ(t))

(9.30)

where

ξ(t) =
∫ t

0

E[(〈∆F̂ 2
z 〉(s)− E[〈∆F̂ 2

z 〉(s)])2]
E[〈∆F̂ 2

z 〉(s)]2
ds

≥ 0. (9.31)

A more explicit solution of ξ(t) is not necessarily needed as its positivity ensures that

〈∆F̂ 2
z 〉(t) stochastically approaches zero. This implies that a Dicke state is eventually

prepared. The numerical simulation of figures 9.1 and 9.2 demonstrates this behavior for

an initially x polarized state. As expected, E[〈∆F̂ 2
z 〉(t)] in figure 9.2A appears to be less

than the short-time solution 〈∆F̂ 2
z 〉s(t), equation (9.18), at long times.

Other useful properties of the stochastic evolution are evident from the moment equa-

tions. For example, we can show that

d〈F̂n
z 〉 = 2

√
Mη(〈F̂n+1

z 〉 − 〈F̂n
z 〉〈F̂z〉)dW (t) (9.32)

for integer n, hence

dE[〈F̂n
z 〉] = 0 (9.33)
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and for times s ≤ t we have the martingale condition

Es[〈F̂n
z 〉(t)] = 〈F̂n

z 〉(s). (9.34)

This equation for n = 1 gives us the useful identity

E[〈F̂z〉(t)〈F̂z〉(s)] = E[〈F̂z〉(s)2] (9.35)

for s ≤ t. Also, we can rewrite the expression for n = 2 as

Es[〈F̂z〉(t)2 + 〈∆F̂ 2
z 〉(t)] = 〈F̂z〉(s)2 + 〈∆F̂ 2

z 〉(s). (9.36)

This implies a sort of conservation of uncertainty as the diffusion in the mean, shown in

figure 9.1B, makes up for the decreasing value of the variance.

9.4.2 Zero Measurement Efficiency

It is insightful to examine the behavior of the master equation with η = 0, which corresponds

to ignoring the measurement results and turns the SME equation (B.43) into a deterministic

unconditional master equation. We continue to consider only those initial states that are

polarized. This is because these states are experimentally accessible (via optical pumping)

and provide some degree of selectivity for the final prepared state. To see this, let us

consider a spin-1/2 ensemble polarized in the xz-plane, making angle θ with the positive

z-axis, such that

〈F̂x〉(0) = sin(θ)N/2 (9.37)

〈F̂y〉(0) = 0

〈F̂z〉(0) = cos(θ)N/2

〈∆F̂ 2
x 〉(0) = cos2(θ)N/4

〈∆F̂ 2
y 〉(0) = N/4

〈∆F̂ 2
z 〉(0) = sin2(θ)N/4.
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Solving the unconditional moment equations, and labeling them with u subscripts, we get

〈F̂x〉u(t) = sin(θ) exp(−Mt/2)N/2 (9.38)

〈F̂y〉u(t) = 0

〈F̂z〉u(t) = cos(θ)N/2

〈∆F̂ 2
x 〉u(t) = sin2(θ)[N2 −N − 2N2 exp(−Mt)

+(N2 −N) exp(−2Mt)]/8 +N/4

→ sin2(θ)(N2 −N)/8 +N/4

〈∆F̂ 2
y 〉u(t) = sin2(θ)[N2 −N

+(N −N2) exp(−2Mt)]/8 +N/4

→ sin2(θ)(N2 −N)/8 +N/4

〈∆F̂ 2
z 〉u(t) = sin2(θ)N/4.

Note that, because the unconditional solutions represent the average of the conditional

solution, i.e., ρ̂u(t) = E[ρ̂(t)], we have

E[〈F̂z〉(t)] = 〈F̂z〉u(t) = 〈F̂z〉(0) = cos(θ)N/2. (9.39)

This also follows from the martingale condition for 〈F̂z〉(t). From the martingale condition

for 〈F̂ 2
z 〉(t) we get

E[(〈F̂z〉(t) − E[〈F̂z〉(t)])2]

= 〈∆F̂ 2
z 〉(0)− E[〈∆F̂ 2

z 〉(t)] (9.40)

→ 〈∆F̂ 2
z 〉(0) = sin2(θ)N/4.

Thus, when 0 < η ≤ 1, we expect the final random conditional Dicke state on a given

trial to fall within the initial z distribution. Given θ, the distribution will have spread

| sin(θ)|
√
N/2 about the value cos(θ)N/2. Although the final state is generally random,

starting with a polarized state clearly gives us some degree of selectivity for the final Dicke

state because
√
N � N .



138

9.4.3 Nonzero Measurement Efficiency

When η 6= 0, the measurement record is used to condition the state, and we can determine

which Dicke state the system diffuses into. Given the task of preparing the state |md〉, the

above analysis suggests the following experimental procedure. First, polarize the ensemble

(via optical pumping) into an unentangled coherent state along any direction. Then rotate

the spin vector (with a magnetic field) so that the z-component is approximately equal to

md. Finally, continuously measure z until a time t � 1/ηM . The final estimate will be a

random Dicke state in the neighborhood of md. When the trial is repeated, the final states

will make up a distribution described by the initial moments of F̂z (〈F̂z〉(0), 〈∆F̂ 2
z 〉(0), ...).

To reduce the effects of stray field fluctuations and gradients, a strong holding field could

be applied along the z-axis. Because this Hamiltonian commutes with the observable F̂z,

the final open-loop measurement results would be unchanged.

This process (with zero field) is shown schematically in figure 9.1 for md = 0 where

the initial state is polarized along x. Because 〈F̂z〉(0) = 0, the final state with the highest

probability is the entangled Dicke state md = 0. In contrast, if 〈F̂z〉(0) = F the state would

start in an unentangled CSS polarized along z and would not subsequently evolve.

One way of characterizing how close the state is to a Dicke state is through the variance,

〈∆F̂ 2
z 〉(t). Figure 9.2A displays many trajectories for the variance as a function of time.

For times t� 1/ηM the variance is approximately deterministic and obeys the short-time

solution of equation (9.18). During this period, the mean 〈F̂x〉(t) is decreasing at rate M/2.

Before this mean has completely disappeared, a conditional spin-squeezed state is created.

However, for larger times the mean and the variance stochastically approach zero, and the

state, while still entangled, no longer satisfies the spin-squeezing criterion [17].

There are several features to notice about the approach to a Dicke state that are evident

in figures 9.1 and 9.2. The variance at time t = 1/ηM is already of order unity. Thus, at

this point, only a few neighboring m levels contain any population, as can be seen in figure

9.1C. Also, it can be numerically shown that, for x-polarized initial states, the diffusion of

the variance at long times t� 1/ηM is bounded above and below by

exp[−2(ηMt− 1)]/4 < 〈∆F̂ 2
z 〉(t) ≤ 1/4, (9.41)

which is evident from figure 9.2A. These facts indicate that the population is divided among
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at most two levels at long times which “compete” to be the final winner. If we assume that

only two neighboring levels are occupied and apply the SSE (with η = 1), the probability,

p, to be in one level obeys the stochastic equation

dp = −2Mp(1− p) dW (t) (9.42)

and the variance takes the form 〈∆F̂ 2
z 〉(t) = p(1− p). As simple as it looks, this stochastic

differential equation (SDE) is not analytically solvable [53, 52]. The maximum variance

is 1/4 and it can be shown that, for p ≡ 1 − ε, with ε small, the lower bound is of the

exponential form stated above, so the two-level assumption seems to be a good one. The

fact that occupied Hilbert space becomes small at long times is also evident in figure 9.2C,

where the allowed states are seen to be excluded from certain regions when η = 1. The

arclike boundaries of the forbidden space are where the two level competition occurs. This

few-level SDE is discussed more fully in section 9.8.

In practice, an experimentalist does not always have an infinite amount of time to

prepare a state. Eventually spontaneous emission and other decoherence effects will destroy

the dispersive QND approximation that the present analysis is based upon. Suppose our

task was to prepare a Dicke state with, on average, a desired uncertainty, 〈∆F̂ 2
z 〉d � 1,

such that one level was distinguishable from the next. From equation (9.30), we see that

the time that it would take to do this on average is given by

td =

[
1

〈∆F̂ 2
z 〉d

− 1
〈∆F̂ 2

z 〉(0)

]
/4Mη. (9.43)

Thus if 〈∆F̂ 2
z 〉d � 1 is our goal, then td is how long the state must remain coherent. The

larger 〈∆F̂ 2
z 〉(0) is the more entangled the final states are likely to be (m ≈ 0) [17], hence,

by equation (9.43), the longer it takes to prepare the state for a given 〈∆F̂ 2
z 〉d. Hence,

we arrive at the intuitively satisfying conclusion that conditional measurement produces

entangled states more slowly than unentangled states. Of course, equation (9.43) is an

average performance limit. In a best-case scenario, the variance would attain the lower

bound of equation (9.41) where the state reduction happens exponentially fast.
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9.4.4 Performance of Suboptimal Estimators

Now we consider the performance of the suboptimal estimators discussed previously, in

particular the current average 〈F̂z〉a(t) of equation (9.28). It makes sense to associate the

overall “error” of this estimator, denoted Va, to be the average squared distance of the

estimator from the optimal estimator plus the average uncertainty of the optimal estima-

tor itself, E[〈∆F̂ 2
z 〉(t)]. Using the martingale properties of the optimal estimate and the

definition of the photocurrent gives this quantity as

Va ≡ E[(〈F̂z〉a(t)− 〈F̂z〉(t))2] + E[〈∆F̂ 2
z 〉(t)]

=
1

4Mηt
. (9.44)

This is just the error in estimating a constant masked by additive white noise with the same

signal-to-noise ratio [20]. The optimal estimator is better than this suboptimal estimator

at long times only through the quantity ξ(t), equation (9.31).

In the open-loop experimental procedure described at the beginning of the last section,

the above observation indicates that we can replace the optimal estimator with the pho-

tocurrent average and still resolve the projective behavior (given sufficient elimination of

extraneous noise). The price paid for the simplicity of the averaging estimator is that it

converges more slowly and it only works when a field is not present (hence without control).

In appendix E, we analyze the performance of the averaging estimator when incoherent

decay is added to the model.

9.5 Closed-Loop Evolution

The primary problem with the open-loop state preparation scheme (and other approaches

[120, 121, 122]) is that it is probabilistic. For a single measurement, there exists some

degree of control, by adjusting the initial angle of rotation θ, but the final state is a priori

unpredictable within the variance of the initial state. In this section, we show that the state

preparation can be made deterministic with the use of feedback. Just as the control scheme

of [15, 16] produces deterministically centered spin-squeezed states, we present a simple

feedback controller that will prepare the same desired Dicke state (particularly md = 0) on

every measurement trial.
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We choose to work with y-axis magnetic field actuator corresponding to the Hamiltonian,

H(t) = γb(t)F̂y. If the CSS initial state begins in the xz-plane this will ensure that the vector

〈F〉(t) remains in this plane. This actuator is natural for the control of spin-squeezed states

at short times, where the linear moments of 〈F〉(t) are large and allow intuitive rotation of

the spin vector. However, at long times the field will mostly be affecting nonlinear terms in

the moment expansion and the dynamics are less intuitive as can be seen by the structure

near the z-axis in figure 9.2C. Still, we continue to give ourselves only these rotations to

work with as they are the most experimentally accessible actuation variable.

In principle, the fact that Dicke states can be prepared deterministically with feedback

should not be surprising. Given the aforementioned characteristics of the noncontrolled

measurement one could imagine preparing a particular state by alternating measurement

and control periods. For example, an initial measurement (lasting for a time ∆t� 1/ηM)

would determine the fluctuation of 〈F̂z〉 while the uncertainty 〈∆F̂ 2
z 〉 simultaneously de-

creased (on average). Then the measurement would be turned off and the state would

be rotated with a control field to “zero” the conditional quantity 〈F̂z〉 −md (if preparing

|md〉). The process of alternating measurement and control could then be repeated and

would eventually clamp down on the desired state. Notice that, unlike the preparation of

spin-squeezed states [15, 16], this procedure could not be performed with a single measure-

ment and control cycle. In other words, if we measure for a time t� 1/ηM , and prepare a

probabilistic Dicke state, then a single post-measurement rotation cannot prepare a different

desired Dicke state in the same basis.

With this intuitive picture in mind, now consider the continuous limit of this process,

where the measurement and control are performed simultaneously. We wish to find a

mapping from the photocurrent history to the control field that prepares our state of interest

in a satisfactory manner on every trial. For simplicity, we work with η = 1 and use the SSE

of equation (9.5) for all simulations [36]. In selecting a controller, we could choose one of

several strategies, including either direct current feedback or a feedback rule based on the

state (i.e., what has been called Markovian and Bayesian feedback, respectively [129, 125]).

While direct current feedback possesses certain advantages, mainly simplicity that allows

practical implementation, and is capable of working adequately at short times, any constant

gain procedure would never prepare a Dicke state with confidence. If the current is directly

fed back, a finite amount of noise will unnecessarily drive the system away from its target,
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Figure 9.3: One hundred closed-loop moment trajectories [36] of the SSE with feedback law
b(t) = λ〈F̂xF̂z+F̂zF̂x〉(t)/2 and λ = 10 chosen from numerical considerations. (A)-(B) If the
control is successful the quantity 〈F̂ 2

z 〉(t) should go to zero on every trial. For this controller
the number of successful trajectories is increased significantly (from 25 to 90 %), but the
remaining fraction is attracted to neighboring fixed points, causing the mean E[〈F̂ 2

z 〉(t)] to
saturate at a nonzero value. Although the successful fraction converges exponentially, the
fastest converging trajectories are slower than in the open-loop case. This is evident in (C)
as the converging trajectories have visibly not yet reached 〈F̂x〉 = 0 at time t = 5.

even if the state starts there. Of course the gain could be ramped to zero in time, but unlike

the short-time case, it is not clear how to tailor the gain intelligently.

Another alternative would be to prepare a spin-squeezed state with this approach and

then turn off the feedback at some intermediate time. This would certainly enhance the

probability of obtaining a certain Dicke state, but the process would remain probabilistic to

some degree. For these reasons, we continue considering only state-based feedback, despite

the fact that updating the state in real time is experimentally challenging.

9.5.1 Defining a Cost Function

A useful first step in the design of any controller is to define the quantity that the ideal

controller should minimize: the cost function. For example, consider a state preparation

application where the controller aims to produce the desired target state |ψd〉. In this case,

one possible cost function is the quantity

Uf ≡ 1− 〈ψd|ρ̂|ψd〉 ≥ 0 (9.45)

evaluated at the stopping time, which is zero iff the fidelity of the state with respect to the

target is unity. In the current application, where we desire a final Dicke state |md〉 we wish
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to minimize a different quantity

U ≡ (〈F̂z〉 −md)2 + 〈∆F̂ 2
z 〉

= Σm〈m|ρ̂|m〉2(m−md)2

≥ 0, (9.46)

which is zero iff ρ̂ = |md〉〈md|. Notice that U gives a higher penalty than Uf to states that

are largely supported by Dicke states far removed from the target. In general, U will evolve

stochastically and we may be more interested in the mean behavior, denoted E[U ]. In the

uncontrolled case, it can be shown that this quantity remains constant, E[U(t)] = U(0). For

the controlled case, we wish for E[U ] → 0 as time advances, which, because U ≥ 0, implies

that every trajectory approaches the target state |md〉.

In general, the cost function could also include an integral of the quantity U(t) instead

of just the final value. As in classical control theory [20], it is also practical to include

a function of b(t) in the cost as a way of expressing our experimental feedback gain and

bandwidth constraints. Analytically proceeding in this way by optimizing the average cost

is too difficult for the current problem, but, with this perspective in mind, we proceed by

proposing controllers according to related considerations.

9.5.2 Control Law 1

Now consider the average evolution of the above cost function, which is given by

dE[U(t)] = −2γE

[
b(t)

(
〈F̂xF̂z + F̂zF̂x〉(t)

2
−md〈F̂x〉(t)

)]
dt. (9.47)

Because we want the expectation of the cost function to continuously decrease, this deriva-

tive should be negative at all times. If we have full access to the density matrix, and minimal

feedback delay, we could use the controller

b1(t) = λ

(
〈F̂xF̂z + F̂zF̂x〉(t)

2
−md〈F̂x〉(t)

)
(9.48)

where λ is a constant positive gain factor. This law guarantees that dE[U(t)] ≤ 0. Still,

this does not yet prove that U = 0 is obtained because dE[U(t)] = 0 for states other than
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Figure 9.4: One hundred closed-loop moment trajectories [36] of the SSE with feedback law
b(t) = λ〈F̂z〉(t) and λ = 10 chosen from numerical considerations. (A) The average over
10,000 trajectories suggests that with this control law the mean E[〈F̂ 2

z 〉(t)] descends to zero
exponentially and the target state is deterministically prepared. (B) Despite a number of
early excursions, all 100 trajectories shown converge to the desired value of m = 0. (C)
Those trajectories that do not descend to the goal directly (about 10 of 100) are recycled
and rotated back into the attractive region of the target state. Again, the control slightly
compromises the best-case convergence rate and the trajectories have a nonzero (but still
decreasing) 〈F̂x〉 at t = 5.

the target state. Furthermore, even with this control law applied, all Dicke states remain

fixed points.

Regardless of these issues, we proceed by analyzing the performance of this control law

numerically with md = 0. In principle, the gain could be chosen arbitrarily large. Here we

choose to work with a gain that is large enough to be effective but small enough to keep

the numerical simulation results valid [36]. The choice of a limited gain is a necessity in

both simulation and experiment, thus we wish to find a control law that works within this

constraint. For the parameters used in our simulation, we use a gain of λ = 10, which

produces the results shown in figure 9.3.

In figure 9.3A, we now plot the figure of merit for md = 0, U(t) = 〈F̂ 2
z 〉(t). In open-

loop configuration, only 25% of all trajectories are attracted to m = 0, whereas with this

controller the percentage reaches 90%. Furthermore, most of these trajectories approach the

state at an exponential rate close to M , as indicated by the curve under which 80% of the

trajectories lie. Interestingly, this is at the expense of those trajectories that in open-loop

approached the target state at an exponential rate of 2M . There is a trade-off by which

the control slightly compromises the convergence of the best-case trajectories.

Unfortunately, because all other Dicke states are still fixed points of the controlled SSE

and the gain is finite, a small fraction (10%) of trajectories are attracted to those states
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neighboring the target state. Thus this controller does not appear to deterministically

prepare all trajectories into the target state and the mean E[〈F̂ 2
z 〉(t)] flattens at a level

determined by the unsuccessful fraction of trials.

9.5.3 Control Law 2

The obvious solution to the above problem is to try a controller that ensures the target

state is the only fixed point of the SME/SSE. In this section we propose the control law

b2(t) = λ(〈F̂z〉(t)−md) (9.49)

for which the state |md〉 is the only fixed point. However, unlike b1(t) this controller lacks

the x symmetry that ensures dE[U(t)] ≤ 0. Also, while the symmetry of b1(t) will allow it

to lock to both sides of the Bloch sphere, b2(t) will only lock to one side of the sphere.

Again, we proceed by numerically analyzing the performance of this controller for md =

0, with the results displayed in figure 9.4. The gain is chosen in the same manner as before,

which leads to the same reasonable choice of λ = 10. In figure 9.4C the fundamental nature

of the dynamics can be seen. Close to 90% of the trajectories are directly transported

towards the target state, but the remaining fraction “misses” on the first pass. Instead of

being attracted towards other fixed points though, this unsuccessful fraction is recycled and

rotated back onto the positive x-axis where they can reattempt convergence onto the target

state. These large excursions can be seen in figure 9.4A-B as well, but they do not appear

to dominate the net flow. The average of 10, 000 trajectories gives a quantity E[〈F̂ 2
z 〉(t)],

which appears to exponentially descend towards zero, implying that the state preparation

has been made deterministic. As with the control of b1(t) there is again a trade-off: the

trajectories that previously descended at the exponential rate of 2M converge more slowly,

but still exponentially.

9.6 Solution of the SME without a Field

An explicit solution to the SME, equation (B.43), can easily be found in the case H(t) = 0.

First, the SME is rewritten as

d ˜̂ρ(t) = D[
√
MF̂z] ˜̂ρ(t)dt+ 2Mη (F̂z

˜̂ρ(t) + ˜̂ρ(t)F̂z) y(t)dt. (9.50)



146

This equation, known as the unnormalized or linear SME, is equivalent to equation (B.43)

with the identification

ρ̂(t) = ˜̂ρ(t)/Tr[˜̂ρ(t)]. (9.51)

Introducing the notation

G1
˜̂ρ = F̂z

˜̂ρF̂z

G2
˜̂ρ = F̂ 2

z
˜̂ρ+ ˜̂ρF̂ 2

z

G3
˜̂ρ = F̂z

˜̂ρ+ ˜̂ρF̂z.

(9.52)

equation (9.50) can be written in the more suggestive form

d ˜̂ρ(t) = M(G1 − 1
2G2)˜̂ρ(t)dt+ 2Mη G3

˜̂ρ(t) y(t)dt. (9.53)

Now note that equation (9.53) is a linear Itô stochastic differential equation (SDE) [53] for

˜̂ρ(t), and moreover G1,2,3 all commute with each other in the sense that GiGj
˜̂ρ = GjGi

˜̂ρ.

Such SDEs have a simple explicit solution [52]

˜̂ρ(t) = exp[(M(1− η)G1 −M(1 + η)G2/2)t

+2Mη G3

∫ t

0
y(s)ds] ˜̂ρ(0) (9.54)

as is easily verified by taking the time derivative of this expression, where care must be

taken to use Itô’s rule for the stochastic term.

Now consider an initial pure state of the form

|ψ(0)〉 =
F∑

m=−F

cm|m〉. (9.55)

The associated initial density matrix is then

˜̂ρ(0) = |ψ(0)〉〈ψ(0)| =
F∑

m,m′=−F

cmc
∗
m′ |m〉〈m′|. (9.56)
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Substituting into equation (9.54) gives

˜̂ρ(t) =
F∑

m,m′=−F

cmc
∗
m′ exp[(M(1− η)mm′

− 1
2M(1 + η)(m2 + (m′)2))t

+ 2Mη (m+m′)
∫ t

0
y(s)ds] |m〉〈m′|.

(9.57)

Hence

Tr[F̂ k
z

˜̂ρ(t)] =
F∑

m=−F

mk|cm|2 exp[−2Mηm2t

+4mMη

∫ t

0
y(s) ds], (9.58)

which is the result used in the text, equation (9.20).

9.7 Moment Evolution via Cumulants

Previously we have discussed the dynamics either in terms of the Gaussian description or

with the full stochastic master equation. In this section, we discuss the Gaussian approx-

imation in its most natural form, by deriving the equations of motion for the cumulants

describing the distribution [68]. Because the cumulants are the proper description of any

Gaussian distribution, their interdependent dynamical equations turn out to be much easier

to derive from the SME than those for other distribution parameterizations. Once these

equations are in hand, we can more plainly see when and how the Gaussian approximation

of the SME breaks down at long times.

Again, we begin with the same master equation as before

dρ̂ = MD[F̂z]ρ̂dt+
√
ηMH[F̂z]ρ̂dW. (9.59)

Notice that for the above without a Hamiltonian we have

〈D[F̂z]F̂n
z 〉 = 0 (9.60)

〈H[F̂z]F̂n
z 〉 = 2(〈F̂n+1

z 〉 − 〈F̂n
z 〉〈F̂z〉). (9.61)
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Now we make the following notation simplifications

2
√
ηM = 1 (9.62)

F̂z = x̂ (9.63)

vn = 〈x̂n〉 (9.64)

with v0 = 1. It is easily seen from the master equation that the evolution of the moments

vn are given by

dv1 = (v2 − v1v1)dW (9.65)

dv2 = (v3 − v2v1)dW (9.66)
... (9.67)

dvn = (vn+1 − vnv1)dW. (9.68)

Now we are interested in finding the evolution of the cumulants that best describe the

distribution [68]. First, we define the central moments as

µn = 〈(x̂− 〈x̂〉)n〉. (9.69)

Then we define the corresponding moment generating function as

M =
∞∑

n=0

vnξ
n

n!
(9.70)

such that the moments can be generated using

vn =
dnM

dξn
|ξ=0. (9.71)

Finally, we define the cumulants of the distribution by taking the logarithm of the moment

generating function to produce the cumulant generating function

K = ln[M ] (9.72)

=
∞∑

n=1

κnξ
n

n!
(9.73)
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such that the cumulants can be generated using

κn =
dnK

dξn
|ξ=0. (9.74)

From this expression, we find that the first few cumulants are

κ1 = 〈x̂〉 (9.75)

κ2 = µ2 (9.76)

κ3 = µ3 (9.77)

κ4 = µ4 − 3µ2
2 (9.78)

... . (9.79)

To find the evolution equations for these cumulant terms κ̇n in terms of each other we could

näıvely use the above definitions along with Itô’s rule, but after the third cumulant or so

this becomes way too much work. Of course there is an easier way, which is why we defined

them in the first place.

Differentiating dK while treating each vn as an independent variable gives

dK = d (ln[M ]) (9.80)

=
∞∑

n=0

dK

dvn
dvn +

1
2

∞∑
n,m=0

d2K

dvndvm
dvndvm (9.81)

=
∞∑

n=0

1
M

ξn

n!
dvn −

1
2

∞∑
n,m=0

1
M2

ξn

n!
ξm

m!
dvndvm (9.82)

= dW
∞∑

n=0

ξn

n!
(vn+1 − vnv1) exp[−K]

−dt
2

∞∑
n,m=0

ξn

n!
ξm

m!
(vn+1 − vnv1)(vm+1 − vmv1) exp[−2K] (9.83)

= dW exp[−K]
(
dM

dξ
− v1M

)
− dt

2
exp[−2K]

(
dM

dξ
− v1M

)2

(9.84)

= dW

(
dK

dξ
− κ1

)
− dt

2

(
dK

dξ
− κ1

)2

(9.85)

where we have used dvn = (vn+1 − vnv1)dW and dW 2 = dt, and dM/dξ = exp[K]dK/dξ.
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Now we use the notation K(n) = dnK
dξn to make the last line

dK = dW
(
K(1) − κ1

)
− dt

2

(
K(1) − κ1

)2
(9.86)

leading to

dκn = d
(
K(n)|ξ=0

)
(9.87)

= (dK)(n)|ξ=0 (9.88)

= dWdκn+1 −
dt

2
((K(1) − κ1)2)(n)|ξ=0. (9.89)

Evaluating the latter quantity is just a matter of taking subsequent derivatives

(n) −1
2
((K(1) − κ1)2)(n) (9.90)

0 −1
2
((K(1) − κ1)2) (9.91)

1 −(K(1) − κ1)K(2) (9.92)

2 −K(2)2 − (K(1) − κ1)K(3) (9.93)

3 −3K(2)K(3) − (K(1) − κ1)K(4) (9.94)

4 −3K(3)2 − 4K(2)K(4) − (K(1) − κ1)K(5) (9.95)

5 −10K(3)K(4) − 5K(2)K(5) − (K(1) − κ1)K(6) (9.96)

6 −15K(3)K(5) − 10K(4)2 − 6K(2)K(6) − (K(1) − κ1)K(7) (9.97)
...

.... (9.98)

Finally we arrive at what we were seeking, the evolution of the cumulants in terms of each

other

dκ1 = κ2dW (9.99)

dκ2 = κ3dW − κ2
2dt (9.100)

dκ3 = κ4dW − 3κ2κ3dt (9.101)

dκ4 = κ5dW + (−3κ2
3 − 4κ2κ4)dt (9.102)

... =
... (9.103)
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and the initial conditions for N spin 1/2 particles aligned along x are

κ1,0 = 0 (9.104)

κ2,0 =
N

4
(9.105)

κ3,0 = 0 (9.106)

κ4,0 =
−N
8

(9.107)

κ5,0 = 0 (9.108)
... =

.... (9.109)

Clearly, this is a much more efficient way of representing the dynamics of the distribution

than using either the moments or the central moments. Note that the second-order cumulant

equation (dκ2) contains a deterministic Riccati term (−κ2
2dt) but also an initially small

stochastic term (κ3dW ). For an ideal Gaussian initial distribution, all cumulants beyond

the second are zero by definition. Thus, in this case, one can plainly see exactly how

the slightly non-Gaussian nature of the initial spin-state (e.g., κ4,0 = −N
8 6= 0), feeds up

the chain of cumulant equations of motion, eventually affecting the low-order cumulants

directly.

9.8 Few Level Dynamics

In this section, I consider the evolution of the late time SSE dynamics when all but two

levels have been removed from the competition as discussed briefly in section 9.4.3. The

dynamics are comparable to the single spin measurements of [22], but not exactly because

the final level can have a wide range of possible m values. In the end, we essentially derive

the fastest asymptotic rate at which the SSE can project the state into one final value. The

fact that the projection rate is bounded is intuitive physically and useful for understanding

the late time dynamics of the projection.

Consider the initial state

|Ψ〉 = c1|m〉+ c2|m+ 1〉 (9.110)
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and define the probability of being in |m〉 to be p such that

p = |c1|2 (9.111)

(1− p) = |c2|2. (9.112)

Setting M = 1, η = 1 in the SSE, we get the very simple SDE

dp = −2p(1− p)dW. (9.113)

As simple as this SDE is, it does not have an analytic solution. It clearly describes compe-

tition between the two stable points of p = 0 and p = 1. If we continue to assume that the

only population is between these two sublevels we can show that κ2 = p(1− p) and that

dκ2 = −4κ2
2dt− 2κ2(1− 2p)dW (9.114)

if we assume (1− p) � 1 this becomes

dκ2 = −4κ2
2dt+ 2κ2dW, (9.115)

which actually has a solution (see page 77 of [53]) in terms of Wt =
∫ t
0 dWs

κ2 =
exp[−2t+Wt]

κ−1
2,0 + 4

∫ t
0 exp[−2s+ 2Ws]ds

. (9.116)

On average this implies that

E[κ2] ∝ exp[−2t] (9.117)

and this is used to derive lower bound on curves in plots. In other words, this is the fastest

that one of the eigenstates can be prepared. For another m attractor with m� 1 a similar

analysis shows that the best-case decay rate is enhanced by a factor of m2. As discussed

in chapter 4, the higher values of m contain less large scale entanglement. Thus, when

entanglement is considered as a resource, it is an intuitive fact that more entangled states

take longer to prepare.
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9.9 Conclusion

The purpose of this chapter is to demonstrate the fact that the process of continuous

projective measurement can be made deterministic with a theoretically simple and intuitive

state-based control law. In the context of an atomic spin ensemble, the resulting Dicke

states are highly entangled and otherwise difficult to reliably produce from an initially

unentangled state.

However, there is much work to be done in the general field of quantum state estimation

and control, of which this is one example. In this pursuit, it is helpful to utilize and adapt

methods from the developed fields of classical stochastic estimation and control theory. In

[22], for example, the problem of this chapter is considered for a single spin with greater

emphasis on technical notions of stochastic stability and convergence. Ultimately, we would

like to discover constructive methods for deriving optimal control laws given a cost function

and realistic actuators.

Even with an optimal control law in hand, there is no guarantee that experimental

implementation will be possible. Any analysis should incorporate, among other constraints,

nonunity detection efficiencies and finite controller resources (bandwidth, memory, etc).

For experimental application of quantum feedback, the controller complexity needs to be

reduced to the point where the delay is minimal compared to other dynamical timescales

[10]. As in classical control, effective model reduction techniques are indispensable when it

comes to implementation.

Despite these difficulties, the increasing number of physical systems that can be mea-

sured reliably at the quantum limit will surely hasten the effort to solve many of these

technical challenges. By respecting the physical basis of measurement dynamics, exper-

imentalists will be able to more efficiently use measurement itself, in tandem with more

traditional techniques, to actuate quantum systems into desirable states.
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Chapter 10

Magnetometry Theory

The general notion of quantum parameter estimation was introduced in section 2.7. Here,

we discuss the measurement of magnetic fields with our apparatus in terms of quantum

parameter estimation. Our initial theoretical magnetometry paper was [18] wherein we

used Bayesian analysis with a simplified model of the measurement to derive the expected

magnetometry sensitivity. This work is significantly extended in the more complete paper

[20] where both open and closed-loop configurations are considered in detail. This chapter

is adapted directly from this latter paper, which is titled Robust quantum parameter esti-

mation: Coherent magnetometry with feedback. Again for the sake of keeping this chapter

independent, some discussion is redundant with discussion in previous chapters. The results

of these papers have been considered in the context of traditional magnetometry in [79].

10.1 Abstract

We describe the formalism for optimally estimating and controlling both the state of a

spin ensemble and a scalar magnetic field with information obtained from a continuous

quantum limited measurement of the spin precession due to the field. The full quantum

parameter estimation model is reduced to a simplified equivalent representation to which

classical estimation and control theory is applied. We consider both the tracking of static

and fluctuating fields in the transient and steady-state regimes. By using feedback control,

the field estimation can be made robust to uncertainty about the total spin number.
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10.2 Introduction

As experimental methods for manipulating physical systems near their fundamental quan-

tum limits improve [12, 29, 130, 131, 132], the need for quantum state and parameter

estimation methods becomes critical. Integrating a modern perspective on quantum mea-

surement theory with the extensive methodologies of classical estimation and control theory

provides new insight into how the limits imposed by quantum mechanics affect our ability

to measure and control physical systems [19, 133, 134, 75].

In this chapter, we illustrate the processes of state estimation and control for a continuously-

observed, coherent spin ensemble (such as an optically pumped cloud of atoms) interacting

with an external magnetic field. In the situation where the magnetic field is either zero or

well-characterized, continuous measurement (e.g., via the dispersive phase shift or Faraday

rotation of a far-off resonant probe beam) can produce a spin-squeezed state [2] conditioned

on the measurement record [37]. Spin-squeezing indicates internal entanglement between

the different particles in the ensemble [17] and promises to improve precision measurements

[5]. When, however, the ambient magnetic environment is either unknown or changing in

time, the external field can be estimated by observing Larmor precession in the measurement

signal [18, 24, 34, 33], see figure B.1.

Here, we expand on our recent results [18] involving Heisenberg-limited magnetometry

by demonstrating the advantages of including feedback control in the estimation process.

Feedback is a ubiquitous concept in classical applications because it enables precision per-

formance despite the presence of potentially large system uncertainty. Quantum optical

experiments are evolving to the point where feedback can been used, for example, to stabi-

lize atomic motion within optical lattices [131] and high finesse cavities [132]. In this work,

demonstrate that, with feedback, an external magnetic field can be measured with high

precision despite substantial ignorance of the size of the spin ensemble.

The chapter is organized as follows. In section 10.3, we provide a general introduction

to quantum parameter estimation followed by a specialization to the case of a continuously

measured spin ensemble in a magnetic field. By capitalizing on the Gaussian properties

of both coherent and spin-squeezed states, we formulate the parameter estimation problem

in such a way that techniques from classical estimation theory apply to the quantum sys-

tem. section 10.4 presents basic filtering and control theory in a pedagogical manner with
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Figure 10.1: (A) A spin ensemble is initially prepared in a coherent state polarized along x,
with symmetric variance in the y and z directions. Subsequently, a field along y causes the
spin to rotate as the z-component is continuously measured. (B) Experimental schematic for
the measurement process. A far-off resonant probe beam traverses the sample and measures
the z-component of spin via Faraday rotation. The measurement strength could be improved
by surrounding the ensemble with a cavity. (C) Experimental apparatus subsumed by the
Plant block, which serves to map the total field to the photocurrent, h(t) → y(t).

the simplified spin model as an example. This theory is applied in section 10.5, where we

simultaneously derive mutually dependent magnetometry and spin-squeezing limits in the

ideal case where the observer is certain of the spin number. We consider the optimal mea-

surement of both constant and fluctuating fields in the transient and steady-state regimes.

Finally, we show in section 10.6 that the estimation can be made robust to uncertainty

about the total spin number by using precision feedback control.

10.3 Quantum Parameter Estimation

First, we present a generic description of quantum parameter estimation [19, 133, 134, 75].

This involves describing the quantum system with a density matrix and our knowledge of the

unknown parameter with a classical probability distribution. The objective of parameter

estimation is then to utilize information gained about the system through measurement

to conditionally update both the density matrix and the parameter distribution. After

framing the general case, our particular example of a continuously measured spin ensemble

is introduced.
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10.3.1 General Problem

The following outline of the parameter estimation process could be generalized to treat a

wide class of problems (discrete measurement, multiple parameters), but for simplicity, we

will consider a continuously measured quantum system with scalar Hamiltonian parameter

θ and measurement record y(t).

Suppose first that the observer has full knowledge of the parameter θ. The proper

description of the system would then be a density matrix ρ̂θ(t) conditioned on the measure-

ment record y(t). The first problem is to find a rule to update this density matrix with the

knowledge obtained from the measurement. As in the problem of this chapter, this mapping

may take the form of a stochastic master equation (SME). The SME is by definition a filter

that maps the measurement record to an optimal estimate of the system state.

Now if we allow for uncertainty in θ, then a particularly intuitive choice for our new

description of the system is

ρ̂(t) ≡
∫

θ
ρ̂θ(t)p(θ, t) dθ (10.1)

where p(θ, t) is a probability distribution representing our knowledge of the system parame-

ter. In addition to the rule for updating each ρ̂θ(t), we also need to find a rule for updating

p(θ, t) according to the measurement record. By requiring internal consistency, it is possible

to find a Bayesian rule for updating p(θ, t) [19]. These two update rules in principle solve

the estimation problem completely.

Because evolving ρ̂(t) involves performing calculations with the full Hilbert space in

question, which is often computationally expensive, it is desirable to find a reduced de-

scription of the system. Fortunately, it is often possible to find a closed set of dynamical

equations for a small set of moments of ρ̂(t). For example, if c is an operator, then we can

define the estimate moments

〈ĉ〉(t) ≡ Tr[ρ̂(t)ĉ]

〈∆ĉ2〉(t) ≡ Tr[ρ̂(t)(ĉ− 〈ĉ〉)2]

〈θ〉(t) ≡
∫
p(θ, t)θdθ

〈∆θ2〉(t) ≡
∫
p(θ, t)(θ − 〈θ〉)2dθ
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and derive their update rules from the full update rules, resulting in a set of y(t)-dependent

differential equations. If those differential equations are closed, then this reduced description

is adequate for the parameter estimation task at hand. This situation (with closure and

Gaussian distributions) is to be expected when the system is approximately linear.

10.3.2 Continuously Measured Spin System

This approach can be applied directly to the problem of magnetometry considered in this

chapter. The problem can be summarized by the situation illustrated in figure B.1: a spin

ensemble of possibly unknown number is initially polarized along the x-axis (e.g., via optical

pumping), an unknown possibly fluctuating scalar magnetic field b directed along the y-axis

causes the spins to then rotate within the xz-plane, and the z-component of the collective

spin is measured continuously. The measurement can, for example, be implemented as

shown, where we observe the difference photocurrent, y(t), in a polarimeter that measures

the Faraday rotation of a linearly polarized far off resonant probe beam traveling along

z [29, 24, 104]. The goal is to optimally estimate b(t) via the measurement record and

unbiased prior information. If a control field u(t) is included, as it will be eventually, the

total field is represented by h(t) = b(t) + u(t).

In terms of our previous discussion, we have here the observable ĉ =
√
MF̂z, where M

is the measurement rate (defined in terms of probe beam parameters), and the parameter

θ = b. When b is known, our state estimate evolves by the stochastic master equation [15]

dρ̂b(t) = −i[H(b), ρ̂b(t)]dt+D[
√
MF̂z]ρ̂b(t)dt

+
√
ηH[

√
MF̂z]

(
2
√
Mη[y(t)dt− 〈F̂z〉bdt]

)
ρ̂b(t) (10.2)

where Ĥ(b) = γF̂yb, γ is the gyromagnetic ratio, and

D[ĉ]ρ̂ ≡ ĉρ̂ĉ† − (ĉ†ĉρ̂+ ρ̂ĉ†ĉ)/2

H[ĉ]ρ̂ ≡ ĉρ̂+ ρ̂ĉ† − Tr[(ĉ+ ĉ†)ρ̂]ρ̂.

The stochastic quantity 2
√
Mη[y(t)dt− 〈F̂z〉b(t)dt] ≡ dW̄ (t) is a Wiener increment (Gaus-

sian white noise with variance dt) by the optimality of the filter. The definition of the

photocurrent may be scaled by any constant gain factor, as in [18], as long as the statistics
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of the SME remain invariant. The sensitivity of the photodetection per
√

Hz is represented

by 1/2
√
Mη, where the quantity η represents the quantum efficiency of the detection. If

η = 0, we are essentially ignoring the measurement result and the conditional SME becomes

a deterministic unconditional master equation. If η = 1, the detectors are maximally effi-

cient. Note that our initial state ρ̂(0) = ρ̂b(0) is made equal to a coherent state (polarized

in x) and is representative of our prior information.

The stochastic master equation, equation (B.43), has previously been derived for ho-

modyne detection of the output of a cavity with a single mode dispersively coupled to the

collective atomic spin within the cavity [15]. The resulting form of the equation is, however,

the most generic form of a continuous stochastic QND measurement and also applies under

similar approximations to the free-space Faraday rotation measurement [104] diagrammed

in figure B.1.

It can be shown that the unnormalized probability p̄(b, t) evolves according to [19]

dp̄(b, t) = 4Mη〈F̂z〉b(t)p̄(b, t)y(t)dt. (10.3)

The evolution equations (B.43, 10.3 together with equation (10.1) solve the problem com-

pletely, albeit in a computationally expensive way. Clearly, for large ensembles it would be

advantageous to reduce the problem to a simpler description.

If we consider only the estimate moments 〈F̂z〉(t), 〈∆F̂ 2
z 〉(t), 〈b〉(t), and 〈∆b2〉(t) and

derive their evolution with the above rules, it can be shown that the filtering equations

for those variables are closed under certain approximations. First, the spin number F

must be large enough that the distributions for F̂y and F̂z are approximately Gaussian

for an x-polarized coherent state. Second, we only consider times t � 1/M because the

total spin becomes damped by the measurement at times comparable to the inverse of the

measurement rate.

Although this approach is rigorous and fail-safe, the resulting filtering equations for

the moments can be arrived at in a more direct manner as discussed in the appendix of

[20]. Essentially, the full quantum mechanical mapping from h(t) to y(t) is equivalent

to the mapping derived from a model that appears classical, and assumes an actual, but

random, value for the z-component of spin. This correspondence generally holds for a

stochastic master equation corresponding to an arbitrary linear quantum mechanical system
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with continuous measurement of observables that are linear combinations of the canonical

variables [70].

From this point on we will only consider the simplified Gaussian representation (used

in the next section) since it allows us to apply established techniques from estimation and

control theory. The replacement of the quantum mechanical model with a classical noise

model is discussed more fully in the appendix. Throughout this treatment, we keep in mind

the constraints that the original model imposed. As before, we assume F is large enough to

maintain the Gaussian approximation and that time is small compared to the measurement

induced damping rate, t � 1/M . Also, the description of our original problem demands

that 〈∆F̂ 2
z 〉(0) = F/2 for a coherent state. 1 Hence our prior information for the initial

value of the spin component will always be dictated by the structure of Hilbert space.

10.4 Optimal Estimation and Control

We now describe the dynamics of the simplified representation. Given a linear state-space

model (L), a quadratic performance criterion (Q) and Gaussian noise (G), we show how to

apply standard LQG analysis to optimize the estimation and control performance [49].

The system state we are trying to estimate is represented by

State

x(t) ≡

z(t)
b(t)

 (10.4)

where z(t) represents the small z-component of the collective angular momentum and b(t)

is a scalar field along the y-axis.

Our best guess of x(t), as we filter the measurement record, will be denoted

Estimate

m(t) ≡

z̃(t)
b̃(t)

 . (10.5)

1We assume throughout the chapter that we have a system of N spin-1/2 particles, so for a polarized state
along x, 〈F̂x〉 = F = N/2 and σz0 = 〈∆F̂ 2

z 〉(0) = F/2 = N/4. This is an arbitrary choice and our results
are independent of any constituent spin value, apart from defining these moments. In [29], for example, we
work with an ensemble of cesium atoms, each atom in a ground state of spin-4.
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As stated in the appendix, we implicitly make the associations: z̃(t) = 〈F̂z〉(t) = Tr[ρ̂(t)F̂z]

and b̃(t) =
∫
p(b, t)b db, although no further mention of ρ̂(t) or p(b, t) will be made.

We assume the measurement induced damping of F to be negligible for short times

(F exp[−Mt/2] ≈ F if t� 1/M) and approximate the dynamics as

Dynamics

dx(t) = Ax(t)dt+ Bu(t)dt+

 0
√
σbF

 dW1 (10.6)

A ≡

0 γF

0 −γb


B ≡

γF
0


Σ0 ≡

σz0 0

0 σb0


Σ1 ≡

0 0

0 σbF


where the initial value x(0) for each trial is drawn randomly from a Gaussian distribution

of mean zero and covariance matrix Σ0. The initial field variance σb0 is considered to be

due to classical uncertainty, whereas the initial spin variance σz0 is inherently nonzero due

to the original quantum state description. Specifically, we impose σz0 = 〈∆F̂ 2
z 〉(0). The

Wiener increment dW1(t) has a Gaussian distribution with mean zero and variance dt. Σ1

represents the covariance matrix of the last vector in equation (10.6).

We have given ourselves a magnetic field control input, u(t), along the same axis, y, of

the field to be measured, b(t). We have allowed b(t) to fluctuate via a damped diffusion

(Ornstein-Uhlenbeck) process [52]

db(t) = −γbb(t) dt+
√
σbF dW1. (10.7)

The b(t) fluctuations are represented in this particular way because Gaussian noise processes

are amenable to LQG analysis. The variance of the field at any particular time is given by

the expectation σbFree ≡ E[b(t)2] = σbF /2γb. (Throughout the chapter we use the notation
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E[x(t)] to represent the average of the generally stochastic variable x(t) at the same point

in time, over many trajectories.) The bandwidth of the field is determined by the frequency

γb alone. When considering the measurement of fluctuating fields, a valid choice of prior

might be σb0 = σbFree, but we choose to let σb0 remain independent. For constant fields,

we set σbFree = 0, but σb0 6= 0.

Note that only the small angle limit of the spin motion is considered. Otherwise we would

have to consider different components of the spin vector rotating into each other. The small

angle approximation would be invalid if a field caused the spins to rotate excessively, but

using adequate control ensures this will not happen. Hence, we use control for essentially

two reasons in this chapter: first to keep our small angle approximation valid, and, second,

to make our estimation process robust to our ignorance of F . The latter point will be

discussed in section 10.6.

Our measurement of z is described by the process

Measurement

y(t)dt = Cx(t)dt+
√
σMdW2(t) (10.8)

C ≡
[
1 0

]
Σ2 ≡ σM ≡ 1/4Mη

where the measurement shotnoise is represented by the Wiener increment dW2(t) of variance

dt. Again,
√
σM represents the sensitivity of the measurement, M is the measurement rate

(with unspecified physical definition in terms of probe parameters), and η is the quantum

efficiency of the measurement. The increments dW1 and dW2 are uncorrelated.

Following [49], the optimal estimator for mapping y(t) to m(t) takes the form
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Estimator

dm(t) = Am(t)dt+ Bu(t)dt

+KO(t)[y(t)−Cm(t)]dt (10.9)

m(0) =

0

0


KO(t) ≡ Σ(t)CTΣ−1

2

dΣ(t)
dt

= Σ1 + AΣ(t) + Σ(t)AT

−Σ(t)CTΣ−1
2 CΣ(t) (10.10)

Σ(t) ≡

σzR(t) σcR(t)

σcR(t) σbR(t)

 (10.11)

Σ(0) = Σ0 ≡

σz0 0

0 σb0

 . (10.12)

equation (10.9) is the Kalman filter that depends on the solution of the matrix Riccati

equation (10.10). The Riccati equation gives the optimal observation gain KO(t) for the

filter. The estimator is designed to minimize the average quadratic estimation error for each

variable: E[(z(t)− z̃(t))2] and E[(b(t)− b̃(t))2]. If the model is correct, and we assume the

observer chooses his prior information Σ(0) to match the actual variance of the initial data

Σ0, then we have the self-consistent result:

σzE(t) ≡ E[(z(t)− z̃(t))2] = σzR(t)

σbE(t) ≡ E[(b(t)− b̃(t))2] = σbR(t).

Hence, the Riccati equation solution represents both the observer gain and the expected

performance of an optimal filter using that same gain.

Now consider the control problem, which is in many respects dual to the estimation

problem. We would like to design a controller to map y(t) to u(t) in a manner that minimizes

the quadratic cost function
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Minimized Cost

H =
∫ T

0

[
xT (t)Px(t) + u(t)Qu(t)

]
dt

+xT (T )P1x(T ) (10.13)

P ≡

p 0

0 0


Q ≡ q

where P1 is the end-point cost. Only the ratio p/q ever appears, of course, so we define

the parameter λ ≡
√
p/q and use it to represent the cost of control. By setting λ→∞, as

we often choose to do in the subsequent analysis to simplify results, we are putting no cost

on our control output. This is unrealistic because, for example, making λ arbitrarily large

implies that we can apply transfer functions with finite gain at arbitrarily high frequencies,

which is not experimentally possible. Despite this, we will often consider the limit λ→∞

to set bounds on achievable estimation and control performance. The optimal controller for

minimizing equation (10.13) is

Controller

u(t) = −KC(t)m(t) (10.14)

KC(t) ≡ Q−1BTV(T − t)
dV(T )
dT

= P + ATV(T ) + V(T )A

−V(T )BQ−1BTV(T ) (10.15)

V(T = 0) ≡ P1.

Here V(T ) is solved in reverse time T , which can be interpreted as the time left to go until

the stopping point. Thus if T → ∞, then we only need to use the steady-state of the V

Riccati equation (10.15) to give the steady state controller gain KC for all times. In this

case, we can ignore the (reverse) initial condition P1 because the controller is not designed

to stop. Henceforth, we will make KC equal to this constant steady-state value, such that

the only time varying coefficients will come from KO(t).

In principle, the above results give the entire solution to the ideal estimation and control

problem. However, in the nonideal case where our knowledge of the system is incomplete,
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e.g., F is unknown, our estimation performance will suffer. Notation is now introduced that

produces trivial results in the ideal case, but is helpful otherwise. Our goal is to collect the

above equations into a single structure that can be used to solve the nonideal problem. We

define the total state of the system and estimator as

Total State

θ(t) ≡

x(t)

m(t)

 =


z(t)

b(t)

z̃(t)

b̃(t)

 . (10.16)

Consider the general case where the observer assumes the plant contains spin F ′, which

may or may not be equal to the actual F . All design elements depending on F ′ instead of F

are now labeled with a prime. Then it can be shown that the total state dynamics from the

above estimator-controller architecture are a time-dependent Ornstein-Uhlenbeck process

Total State Dynamics

dθ(t) = α(t)θ(t)dt+ β(t)dW(t) (10.17)

α(t) ≡

 A −BK′
C

K′
O(t)C A′ −B′K′

C −K′
O(t)C



β(t) ≡


0 0 0 0

0
√
σbF 0 0

0 0
√
σMK

′
O1(t) 0

0 0
√
σMK

′
O2(t) 0


where the covariance matrix of dW is dt times the identity. Now the quantity of interest is

the following covariance matrix
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Total State Covariance

Θ(t) ≡ E[θ(t)θT (t)]

≡


σzz σzb σzz̃ σzb̃

σzb σbb σbz̃ σbb̃

σzz̃ σbz̃ σz̃z̃ σz̃b̃

σzb̃ σbb̃ σz̃b̃ σb̃b̃

 (10.18)

σzz ≡ E[z(t)2]

σzb ≡ E[z(t)b(t)]
... ≡

....

It can be shown that this total covariance matrix obeys the following deterministic equations

of motion,

Total State Covariance Dynamics

dΘ(t)
dt

= α(t)Θ(t) + Θ(t)αT (t) + β(t)βT (t) (10.19)

Θ(t) = exp
[
−
∫ t

0
α(t′)dt′

]
Θ0 exp

[
−
∫ t

0
αT (t′)dt′

]
+
∫ t

0
dt′ exp

[
−
∫ t

t′
α(s)ds

]
β(t′)βT (t′)

× exp
[
−
∫ t

t′
αT (s)ds

]
(10.20)

Θ0 =


σz0 0 0 0

0 σb0 0 0

0 0 0 0

0 0 0 0

 .

Equation (10.20) is the matrix form of the standard integrating factor solution for time-

dependent scalar ordinary differential equations [52]. Whether we solve this problem nu-

merically or analytically, the solution provides the following quantity that we ultimately

care about,
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Average Magnetometry Error

σbE(t) ≡ E[(b̃(t)− b(t))2]

= E[b2(t)] + E[b̃2(t)]− 2E[b(t)b̃(t)]

= σbb(t) + σb̃b̃(t)− 2σbb̃(t). (10.21)

When all parameters are known (and F ′ = F ), this total state description is unnecessary

because σbE(t) = σbR(t). This equality is by design. However, when the wrong parameters

are assumed (e.g., F ′ 6= F ) the equality does not hold σbE(t) 6= σbR(t) and either equation

(10.19) or equation (10.20) must be used to find σbE(t). Before addressing this problem, we

consider in detail the performance in the ideal case, where all system parameters are known

by the observer, including F .

At this point, we have defined several variables. For clarity, let us review the meaning

of several before continuing. Inputs to the problem include the field fluctuation strength

σbF , equation (10.7), and the measurement sensitivity σM , equation (10.8). The prior

information for the field is labeled σb0, equation (10.12). The solution to the Riccati equation

is σbR(t), equation (10.11), and is equal to the estimation variance σbE(t), equation (10.21),

when the estimator model is correct. In the next section, we additionally use σbS , equation

(10.24), and σbT (t), equation (10.25), to represent the steady-state and transient values of

σbE(t) respectively.

10.5 Optimal Performance: F Known

We start by observing qualitative characteristics of the b-estimation dynamics. Figure 10.2

shows the average estimation performance, σbR(t), as a function of time for a realistic set

of parameters. Notice that σbR is constant for small and large times, below t1 and above

t2. If σb0 is noninfinite then the curve is constant for small times, as it takes some time to

begin improving the estimate from the prior. If σb0 is infinite, then t1 = 0 and the sloped

transient portion extends towards infinity as t→ 0. At long times, σbR will become constant

again, but only if the field is fluctuating (σbF 6= 0 and γb 6= 0). The performance saturates

because one can track a field only so well if the field is changing and the signal-to-noise

ratio is finite. If the field to be tracked is constant, then t2 = ∞ and the sloped portion of
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Figure 10.2: The Riccati equation solution gives the ideal field estimation performance.
The parameters used here are F = 106, σz0 = F/2 (for an ensemble of spin-1/2 particles),
γ = 106, M = 104, σb0 = σbFree = 1. (All quantities within figures are kept dimensionless,
although expressions within the text may be interpreted as having dimension.) The solution
starts at the free field fluctuation variance and saturates at σbS . The plot is not valid at
times t > 1/M .

the curve extends to zero as t→∞ (given the approximations discussed in section 10.3.2).

After the point where the performance saturates (t � t2), all of the observer and control

gains have become time independent and the filter can be described by a transfer function.

However, as will be shown, applying only this steady-state transfer function is nonop-

timal in the transient regime (t1 � t � t2), because the time dependence of the gains is

clearly crucial for optimal transient performance.

10.5.1 Steady-State Performance

We start by examining the steady-state performance of the filter. At large enough times

(where we have yet to define large enough), KO becomes constant and if we set T → ∞

(ignoring the end-point cost), then KC is always constant. Setting dΣ/dt = 0 and dV/dt =
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0 we find:

KO(t) →


√

2γF
√

σbF
σM

+ γ2
b − γb√

σbF
σM

− γb
γF (
√

2γF
√

σbF
σM

+ γ2
b − γb)


KC(t) →

[
λ 1/(1 + γb

γFλ)
]

where λ =
√

p
q .

Now assuming the gains to be constant, we can derive the three relevant transfer func-

tions from y(t) to m(t) (z̃ and b̃) and u. We proceed as follows. First, we express the

estimates in terms of only themselves and the photocurrent

dm(t)
dt

= Am(t) + Bu(t) + KO(y(t)−Cm(t))

= Am(t) + B(−KCm(t)) + KO(y(t)−Cm(t))

= (A−BKC −KOC)m(t) + KOy(t).

To get the transfer functions, we take the Laplace transform of the entire equation, use

differential transform rules to give s factors (where s = jω, j =
√
−1), ignore initial

condition factors, and rearrange terms. However, this process only gives meaningful transfer

functions if the coefficients KO and KC are constant. Following this procedure, we have

m(s) = (sI−A + BKC + KOC)−1KOy(s)

= Gm(s)y(s)

u(s) = −KCm(s)

= −KC(s−A + BKC + KOC)−1KOy(s)

= Gu(s)y(s)

where

Gm(s) =

Gz(s)

Gb(s)

 .
The three transfer functions (Gz(s), Gb(s), and Gu(s)) serve three different tasks. If
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estimation is the concern, then Gb(s) will perform optimally in steady-state. Notice that,

while the Riccati solution is the same with and without control (KC nonzero or zero), this

transfer function is not the same in the two cases. So, even though the transfer functions

are different, they give the same steady-state performance.

Let us now consider the controller transfer function Gu(s) in more detail. We find the

controller to be of the form

Gu(s) = Gu,DC
1 + s/ωH

1 + (1 + s/ωQ)s/ωL
. (10.22)

Here each frequency ω represents a transition in the Bode plot of figure 10.3. A similar

controller transfer function is derived via a different method in section 10.8.

If we are not constrained experimentally, we can make the approximations

λ2 �
√√

σbF /σM/2γF and γF � γ2
b

√
σM/σbF giving

Gu(s) → Gu,DC
1 + s/ωH

1 + s/ωL

ωL → γb

ωH →

√
γF

2

√
σbF

σM

ωC →

√
2γF

√
σbF

σM
= 2ωH

ωQ → λγF

Gu,DC → − 1
γb

√
σbF

σM

Gu,AC → Gu,DC
ωL

ωH
= −

√
2
γF

√
σbF

σM

where Gu,AC is the gain at high frequencies (ω > ωH) and we find the closing frequency

ωC from the condition |Pz(jωC)Gu(jωC)| = 1, with the plant transfer function being the

normal integrator Pz(s) = γF/s. Notice that the controller closes in the very beginning of

the flat high frequency region (hence with adequate phase margin) because ωC = 2ωH .

Finally, consider the steady-state estimation performance. These are the same with

and without control (hence λ-independent) and, under the simplifying assumption γF �



171

Frequency (rad/sec)

Ph
as

e 
(d

eg
)

M
ag

ni
tu

de
 (d

B)

-200

-100

0

100

200

300

100 101 102 103 104 105 106 107 108 109 1010
-180

-135

-90

-45

0

P

PGu

Gu

P

Gu

PGu

ωC

ωL ωH ωQ

Phase Margin
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Table 10.1: Field tracking error, σbR(t), for different initial variances of b and z
σb0 = 0 σb0 σb0 →∞

σz0 = 0 0 3σb0σM

3σM+γ2F 2σb0t3
3σM

γ2F 2t3

σz0 0 12σb0σM (σM+σz0t)
12σ2

M+γ2F 2σb0σz0t4+4σM (3σz0t+γ2F 2t3σb0)
12σM (σM+σz0t)

γ2F 2t3(4σM+σz0t)

σz0 →∞ 0 12σb0σM

12σM+γ2F 2t3σb0

12σM
γ2F 2t3

γ2
b

√
σM/σbF , are given by

σzR(t) →
√

2γFσ3/4
M σ

1/4
bF ≡ σzS (10.23)

σbR(t) →
√

2
γF

σ
3/4
bF σ

1/4
M ≡ σbS . (10.24)

If the estimator reaches steady-state at t� 1/M , then the above variance σzR represents a

limit to the amount of spin-squeezing possible in the presence of fluctuating fields.

Also the F scaling of the saturated field sensitivity σbR ∝ F−1/2 is not nearly as strong

as the F scaling in the transient period σbR ∝ F−2. Next, we demonstrate this latter result

as we move from the steady-state analysis to calculating the estimation performance during

the transient period.

10.5.2 Transient Performance

We now consider the transient performance of the ideal filter: how quickly and how well

the estimator-controller will lock onto the signal and achieve steady-state performance. In

many control applications, the transient response is not of interest because the time it takes

to acquire the lock is negligible compared to the long steady-state period of the system.

However, in systems where the measurement induces continuous decay, this transient period

can be a significant portion of the total lifetime of the experiment.

We will evaluate the transient performance of two different filters. First, we look at

the ideal dynamic version, with time dependent observer gains derived from the Riccati

equation. This limits to a transfer function at long times when the gains have become

constant. Second, we numerically look at the case where the same steady-state transfer

functions are used for the entire duration of the measurement. Because the gains are not

adjusted smoothly, the small time performance of this estimator suffers. Of course, for long



173

Table 10.2: Spin tracking error, σzR(t), for different initial variances of b and z
σb0 = 0 σb0 σb0 →∞

σz0 = 0 0 3γ2F 2σb0σM t2

3σM+γ2F 2σb0t3
3σM

t

σz0
σMσz0

σM+σz0t
4σM (γ2F 2σb0σz0t3+3σM (σz0+γ2F 2t2σb0))

12σ2
M+γ2F 2σb0σz0t4+4σM (3σz0t+γ2F 2t3σb0)

4σM (3σM+σz0t)
t(4σM+σz0t)

σz0 →∞ σM
t

4σM (3σM+γ2F 2t3σb0)
12σM t+γ2F 2t4σb0

4σM
t

times the estimators are equivalent.

10.5.2.1 Dynamic Estimation and Control

Now consider the transient response of Σ(t) (giving KO(t)). We will continue to impose

that V (thus KC) is constant because we are not interested in any particular stopping time.

The Riccati equation for Σ(t) (equation (10.10)) appears difficult to solve because it is

nonlinear. Fortunately, it can be reduced to a much simpler linear problem. See section

10.7 for an outline of this method.

The solution to the fluctuating field problem (σbF 6= 0 and γb 6= 0) is represented in

figure 10.2. This solution is simply the constant field solution (σbF = 0 and γb = 0) smoothly

saturating at the steady-state value of equation (10.24) at time t2. Thus, considering the

long time behavior of the constant field solution will tell us about the transient behavior

when measuring fluctuating fields. Because the analytic form for the constant field solution

is simple, we consider only it and disregard the full analytic form of the fluctuating field

solution.

The analytic form of Σ(t) is highly instructive. The general solutions to σbR(t) and

σzR(t), with arbitrary prior information σb0 and σz0, are presented in the central entries

of Tables 10.1 and 10.2 respectively. The other entries of the tables represent the limits of

these somewhat complicated expressions as the prior information assumes extremely large

or small values. Here, we notice several interesting trade-offs.

First, the left hand column of Table 10.1 is zero because if a constant field is being

measured, and we start with complete knowledge of the field (σb0 = 0), then our job is

completed trivially. Now notice that if σb0 and σz0 are both nonzero, then at long times we
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have the lower-right entry of Table 10.1

σbR(t) =
12σM

γ2F 2t3
≡ σbT (t). (10.25)

This is the same result one gets when the estimation procedure is simply to perform a

least-squares line fit to the noisy measurement curve for constant fields. (Note that all of

these results are equivalent to the solutions of [18], but without F damping.) If it were

physically possible to ensure σz0 = 0, then our estimation would improve by a factor of four

to the upper-right result. However, quantum mechanics imposes that this initial variance

is nonzero (e.g., σz0 = F/2 for a coherent state and less, but still nonzero, for a squeezed

state), and the upper-right solution is unattainable.

Now consider the dual problem of spin estimation performance σzR(t) as represented in

Table 10.2, where we can make analogous trade-off observations. If there is no field present,

we set σb0 = 0 and

σzR(t) =
σz0σM

σM + tσz0
. (10.26)

When σzR(t) is interpreted as the quantum variance 〈∆F̂ 2
z 〉(t), this is the ideal (nondamped)

conditional spin-squeezing result, which is valid at t � 1/M , before damping in F begins

to take effect [15]. If we consider the solution for t � 1/FM , we have the lower-left entry

of Table 10.2, σzR(t) = σM/t. However, if we must include constant field uncertainty in

our estimation, then our estimate becomes the lower-right entry σzR(t) = 4σM/t, which is,

again, a factor of four worse.

If our task is field estimation, intrinsic quantum mechanical uncertainty in z limits our

performance just as, if our task is spin-squeezed state preparation, field uncertainty limits

our performance.

10.5.2.2 Transfer Function Estimation and Control

Suppose that the controller did not have the capability to adjust the gains in time as it

tracked a fluctuating field. One approach would then be to apply the steady-state transfer

functions derived above for the entire measurement. While this approach performs opti-

mally in steady-state, it approaches the steady-state in a nonoptimal manner compared
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to the dynamic controller. figure 10.4 demonstrates this poor transient performance for

tracking fluctuating fields of differing bandwidth. Notice that the performance only begins

to improve around the time that the dynamic controller saturates.

Also notice that the transfer function Gb(s) is dependent on whether or not the state

is being controlled, i.e., whether or not λ is zero. The performance shown in figure 10.4

is for one particular value of λ, but others will give different estimation performances for

short times. Still, all of the transfer functions generated from any value of λ will limit to

the same performance at long times. Also, all of them will perform poorly compared to the

dynamic approach during the transient time.

10.6 Robust Performance: F Unknown

Until this point, we have assumed the observer has complete knowledge of the system

parameters, in particular the spin number F . We will now relax this assumption and

consider the possibility that, for each measurement, the collective spin F is drawn randomly

from a particular distribution. Although we will be ignorant of a given F , we may still

possess knowledge about the distribution from which it is derived. For example, we may be

certain that F never assumes a value below a minimal value Fmin or above a maximal value

Fmax. This is a realistic experimental situation, as it is unusual to have particularly long

tails on, for example, trapped atom number distributions. We do not explicitly consider

the problem of F fluctuating during an individual measurement, although the subsequent

analysis can clearly be extended to this problem.

Given a F distribution, one might imagine completely reoptimizing the estimator-

controller with the full distribution information in mind. Our initial approach is more

basic and in line with robust control theory: we design our filter as before, assuming a par-

ticular F ′, then analyze how well this filter performs on an ensemble with F 6= F ′. With this

information in mind, we can decide if estimator-controllers built with F ′ are robust, with

and without control, given the bounds on F . We will find that, under certain conditions,

using control makes our estimates robust to uncertainty about the total spin number.

The essential reason for this robustness is that when a control field is applied to zero the

measured signal, that control field must be approximately equal to the field to be tracked.

Because F is basically an effective gain, variations in F will affect the performance, but not
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Figure 10.4: Estimation performance for estimators based on the dynamic gain solution
of the Riccati equation, compared against estimators with constant estimation gain. The
latter are the transfer function limits of the former, hence they have the same long-term
performance. Three different bandwidth b processes are considered.

critically, so the error signal will still be approximately zero. If the applied signal is set to

be the estimate, then the tracking error must also be approximately zero. (See section 10.8

for a robustness analysis along these lines in frequency space.)

Of course, this analysis assumes that we can apply fields with the same precision that

we measure them. While the precision with which we can apply a field is experimentally

limited, we here consider the ideal case of infinite precision. In this admittedly idealized

problem, our estimation is limited by only the measurement noise and our knowledge of F .

First, to motivate this problem, we describe how poorly our estimator performs given

ignorance about F without control.

10.6.1 Uncontrolled Ignorance

Let us consider the performance of our estimation procedure at estimating constant fields

when F ′ 6= F . In general, this involves solving the complicated total covariance matrix

equation (10.20). However, in the long-time limit (t � 1/FM) of estimating constant

fields, the procedure amounts to simply fitting a line to the noisy measurement with a
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least-squares estimate. Suppose we record an open-loop measurement that appears as a

noisy sloped line for small angles of rotation due to the Larmor precession. Regardless of

whether or not we know F , we can measure the slope of that line and estimate it to be m̃.

If we knew F , we would know how to extract the field from the slope correctly: b̃ = m̃/γF .

If we assumed the wrong spin number, F ′ 6= F , we would get the nonoptimal estimate:

b̃′ = m̃/γF ′ = b̃F/F ′.

First assume that this is a systematic error and F is unknown, but the same, on every

trial. We assume that the constant field is drawn randomly from the σb0 distribution for

every trial. In this case, if we are wrong, then we are always wrong by the same factor. It

can be shown that the error always saturates

σbE → (1− f)2σb0

where f = F/F ′. Of course, because this error is systematic, the variance of the estimate

does not saturate, only the error. This problem is analogous to ignorance of the constant

electronic gains in the measurement and can also be calibrated away.

However, a significant problem arises when, on every trial, a constant b is drawn at

random and F is drawn at random from a distribution, so the error is no longer systematic.

In this case, we would not know whether to attribute the size of the measured slope to

the size of F or to the size of b. Given the same b every trial, all possible measurement

curves fan out over some angle due to the variation in F . After measuring the slope of an

individual line to beyond this fan-out precision, it makes no sense to continue measuring.

We should also point out procedures for estimating fields in open-loop configuration,

but without the small angle approximation. For constant large fields, we could observe

many cycles before the spin damped significantly. By fitting the amplitude and frequency

independently, or computing the Fourier transform, we could estimate the field somewhat

independently of F , which only determines the amplitude. However, the point here is that b

might not be large enough to give many cycles before the damping time or any other desired

stopping time. In this case, we could not independently fit the amplitude and frequency

because they appear as a product in the initial slope. Similar considerations apply for

the case of fluctuating b and fluctuating F . See [135], for a complete analysis of Bayesian

spectrum analysis with free induction decay examples.



178

10
-9

10
-8

10
-3

10
-2

10
-1

10
0

10
0

10
1

10
2

10
-0.2

10
0

10
0.2

f=F/F'

1/2

1/2

σbS(F')/σbS(F,F')

σbS(F')/σbS(F)

σbE(F,F')

A
ve

ra
ge

 F
ie

ld
 E

st
im

at
io

n 
E

rr
or

 

Time 

Figure 10.5: Steady-state estimation performance for estimator designed with F ′ = 106, and
actual spin numbers: F = F ′ × [0.5, 0.75, 1, 1.25, 2, 10, 100]. Other parameters: γ = 106,
M = 104, γb = 105, σbFree = 1 (fluctuating field), λ = 0.1 (this is large enough to satisfy
large-λ limits discussed in text). The inset compares the normalized robust estimation
performance (curve) at a particular time, to the ideal performance (line) when F is known.

Fortunately, using precise control can make the estimation process relatively robust to

such spin number fluctuations.

10.6.2 Controlled Ignorance: Steady-State Performance

We first analyze how the estimator designed with F ′ performs on a plant with F at tracking

fluctuating fields with and without control. To determine this we calculate the steady-state

of equation (10.19).

For the case of no control (λ = 0), we simplify the resulting expression by taking the

same large F ′ approximation as before. This gives the steady-state uncontrolled error

σbE → (1− f)2
σbF

2γb

= (1− f)2σbFree

where f = F/F ′. Because the variance of the fluctuating b is σbFree, the uncontrolled

estimation performs worse than no estimation at all if f > 2.
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Figure 10.6: Transient estimation performance for controller designed with F ′ = 106, and
actual spin numbers: F = F ′× [0.75, 1, 1.25, 2, 10, 100, 1000]. Other parameters: γ = 106,
M = 104, γb = 0, σbFree = 0 (constant field), λ = 1. Note that this behavior is valid
for t < 1/M = 10−4. The inset compares the normalized robust estimation performance
(curve) at a particular time, to the ideal performance (line) when F is known.

On the other hand, when we use precise control the performance improves dramatically.

We again simplify the steady-state solution with the large F ′ and λ assumptions from before,

giving

σbS(F, F ′) →
(

1 + f

2f

)√
2
γF ′σ

3/4
bF σ

1/4
M

=
(

1 + f

2f

)
σbS(F ′)

where σbS(F, F ′) is the steady-state controlled error when a plant with F is controlled with

a F ′ controller and σbS(F ′) is the error when F = F ′. One simple interpretation of this

result is that if we set F ′ to be the minimum of the F distribution (f > 1) then we never

do worse than σbS(F ′) and we never do better than twice as well (f →∞). See figure 10.5

for a demonstration of this performance.
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10.6.3 Controlled Ignorance: Transient Performance

Now consider measuring constant fields with the wrong assumed F ′. Again, when control

is not used, the error saturates at

σbE → (1− f)2σb0.

When control is used, the transient performance again improves under certain conditions.

The long-time transient solution of equation (10.19) is difficult to manage analytically, yet

the behavior under certain limits is again simple. For large λ and F ′, and for f > 1/2, we

numerically find the transient performance to be approximately

σbT (F, F ′) →
(
f2 + 2
4f2 − 1

)
12σM

γ2F ′2t3

=
(
f2 + 2
4f2 − 1

)
σbT (F ′) (10.27)

where σbT (F, F ′) is the transient controlled error when a plant with F is controlled with a

F ′ controller and σbT (F ′) is the error when F = F ′. See figure 10.6 for a demonstration of

this performance for realistic parameters. As f → ∞ the f -dependent prefactor saturates

at a value of 1/4. However, as f → 1/2 then the system takes longer to reach such a simple

asymptotic form, and the solution of equation (10.27) becomes invalid.

Accordingly, one robust strategy would be the following. Suppose that the lower bound

of the F -distribution was known and equal to Fmin. Also assume that σbT (Fmin) represents

an acceptable level of performance. In this case, we could simply design our estimator based

on F ′ = Fmin and we would be guaranteed at least the performance σbT (Fmin) and at best

the performance σbT (Fmin)/4.

This approach would be suitable for experimental situations because typical F distribu-

tions are narrow: the difference between Fmin and Fmax is rarely greater than an order of

magnitude. Thus, the overall sacrifice in performance between the ideal case and the robust

case would be small. The estimation performance still suffers because of our ignorance of

F , but not nearly as much as in the uncontrolled case.
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10.7 Riccati Equation Solution Method

The matrix Riccati equation is ubiquitous in optimal control. Here, following [136], we show

how to reduce the nonlinear problem to a set of linear differential equations. Consider the

generic Riccati Equation:

dV(t)
dt

= C−DV(t)−V(t)A−V(t)BV(t).

We propose the decomposition:

V(t) = W(t)U−1(t)

with the linear dynamics dW(t)
dt

dU(t)
dt

 =

−D C

B A

W(t)

U(t)

.

It is straightforward to then show that this linearized solution is equivalent to the Riccati

equation

dV(t)
dt

=
dW(t)
dt

U−1 + W(t)
dU−1(t)

dt

=
dW(t)
dt

U−1(t) + W(t)(−U−1(t)
dU(t)
dt

U−1(t))

= (−DW(t) + CU(t))U−1(t)

−W(t)U−1(t)(BW(t) + AU(t))U−1(t)

= C−DV(t)−V(t)A−V(t)BV(t)

where we have used the identity

dU−1(t)
dt

= −U−1(t)
dU(t)
dt

U−1(t).

Thus the proposed solution works and the problem can be solved with a linear set of

differential equations.
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Figure 10.7: Spin control system with plant transfer function P (s) = γF/s. The reference
signal, r(t), is usually zero. The error signal is e(t). The control output is u(t). The external
field to be tracked is b(t). The total field is h(t) = b(t) + u(t) and b̃(t) is the field estimate.

10.8 Robust Control in Frequency Space

Here we apply traditional frequency-space robust control methods [50, 51] to the classical

version of our system. This analysis is different from the treatment in the body of the

chapter in several respects. First, we assume nothing about the noise sources (bandwidth,

strength, etc.). Also, this approach is meant for steady-state situations, with the resulting

estimator-controller being a constant gain transfer function. The performance criterion

we present here is only loosely related to the more complete estimation description above.

Despite these differences, this analysis gives a very similar design procedure for the steady-

state situation.

We proceed as follows with the control system shown in figure 10.7, where we label

h(t) = u(t)+ b(t) as the total field. Consider the usual spin system but ignore noise sources

and assume we can measure z(t) directly, so that z(t) = y(t). For small angles of rotation,

the transfer function from h(t) to y(t) is an integrator

dy(t)
dt

=
dz(t)
dt

= γFh(t)

sy(s) = γFh(s)

y(s) = P (s)h(s)

P (s) = γF/s.

Now we define the performance criterion. First notice that the transfer function from
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the field to be measured b(t) to the total field h(t) is S(s) where

h(s) = S(s)b(s)

S(s) =
1

1 + P (s)C(s)
.

(Also notice that this represents the transfer function from the reference to the error signal

e(s) = S(s)r(s).) Because our field estimate will be b̃(t) = −u(t), we desire h(t) to be

significantly suppressed. Thus we would like S(s) to be small in magnitude (controller

gain |C(s)| large) in the frequency range of interest. However, because the gain |C(s)|

must physically decrease to zero at high frequencies we must close the feedback loop with

adequate phase margin to keep the closed-loop system stable. This is what makes the design

of C(s) nontrivial.

Proceeding, we now define a function W1(s) that represents the degree of suppression

we desire at the frequency s = jω. So our controller C(s) should satisfy the following

performance criterion

‖W1(s)S(s)‖∞ < 1.

Thus the larger W1(s) becomes, the more precision we desire at the frequency s. We choose

the following performance function

W1(s) =
W10

1 + s/ω1

such that ω1 is the frequency below which we desire suppression 1/W10.

Because our knowledge of F is imperfect, we need to consider all plant transfer functions

in the range

P =
γ

s
{Fmin → Fmax}.

Our goal is now to find a C(s) that can satisfy the performance condition for any plant

in this family. We choose our nominal controller as

C0(s) =
ωC

γF ′ .
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So if F = F ′ then the system closes at ωC (i.e., |P (iωC)C0(iωC)| = 1, whereas in general

the system will close at ωCR = ωC
F
F ′ . We choose this controller because P (s)C(s) should be

an integrator (∝ 1/s) near the closing frequency for optimal phase margin and closed-loop

stability.

Next we insert this solution into the performance condition. We make the simplifying

assumption ω1 � ωC
F
F ′ (we will check this later to be self-consistent). Then the optimum

of the function is obvious and the condition of equation (10.28) becomes

ω1W10 < ωCR = ωC
F

F ′ .

We want this condition to be satisfied for all possible spin numbers, so we must have

ω1W10 = min[ωCR] = ωC
Fmin

F ′ . (10.28)

Experimentally, we are forced to roll off the controller at some high frequency that we

shall call ωQ. Electronics can only be so fast. Of course, we never want to close above

this frequency because the phase margin would become too small, so this determines the

maximum F that the controller can reliably handle

ωQ = max[ωCR] = ωC
Fmax

F ′ . (10.29)

Combining equations (10.28, 10.29 we find our fundamental trade-off

ω1W10 = ωQ
Fmin

Fmax
, (10.30)

which is the basic result of this section. Given experimental constraints (such as Fmin,

Fmax, and ωQ), it tells us what performance to expect (1/W10 suppression) below a chosen

frequency ω1.

From equation (10.30), we recognize that the controller gain at the closing frequency

needs to be

|C|C =
ωC

γF ′ =
ω1W10

γFmin
=

ωQ

γFmax
.

In the final analysis, we do not need to use F ′ and ωC to parametrize the controller, only
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the trade-off and the gain. Also, notice that now we can express min[ωCR] = ω1W10.

To check our previous assumption

ω1 � ωC
F

F ′

= ω1W10
F

Fmin
,

which is true if W10 � 1.

Finally, the system will never close below the frequency min[ωCR] so we should increase

the gain below a frequency ωH , which we might as well set equal to min[ωCR]. This improves

the performance above and beyond the criterion above. Of course we will be forced to level

off the gain at some even lower frequency ωL because infinite DC gain (a real integrator) is

unreasonable. So the final controller can be expressed as

C(s) = |C|C
1

1 + s/ωQ

ωH(1 + s/ωH)
ωL(1 + s/ωL)

with the frequencies obeying the order

ωL <

ωH = min[ωCR] = ω1W10 <

ωCR =
F

Fmin
ω1W10 <

ωQ = max[ωCR] =
Fmax

Fmin
ω1W10.

Notice that the controller now looks like the steady-state transfer function in figure 10.3

derived from the steady-state of the full dynamic filter. (The notation is the same to make

this correspondence clear). Here ωQ was simply stated, whereas there it was a function of λ

that went to infinity as λ→∞. Here the high gain due to ωL and ωH was added manually,

whereas before it came from the design procedure directly.

10.9 Conclusion

The analysis of this chapter contained several key steps that should be emphasized. Our

first goal was to outline the proper approach to quantum parameter estimation. The second
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was to demonstrate that reduced representations of the full filtering problem are relevant

and convenient because, if a simple representation can be found, then existing classical

estimation and control methods can be readily applied. The characteristic that led to this

simple description was the approximately Gaussian nature of the problem. Next, we at-

tempted to present basic classical filtering and control methodology in a self-contained,

pedagogical format. The results emphasized the inherent trade-offs in simultaneous estima-

tion of distinct, but dynamically coupled, system parameters. Because these methods are

potentially critical in any field involving optimal estimation, we consider the full exposition

of this elementary example to be a useful resource for future analogous work.

We have also demonstrated the general principle that precision feedback control can

make estimation robust to the uncertainty of system parameters. Despite the need to

assume that the controller produced a precise cancellation field, this approach deserves

further investigation because of its inherent ability to precisely track broadband field signals.

It is anticipated that these techniques will become more pervasive in the experimental

community as quantum systems are refined to levels approaching their fundamental limits

of performance.
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Chapter 11

Experimental Apparatus

All previous chapters have motivated the design of an experiment where the collective spin

of a cloud of laser-cooled cesium atoms is measured via the polarization rotation of an

off-resonant probe beam. In this chapter, I describe the components of the apparatus built

for this purpose, which was used to acquire the experimental data discussed in subsequent

chapters.

figure 11.1 displays the general schematic of the experiment, as has been described

previously in less detail. When walking through the door of the lab, one sees figure 11.2: an

optical table with diode lasers in the foreground, a magnetically shielded vacuum chamber

in the background, and a mess of optics everywhere else. When the magnetic shield is

removed from around the vacuum chamber, one can see the quartz cell where the atoms are

trapped and cooled, figure 11.3.

11.1 Vacuum Chamber

Compared to most atomic physics labs, our UHV vacuum chamber system is relatively

simple and essentially consists of only a quartz cell, a cesium source, and an ion pump.

Here we describe the parts of the system and their specifications. For more information

on vacuum system procedures (cleaning, baking, assembly, etc.), refer to Kevin Birnbaum’s

thesis [14].

The vacuum system components are connected via Varian tubing and UHV compatible

ConFlat flanges (CFF). We use a 40 L/s ion pump (Varian StarCell VacIon Pump 40,

MiniVac Controller) to evacuate the system in steady-state and routinely achieve 10−10

Torr pressures, although we typically operate at a cesium pressure 10-100 times greater.
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Figure 11.1: Schematic of our experimental apparatus in which collective spin angular mo-
mentum of a cloud of laser-cooled cesium atoms is measured by polarimetric detection of
a scattered off-resonant probe laser. Ambient magnetic field fluctuations are suppressed
by magnetic shielding and can be monitored with a fluxgate magnetometer (FG) situ-
ated nearby the atomic sample. Components not shown include the optical pumping laser
(aligned along the laboratory x-axis) and external trim coils used to zero ambient magnetic
fields and their first-order gradients.

Figure 11.2: The view from inside the lab.
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Figure 11.3: A view of the vacuum cell and magnetic cube with the magnetic shielding
partially disassembled.
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The ion pump was ordered with an extra side port (CFF 2.75”), to which a right angle

valve (VAT 57 series, 57132-GE02) is attached. The system is rough pumped during baking

through this port with our mobile turbo pump (Varian Minuteman Turbo V250).

The ion pump is a significant source of magnetic fields and, more importantly, magnetic

field gradients (see appendix A). To reduce the effect of these fields at the atom site within

the cell, we have surrounded the pump with a two-layer magnetic shield (Co-netic AA from

Magnetic Shield Corp.), with thinner Co-netic foil corners. This shielding reduces the outer

fields by more than an order of magnitude.

The pressure is measured with either a pressure gauge (Varian UHV 24p Nude Ionization

Gauge, SenTorr Controller), the ion pump current (calibrated to pressure via the manual),

or via the loading time of the MOT (see section 12.5.3). The gauge and ion pump current

readings are somewhat unreliable and may read a higher value than the actual pressure

if too much cesium accumulates internally, forming filament-like emitters that artificially

increase the current. These deposits can be removed by operating the pump at a higher

than normal potential (hi-potting) with, for example, a neon sign transformer.

For most experiments, our cesium source has consisted of a broken cesium ampoule

(from Aldrich) within a bellows tube connected to the cell via a right-angle Varian valve

(mini-CFF, 0.75”). In the past, we have attempted to use cesium dispenser (getter) wires

from SAES (via Litton Industries). However, with these cesium sources the MOT loading

is much more efficient if a direct line of sight can be established between the MOT and the

dispenser. Because this was not the case in our experiment and our pressure constraints

were not severe, we resorted to the standard ampoule source.

We use a cell rather than a metal chamber to avoid having magnetic or eddy current

sources close to the atomic sample. Initially, the experiment was set up with a pyrex optical

cell from Technical Glass (5” x 2” x 2”, 2.75” CF flange). Eventually, this was replaced

with a higher quality custom quartz cell from Starna Cells (Spectrosil Far UV Quartz,

5”x1.5”x1.5”, 2.75” CF flange). The stainless steel CFF to quartz transition (Steel 304,

to Pyrex, to Quartz GE214) was purchased from Larson Electronic Glass and then sent to

Optiglass in the UK, which proceeded to assemble the transition to the body of the cell.

The cell is mounted in the vertical direction from a four-way cross. To one side of

the cross is the valved cesium source, to the other the ion pump, and below the cell is an

antireflection (AR) coated window from (MDC, 2.75” CFF) to allow for vertical probing
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of the atom cloud. The cell itself is uncoated, meaning that both trapping beams and

probing beams will suffer reflection from the air-quartz interface going in and out of the

cell. To remedy this, one option is to place AR coated coverslips against the external faces

of the cell with index-matching fluid in between to reduce internal reflections. Although

the inner vacuum-quartz interface still leads to some reflection of the optical beams, the

coverslips improve the loss from the outer quartz-air transition. We ordered a large supply

of coverslips, with one side having a broadband antireflection (BBAR) coating, from ZC&R

Coatings for Optics for this purpose. In practice, we have only used the slips for the top

face of the cell (where the probe beam exits) and not the side faces for the trapping beams.

The coating is specified at less than 0.5% reflectance between 800 and 1200 nm and less

than 1% between 0 and 50 degrees incidence angle. The index matching fluid was purchased

from Cargille Laboratories Immersion Liquid 06350, (n=1.45256 at 850 nm and n=1.44970

at 1064 nm).

During baking, care must be taken to ensure minimal temperature gradients from the

steel section of the chamber to the cell. A special cage (with layering of aluminum foil

to heater tape to more foil) is used to surround the cell at a distance of a few inches

during the bake. The most temperature sensitive regions of the cell are the coated window

(max 200-250◦C), the steel to quartz transition (consisting of Pyrex/Borosilicate, 300◦C,

hard max 450◦C), and the optical table (max 80◦C). Other components of the system

can typically withstand up to 400◦C temperatures. During the bake, we reach maximum

temperatures of around 220◦C (via Variacs connected to heater tape), which is above the

supposed temperature needed to remove thin films of water from the steel [14]. A slight

temperature gradient (tens of degrees) is kept across the system with hotter temperatures

away from the pump.

11.2 Field Control

In appendix A, I discuss the details of general “magnetic field management” in the lab,

including a discussion of field constraints in our experiment, typical noise sources, shielding,

coils, and field drivers. Here I only describe the different coils that exist in the lab.

To zero the DC field (primarily from the earth) and field gradients, we use a large (1 m)

set of Helmholtz coils wrapped around a frame surrounding the experiment and supply
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each side of each coil with an independent current. By driving a set of coils asymmetrically,

(diagonal) field gradients can be nulled. On each axis there exists one many turn set of

Helmholtz coils for coarse zeroing and a single turn coil for fine zeroing.

To apply fast fields of interest in the experiment we constructed a “magnetic cube”

(pictured in figure 11.3) and placed it about the vacuum cell. The design was partially bor-

rowed from the group of Poul Jessen and involves a 10” cubic plastic frame, with significant

optical access. Wound around the cube are three Helmholtz coil pairs (of optimal spacing

for uniformity [137]), one for each spatial direction. Within the cube, and supported by it,

are the circular anti-Helmholtz MOT coils mounted on a teflon support. The cube itself

structure consists of eight 2” Nylon small tapped corner cubes and six 8” square acrylic

frames, which form the faces that connect the corners.

A four layer octagonal magnetic shield with optical access (for MOT, pump, probe

beams, and fluorescence detection) was then placed on top of the cube and supported by

brass rods emanating from the nylon corner cubes. The shield consists of Co-netic AA

precut sheets from the Magnetic Shield Corp. This shield provides a reduction factor of

approximately 30 at low frequencies.

11.3 Lasers and Optics

The experiment uses four homemade diode lasers, three for trapping and one for the probe

light. The trapping lasers include a MOT master, a MOT slave, and a repump laser. The

master output is locked to the 4–5’ crossover transition and is used to injection-lock the

MOT slave, which then provides trapping light. The repump provides 3–4’ light to return

atoms from the otherwise dark f = 3 state to the f = 4 cooling transitions. The probe

slave is seeded by a New Focus Vortex laser as discussed below.

All of the homemade diode lasers (including the diode housing, temperature controller

and current controller) are built from the standard Kimble and Mabuchi lab designs, which

were developed in large part by Joe Buck [138] and based on earlier work from the atomic

physics community [139, 140]. The frequency of the MOT master and the repump laser

are locked using via a saturation absorption spectroscopy error signal [141]. Because our

experiment was the second atomic physics apparatus in the Mabuchi lab, the diode laser

setup is very similar to Ben Lev’s experiment, which was the first, and more information
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can be found in his thesis [142].

After the locking setup, the repump light is simply expanded and sent to the MOT

described below. The output of the master is double passed through an acousto-optic

modulator (Intra-Action, AOM-402AF3) whose frequency can be used to set the detuning

of the eventual probe. This beam is then seeded into the slave laser, which provides close to

120 mW of total power. This light is then passed through a switching AOM (Intra-Action,

AOM-402AF3) with a constant frequency shift after which about 90 mW of total power is

available. The amplitude of the trapping light is then controlled via a voltage controlled

attenuator (VCA), which attenuates the driving signal of this final AOM.

The extra 10 mW of master light that is not used to seed the slave is used for several

purposes. Both the pumping beam and the depumping beam are derived from the master

light and AOM shifted (Intra-Action, ATM-1251A2) to approximately the 4–4’ transition.

The pumping light is then fiber coupled to the table at the height of the cell, expanded, and

sent through the cell horizontally. Just before passing through the cell the pump beam is

circularly polarized to pump the spins along the axis defined by its propagation direction.

Some of the master light is also used as a reference to measure the frequency of the Vortex

laser probe beam via heterodyne mixing.

For turning off certain beams, we have created shutters by modifying acoustical speakers

to raise and lower a blocking flag based on a design from [143]. Alternatively, we have used

Oriel shutters (Oriel 76992), which give much more vibration to the table, but are generally

more reliable.

11.4 Magneto-Optic Trap (MOT)

Assuming enough power is available to keep the MOT beam intensity at near saturation

levels, making the beams larger is the easiest way to trap more atoms. As discussed in

section 12.5.2, the MOT loading rate goes as the fourth power of the beam width. After

the trapping beam has passed through the switching AOM it is expanded to “fill out” the

last lens of the telescope to provide a 1” collimated beam. This beam is then either sent

straight through 1” optics, reflected at 45 degrees with 2” New Focus Mirrors, or divided

with 2” Polarizing Beam Splitters (Melles-Griot, 03PBB017). After the initial expansion

the beam is split with the large PBS and VLOC waveplates into three trapping beams, of
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full width 1” and power 30 mW. Each individual beam is sent through a quarter-waveplate,

through the cell, through another quarter-waveplate, then retroreflected off of a 1” mirror

to form the optical molasses (or MOT with anti-Helmholtz coil). Other beams such as the

repump and depump are combined with the trapping beams on the large PBS.

11.5 Fluorimeter and Camera

As one means of measuring the atomic number we use a typical “fluorimeter” to detect the

fluorescent light emanating from the MOT and back out the expected number with knowl-

edge of the MOT beam intensity and detuning (see section 12.5.6). The fluorimeter consists

of a pair of lenses, outside the magnetic shield, to image the MOT onto a large detector

(ThorLabs, PDA55, 3.6 mm). We observe the MOT in steady-state and the thermal expan-

sion of the cloud after the atoms have been released with a high performance CCD camera

(Cohu 4912). When doing temperature measurements, the atoms are loaded, released, then

after some delay time fluorescent beams (trapping beams) are turned on and an images are

acquired via a National Instruments image acquisition board described below. Then the fit

radius of the cloud as a function of time is used to extract the temperature (as in section

12.5.4).

11.6 Probe Laser and Polarimeter

The probe laser beam is derived from a New Focus Vortex External-Cavity Diode Laser

(Model 6017, with Vortex 6000 Laser Controller), which offers 17 mW at 852 nm with

a short term (50 ms) linewidth of less than 300 kHz. After being reshaped and passed

through an optical isolator, some of the beam is picked off and mixed with light from

the locked “master” diode laser to give a heterodyne signal (using a New Focus 1601, 1

GHz, detector), which is then sent to a frequency counter (Tektronix CMC251) to give the

relative frequency. The remaining light is then used to optically seed another homemade

diode laser to give an output of approximately 80 mW. This more powerful output is then

sent through an isolator and split with a PBS. A small amount of light is then heterodyne

mixed with some of the seed light to check that the slave is indeed seeded (using a New

Focus 1801 Detector). The rest of the probe light is then sent to an AOM (Intra-Action,
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AOM40R) at 40 MHz, which serves as the switch for turning the probe measurement on and

off. The output of the AOM is then expanded and sent through a high quality AR coated

polarizer (10−6 Karl Lambrecht Corp., MGT25E5, Glan-Thompson Prism Polarizer) with

10−6 extinction ratio. Because the light must pass off of several mirrors before entering the

vacuum chamber, two waveplates (one quarter-wave and one half-wave, VLOC zero-order)

are used to compensate the polarization rotation effects of the input mirrors. The waveplates

are adjusted to linearize the optical polarization along the direction of the pumped atomic

spin-state using tensor Hamiltonian induced oscillations as an “error signal” as discussed in

section 6.7.

After the beam has passed through the vacuum chamber it is reflected off of three mir-

rors. Because these mirrors also induce a polarization rotation their effect needs to be

compensated using a set of three subsequent waveplates. Unlike with the input light, these

waveplates approximately compensate a general rotation (not specific to a single state) as

described in section 3.2.5. The compensated light is then sent into the final polarimeter

setup consisting of a pair of waveplates (one quarter-wave and one half-wave), a high quality

AR coated polarizing beam splitter (10−6 extinction, Karl Lambrecht Corp., MSBTS-8-45,

Beamsplitting Glan-Thompson Prism Polarizer), and a homemade subtracting photodetec-

tor. The arrangement of waveplates here typically consists of just a half-waveplate that zeros

the output of the photodetector without atoms. To measure a general Stokes component

though, both waveplates are necessary.

At times it is advantageous to strobe the measurement strength (probe power) sinu-

soidally. Because the analog output boards have limited bandwidth and resolution, it does

not make sense to use these to modulate the power directly. Instead one can combine two

signals of different frequency and use this to drive the AOM controlling the probe power.

The probe power will then be modulated at the beatnote of the RF signals. For example,

to modulate the power at 500 kHz, a 40.5 MHz signal and a 40 MHz signal are combined

using a splitter (MiniCircuits ZSC-2-1) in reverse as an adder, and the sum is sent to an

amplifier, which drives the AOM. By using two high quality synchronized signal generators

(Agilent E4400B 1GHz ESG Signal Generator) as the source of the two high-frequency

signals, which are in turn synchronized with the computer trigger, we can have adequate

phase and power control to perform fast stroboscopic measurement.

The detector used in this experiment must satisfy several constraints. First, the detector
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must have a large enough bandwidth to record the evolution of the spin dynamics. Second,

the detector should be optical shotnoise limited for all frequencies from DC to the maximal

bandwidth. The detector should also have a reasonably high quantum efficiency. As seen

in the previous analysis of chapter 8, the signal-to-noise ratio, hence the degree of expected

conditional spin-squeezing is critically dependent on the collection efficiency of the detector.

Finally, the detector should be able to cleanly absorb the amount of power needed for the

experiment. Typically, excess noise will be added to the detection if an intensity greater

than some threshold is used. Thus, when larger powers are used (greater than a mW) it is

necessary for the photodiodes to be larger to reduce the accepted intensity. Alternatively,

one could use the trick discussed in section 8.1.4, but we have not resorted to that.

There are two sets of polarimeter detectors that have been used in the experiment. The

first used a pair of smaller photodiodes (Hamamatsu S5973, 0.4 mm, R = 0.47 A/W, or

QE= 68%) and was shotnoise limited for powers above 1 µW from DC to 1 MHz. This

detector starts to go nonlinear above around 150 µW. The second detector, built with the

help of Mike Armen, uses larger photodiodes (Hamamatsu S3071, 5 mm, R = 0.56 A/W, or

QE = 81%) and is shotnoise limited above 100 µW out to approximately 10 MHz. Because

of the larger diode size, this detector goes nonlinear at a much higher total power of 25 mW.

Both detectors use a standard single transimpedance amp design [144, 145] in subtracting

configuration with an Burr Brown OPA655 amplifier (now replaced by OPA656). More

information on general photodetector design can also be found in [13]. The photodetector

board and many of our controller boards were constructed using a T-Tech Quick Circuit

5000 circuit mill and Protel software.

Note that there are several techniques used to enhance the signal-to-noise of polarime-

ters in the presence of technical noise using, for example, frequency modulation [146], po-

larization modulation with a faraday rotator and feedback [147], and selective polarization

component removal [110, 148] as discussed in section 8.1.4.

11.7 Computer Control

The computer control system uses multiple input and output boards, all running off of one

PC computer, to coordinate the entire experiment. Here is a summary of these boards and

their use:
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• Fast Analog Input Board: Gage CompuScope 14050. Use: acquiring polarimeter

output. Specs: 2 Channel, 14 bit, 50 MSample/s, 8 MS onboard memory, one PCI

slot.

• Slow (but precise) Analog Input Board: National Instruments PCI-4474. Use: reading

fluorimeter and 3 fluxgate channels. Specs: 4 Channel, 24 bit, 102.4 kSample/s,

45 kHz alias-free bandwidth.

• Analog output board: National Instruments PCI-6713. Use: MOT intensity, detun-

ing, magnetic fields. Specs: 8 Channels, 12 bit, 1 Msample/s, 8 digital I/O lines in

addition.

• Digital output (and input) board: National Instruments PCI-DIO-32HS. Use: 32 I/O

channels, up to 13.3 MB/s pattern I/O.

• Image Acquisition Board: National Instruments PCI-1407. Use: Imaging. Specs:

Single channel, analog, monochrome.

Instead of using LabView or a similar data acquisition environment we decided to con-

struct our own within Matlab by using “mex” commands to access general functions written

in C that control the boards. JM Geremia put significant effort into making this system a

general purpose environment, providing a concise set of simple but general functions that

bridge the gap between Matlab and the hardware. I then had the much easier task of de-

signing the experimental control from the user-friendly Matlab side. The code is generally

set up such that the outputs are held at steady values for several seconds while the MOT

loads from vapor, after which the atoms are released and a high time resolution series of

commands dictates the subsequent experiment over the course of several milliseconds. To

reduce powerline related noise, the computer system is put into a wait-mode until it receives

a line-triggered pulse from the output of an function generator (Stanford Research Systems

DS345).
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Chapter 12

Preparing and Characterizing
Cold, Optically Thick Atomic
Clouds

12.1 Overview

Many experiments in atomic physics require a large number of cold atoms as a resource. The

goals of individual experiments are usually different but often overlapping. The primary

goal in the free-space spin-squeezing experiment, described in section 8.2.3, is to maximize

the optical depth OD = Nσ0/A in a trap with reasonably cold temperatures for reasonably

long times. Maximizing this parameter is similar to, but not the same as, the usual atomic

physics goal of maximizing phase space density. There were a surge of papers on atom-

trapping and cooling in the early 1990s aimed at increasing the phase space density to levels

where a Bose-Einstein condensate (BEC) could be achieved. In this chapter we reference

them heavily, keeping in mind our modified goal.

Large OD cold atomic samples are difficult to prepare and also somewhat tricky to

characterize. For example, multiple scattering of photons within the atomic cloud can lead

to nontrivial collective effects. Furthermore, the high degree of absorption for probing and

trapping beams also lead to complications. The goal of this chapter is to review what has

been achieved in terms of large OD cold atomic samples and also lay out the basic theory for

preparing and characterizing these systems. Because the full theory for even the simplest

MOT is surprisingly complicated, we keep in mind that all models used are not exact and

merely a rough guide for scalings and intuition.

We begin by briefly reviewing the constraints of this experiment compared to other



199

similar experiments. Next, we discuss the basic theory of MOTs and how this theory breaks

down at larger atom numbers. We then review what has been achieved in other atom-

trapping experiments, in terms of number, density, optical depth, and so on, with attention

paid to the differences in each experiment’s ultimate goal. The details of experimental

techniques to measure and predict various parameters of interest (fluorescence number,

background pressures, OD, atom temperature) are then discussed. Finally, we consider the

effects of various forces on the atoms within the probe beam after the initial trapping stage,

including the effects of temperature, gravity, and the mechanical forces of the pump and

the probe beams.

12.2 Experimental Goals

The requirement for a BEC [149] is that the phase space density

ρ = nΛ3 (12.1)

= n~3

(
2π

MCskBT

)3/2

(12.2)

be greater than order unity, where Λ is the deBroglie wavelength and MCs is the mass of

one cesium atom. For typical cesium MOT density of n = 1011 cm−3 the atomic spacing

is n−1/3 = 2.2 µm, and a typical temperature of T = 10 µK gives a wavelength Λ = 48

nm. Thus, the typical phase space density is around ρ = 10−5, which is a long way from

unity. Typically, the BEC people start from around this point and use a combination of

techniques, primarily evaporative cooling, that trade off the loss of atoms for the reduction

of temperature to attain higher values of ρ. Typical BECs have n ≈ 1014 cm−3, N ≈ 105,

and sub-µK temperatures [150].

In contrast to this typical pursuit, our experimental needs are also somewhat different:

• As discussed previously, in chapter 8, we require a large optical depth (OD) to maxi-

mize the Faraday measurement signal-to-noise ratio. We can express the optical depth

as

OD = σ0N/A = σ0n
2/3N1/3 = σ0nL (12.3)

where the trap volume is V = L3 = A3/2, and the optical cross section is σ0 =

3λ2
0/2π = 3.47 × 10−13 m2 (for the cesium D2 line with λ0 = 852 nm). We see
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that the density requirement is slightly more important than the atomic number, but

ideally both would be large.

• The shape of the cloud must be such that it ensures strong forward scattering. In

essence, the cloud of atoms can be viewed as an array of antennas that emit into

some spatial profile. Although typically we do not resort to cloud shaping to enhance

this profile, it is an important characteristic as investigated in [115, 118]. One can

also think of the atomic profile as determining the “distinguishability” of which atom

interacted with each part of the probe beam, which is important for the preparation

of entanglement through symmetry. This issue is discussed more in section 15.1.2.

• The atoms must be relatively well localized for purely technical reasons. Typically,

there exist magnetic field gradients (both ambient and due to applied fields). For a

given gradient, smaller samples see less field variation and consequently less atomic

dephasing. Also, with smaller samples, one can use smaller field coil sources (hence

lower inductance and faster switching times). Finally, given a constraint on the probe

intensity of the experiment, it helps to have a smaller sample when the power of the

probe beam is limited.

• Although we do not require extremely cold temperatures (by laser-cooling standards),

we do require that the atoms be relatively cold for technical reasons. First, it is desir-

able to avoid dephasing collisions with atoms or cell walls, and also to avoid Doppler

shifts. It is also necessary for the atoms to remain within beam for length of probe

measurement. However, when the spatial profile is inhomogenous, whether in a cavity

or in free-space, it may actually be desirable for the atoms to have a nonzero temper-

ature to ‘symmetrize’ the measurement such that each atom (on-average) interacts

with the same number of photons. In some relevant theoretical work, particularly

with room-temperature vapor cells, finite temperature is used to simplify theoretical

calculations [118].

12.3 Basic MOT Regimes

The dynamics of a MOT are rather complicated and have been modeled in several papers

to varying levels of sophistication [149, 151, 152, 153, 154]. In this section, we present a
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brief analysis of the different regimes of a MOT, following closely the discussion of [149].

12.3.1 Temperature Limited

For small atom numbers, a completely single-atom picture of the MOT is adequate. The

usual trapping and cooling occurs, but because the atoms do not interact the size of the

MOT is completely independent of atom number. The radius of the MOT can be obtained

by matching the thermal energy to the potential energy of the trap, with larger temperatures

corresponding to larger radii. This kind of MOT is not typical because of its small size with

numbers N < 104. It usually takes effort to make a MOT this bad.

12.3.2 Multiple Scattering

As the number of atoms increases, an individual atom becomes more likely to absorb a

photon emitted by another trapped atom. This interaction leads to a repulsion between

atoms that naturally follows a inverse distance squared Gauss’ law scaling. Because of this

effect the density of the cloud becomes independent of the number of atoms in the cloud

(or the radius goes as the cube root of N). This regime typically applies for atom numbers

in the range of 104 < N < 106.

The spatial distribution of the MOT will become non-Gaussian and uniform past some

point, but this can come long after the onset of this regime since a Gaussian distribution

can still have number independent density. The multiple scattering can also lead to excess

heating and, under certain circumstances can contribute to nontrivial spatial structures as

described in section 12.3.5.

12.3.3 Two Component

Under precise modeling, it can be shown that the confining potential of the magneto-optic

system consists of two regions [149]. Close to the center of the trap the restoring force

is linear in the distance, but farther away the force gets weaker and levels off. The turn-

around occurs at approximately the point where the Zeeman shift from the trapping coil

is comparable to the light shift from the trapping beams. For a large number of atoms,

the inner region is filled and the outer less dense region become populated. Thus a MOT

in this regime will appear as a dense central core surrounded by a less-dense “fluff.” This
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two-component regime occurs typically for atom numbers N > 106.

12.3.4 Optically Thick

A final regime occurs in which the absorption of the trapping beams becomes a significant

effect. At our MOT settings, the OD at the trapping detuning is approaching order unity.

This is especially important if the MOT is double passed such that not only is a single beam

significantly depleted as it goes through, but the returning beam is also depleted to start,

causing a significant asymmetry in the trapping dynamics.

12.3.5 Ring MOT

After achieving an experimental MOT with a relatively large atom number, we noticed that

with slight misalignments of the trapping beams, many interesting “ring-shaped” MOTs

could be created. Such ring MOTs have been observed and modeled since the early 1990s

[155, 156, 157, 158, 159, 160].

It turns out to be quite easy to model the behavior by simply displacing four of the six

beams laterally in a plane such that a vortex force is created. This single-atom model de-

scribes the basic effect, but the experiment showed additional features that this model does

not describe. First, under certain configurations, the MOT would consist of both a ring and

a central core (Saturn-like). Phase diagrams of the different trapping regimes are detailed

in [157]. Second, unlike the simulations above, a strong clumping effect was observed in

the ring. Instead of the ring consisting of a continuous distribution of atoms moving along

the ring, there was instead a clump of atoms moving in the ring-path. When the ring was

observed continuously, the orbital frequency was fast enough (≈ 100 Hz) that the ring ap-

peared continuous. However, when the image acquisition timing was synchronized with the

orbital frequency a clump approximately a quarter of the orbital path could be observed

distinctly. This clumping motion could also be observed via the fluorescence signal.

Several explanations have been proposed for either effect, including interatom repulsion

via fluorescence. In the case of the Saturn MOT however, removing the “core” with a

pumping beam had no visible effect on the outer ring. The clumping could have been

caused by periodic (power line) field noise, although the frequencies were not necessarily

commensurate with the expected 60/120 Hz. Because the frequency is mostly determined
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by the vortex force of the simulations, it is possible that field fluctuations need only “seed”

the formation of the clump in some sense.

Most of these behaviors are likely due to a combination of these influences, which are in-

teresting from a trapping perspective, but probably do not aid us in a quest for more optical

depth. However, it remains possible that other experiments requiring ringlike geometries

would benefit by harnessing a trap of this kind.

12.4 Review of Achieved Cold Atom Traps

Here we review what has been experimentally achieved in other laboratories with regard

to cold atom trap parameters, primarily the measured atom number and density. These

together with the atomic cross section imply the optical depth (with assumptions about

cloud shape) as described above.

Typical traps have used trapping beam optical powers of order 10 mW and beam diam-

eters of several millimeters. These standard MOTs are typically in the multiple-scattering

or two-component regimes (see above or [149]). These traps have typical atom numbers in

the low 107 range and densities in the range of 1011 cm−3 [161, 152, 156, 149].

Still considering the standard MOT configuration, but with an increased trapping beam

size and power one can create a large MOT with many more atoms (below we see that

the atom number scales as the dimension to the fourth power). These “monster MOTs”

typically have beam sizes of greater than a cm in radius and overall trapping power of greater

than 100 mW, producing a MOT in the optically thick regime. The Chu group created a

very large cesium MOT with 4 cm diameter beams and huge 25 mW/cm2 intensities, giving

an atom number of 4×1010 and density of 4×1010 cm−3 (uniform across the sample) [153].

This implies an optical depth of near 40. The Ketterle group created a Sodium MOT (3

cm diameter beams, 10 mW/cm2) with numbers around 1010 and a density of 1010 cm−3

[162]. Our standard cesium MOT has a beam diameter of around 2.5 cm and an intensity of

around 6 mW/cm2, giving atom numbers of around 3× 109 and densities in the 1010 cm−3

range consistent with the other experiments above. Our peak optical depths are as high

as 50 (beam smaller than cloud), but including all the atoms the effective optical depth

is smaller by a factor of two or so. In conclusion, with larger more powerful MOTs, the

number increases via brute force, but the density tends to decrease with size.
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Dark-SPOT traps have been shown to increase the density by an order of magnitude or

more [162, 163]. This is consistent with my measurements, although the number of trapped

atoms does not typically increase dramatically, and the optical depth increases less than

the density because of a typical drop in cloud size. (This is in contrast to our previous

work [27] where unbelievably large atom numbers for our dark-SPOT parameters 1011 were

reported, with a density of 2× 1012 cm−3.) Typical temporal Rubidium dark-SPOTs have

numbers of 108 and densities around 1011 cm−3 before being evaporated to 106, 1014 cm−3

[164]. Mesoscopic traps can get to similar densities but with less number with 104 atom at

3× 1014 cm−3 [165].

Several groups have reported partial success with compression techniques for increasing

the density. In [166], a cesium MOT with number 4× 108 and density 1012 cm−3 is created

via transient field compression. In [167], a Rubidium MOT with 1 × 107 and density

5× 1011 cm−3 is prepared similarly.

Finally, by using sideband cooling, one can prepare around 3 × 108 cesium atoms at a

density of 1012 cm−3 as reported in [168].

12.5 MOT Physics

In this section, we detail various diagnostics for measuring the parameters associated with

the atom trapping and cooling process. Some of these are quite standard while others are

less so, but we include them all for the sake of completeness with adequate referencing and

with no claims of originality. Good reviews include the references [149, 151, 152, 153, 154].

There are many great atomic physics books available for describing the below physics,

including [65, 1, 38, 66].

12.5.1 Cooling Benchmarks

Following [1] we can label several physical benchmarks for cooling alkali atoms. When

ΓD = γ we have:

T ∗ = γ2MCsc
2

2kBω2
= 158 mK. (12.4)
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The Doppler limit is obtained when match atomic cooling rates with heating rates in simple

model

TD =
~γ
2kB

= 125 µK (12.5)

and the recoil limit is obtained when one considers the energy emitted to an atom when

one last photon is emitted in a random direction

Trec =
~2ω2

2kBMCsc2
= 99 nK. (12.6)

The velocity corresponding to this temperature is vrec = 3.5 mm/s. Note T 2
D = T ∗Trec.

The Doppler limit was surprisingly beaten by order of magnitude via polarization gra-

dient cooling (PGC) in early attempts at laser cooling. Describing this process requires

a model with more than a two level atom. This PGC process typically results in atomic

temperatures in the 1− 10 µK [152]. It turns out that the recoil limit can also be broken,

as mentioned in [1].

12.5.2 MOT Loading

All of the atoms loaded into the trap come from the background gas of cesium at room

temperature T = 300 K, pressure PCs = nCskBT ≈ 10−9 Torr, and density nCs ≈ 3.2 ×

107 cm−3. For comparison, the spatial density if there were one atom per wavelength cubed

would be n = 1.6×1012 cm−3 or 50, 000 times greater. From Maxwell-Boltzmann statistics,

we have the following speeds [169]:

Root mean square: vrms =
√

3kBT/MCs = 237 m/s (12.7)

Mean: vmean =
√

8kBT/πMCs = 219 m/s (12.8)

Most probable: vprob =
√

2kBT/MCs = 194 m/s. (12.9)

The largest force that a beam of any intensity can impart upon an atom (saturated

excited level) is

Fmax = ~kγ/2. (12.10)

Now define the capture velocity as that of an atom that loses all of its kinetic energy after
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having passed through a beam imparting this maximal force

vc =

√
1
2

√
1
2

√
2Fmaxd

MCs
(12.11)

where one factor of
√

1/2 is from halving the distance (on average) and the other is from

halving the force. Factors of order unity are necessarily treated loosely in this analysis (and

most others). The value of the capture velocity for cesium is vc = 17
√
d m/s/

√
cm, so for

typical cm size beams the capture velocity is tens of m/s.

The number of atoms per second entering the trap volume V with low enough velocities

v < vc to be captured [152] is calculated to be

R =
1
2
nV 2/3v4

c

(
MCs

2kBT

)3/2

. (12.12)

Because vc ∝
√
d and V ∝ d3, we have R ∝ d4 so the best way to increase the number

of atoms in a basic MOT is to increase the size of the beams (keeping the intensity near

saturation level). Alternatively, one can load with a directed, cooled beam from another

atom source [170]. In an experiment by the Chu group, a very large MOT was prepared

with large 5.5 cm beam diameters, intensities of 25 mW/cm2 (approximately 2 W of power)

resulting in 3.6× 1010 atoms [153].

The collision rate with other cesium atoms is given by [171, 142]

1
τCs

= nCsσCsvrms. (12.13)

There are also collisions with Helium governed by 1/τHe where

PHe =
kBT

τHeβHe
. (12.14)

The loading dynamics of the MOT can then be described by

dN/dt = R−N(1/τCs + 1/τHe). (12.15)

The solution of the loading equation is

N(t) = Nss(1− exp[−t/τ ]) (12.16)
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with τ = (1/τCs +1/τHe)−1 and Nss = Rτ . Note that if τCs � τHe (i.e., the cesium-cesium

collisions dominate with high background cesium pressure), then Nss is independent of the

background cesium density n because both R and 1/τ are proportional to n. In practice, it

is desirable to have a cesium pressure greater than the Helium pressure (or others), but not

so great that the MOT beams are significantly absorbed or the collisional lifetime is made

too small.

In [154], another source of loss due to two-body collisions in the trap is proposed as

dN/dt = −βN2/V . With the reported value of β = 10−11 cm3/s, this will only be a

concern if βn ≈ 1/τ [171, 142] . Because τ ≈ 1 s and n ≈ 1011 cm−3 in our experiment, the

collisional terms are just starting to be an issue.

12.5.3 Pressure Analysis

Suppose we do not trust our pressure gauge and, in addition, we want to determine the

background cesium and helium pressures. We can do this with the MOT by placing the

background cesium density at two points (n1 and n2) by, for example, varying the temper-

ature of the cesium reservoir (or closing the valve). Then, at each point we measure the

steady-state loaded atom number and the loading time, giving us the points (N1, τ1) and

(N2, τ2). One can then show from the above relations in the MOT Loading section that we

have

τHe =
τ2(N1/N2)− τ1
(N1/N2)− 1

(12.17)

τCs,i =
τHeτi
τHe − τi

. (12.18)

These equations are useful for determining the background pressures independently.

12.5.4 Temperature Analysis

We start by defining the joint phase-space distribution for the atom cloud, which we as-

sume to be Maxwell-Boltzman in the velocities (in other words, there is a well-defined

temperature) and a Gaussian spatial distribution. That gives us,

Π(x, p, t = 0) =
1

2π
√
r20MCskbT

exp
[
−
(
x2

2r20
+

p2

2MCskbT

)]
(12.19)
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where r0 is the initial 1-σ radius of the atom cloud, p is the transverse momentum coordinate

and x is the transverse position coordinate (page 265 of [169]). I will choose the transverse

direction to be perpendicular to the direction of free fall (vertical on the camera) such that

there is no momentum change due to gravity. We want propagate this phase-space density

in time under the assumption that the cloud expands freely such that the temperature

remains constant,

Π(x, p, t) =
1

2π
√
r20mkbT

exp
[
−
(

(x+ p t/MCs)2

2r20
+

p2

2MCskbT

)]
. (12.20)

We want to compute the RMS velocity because that is the proper quantity related to the

temperature. So we start by computing the expectation value of the square of the transverse

cloud radius using our time-dependent phase-space distribution,

〈r2(t)〉 =
∫ ∫

x2Π(x, p, t) dx dp = r20 +
kbT

MCs
t2. (12.21)

The RMS cloud radius as a function of time is given by,

r̄rms ≡
√
〈r2(t)〉 = r0

√
1 +

t2

τ2
(12.22)

where I have defined the expansion time constant, τ ,

τ =

√
MCsr20
kbT

. (12.23)

To compute the cloud temperature from measurements of the cloud radius as a function

of time, we use a numerical fit to these equations. Although not as robust a technique in

practice, the temperature can also also extracted from just the t = 0 derivative using

v̄2
∣∣
t=0

≡
(
drrms

dt

)2 ∣∣∣∣
t=0

=
r20
τ2

=
kBT

MCs
(12.24)

and thus

T =
MCs

kb

(
drrms

dt

)2

. (12.25)

One can also measure the temperature by the decay time of an absorption/probe mea-

surement signal [162]. For example, one could perform a measurement where the spins are
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optically pumped and rotated vertically to give a polarization rotation signal. If the detun-

ing is made large (or intensity small) enough, so that the spontaneous emission and tensor

Hamiltonian decay terms are relatively negligible, the decay of the signal will be purely

from the atoms leaving the probe beam laterally. Furthermore, if there are no mean lateral

forces then the centroid of the distribution will always stay within the probe and one can

easily extract the temperature from the decay curve. In reality, the atoms will either hit

the bottom of the cell (from below this happens at 250 ms), or move out of the probe beam

due to the momentum impulse of the pump beam (from below we see that this timescale

will typically be 30 ms) but these timescales will be somewhat longer than the temperature

diffusion timescale. We give a rough estimate of this method as follows. Assume the optical

depth is simply

OD =
Nσ

πr(t)2
(12.26)

=
Nσ

πr20(1 + t2/τ2)
(12.27)

=
Nσ

πr20(1 + t2kBT/MCsr20)
(12.28)

where the above equation for the radius has been used. Factors of order unity are be-

ing ignored here. If this decay curve reaches half of its initial value at time τ , then the

temperature will be roughly given by

T =
MCsr

2
0

τ2kB
. (12.29)

For the timescale of 30 ms (from the pumping impulse) and assuming a MOT of r0 = 1 mm,

this gives a temperature limit of this technique of 18 µK.

12.5.5 Stern-Gerlach Analysis

This section will describe the position-momentum distribution of an atomic ensemble evolv-

ing under the forces of gravity and a magnetic field gradient. In the end, we predict the

expected signal in a Stern-Gerlach time of flight experiment. Much of this analysis can be

found in [105].

The simple model we will consider is that of a particular sublevel (mf = −4, ..., 4) with
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an initial Gaussian one-dimensional position-momentum distribution (Π(x0, p0), ignoring

the lateral dimensions and assuming gravity acts along x). The atoms in the sublevel mf

will experience both the force of gravity (g) and the force from the field gradient (dB/dz):

F = MCsg −mfgFµB
dB

dz
= MCsa (12.30)

where a is the acceleration. The evolution of the position and momentum will be

x = x0 + p0t/MCs + at2/2 (12.31)

p = p0 +MCsat. (12.32)

Inverting, we write x0 and p0 as functions of x and p to give

x0 = x− p0t/MCs − at2/2 = x− pt/MCs + at2/2 (12.33)

p0 = p−MCsat (12.34)

dx0 = dx (12.35)

dp0 = dp. (12.36)

Now we can change the variables of an initially Gaussian distribution (with variances σx

and σp) to give the updated distribution:

Π(x0, p0)dx0dp0 = C exp
[
− x2

0

2σ2
x

− p2
0

2σ2
p

]
dx0dp0 (12.37)

= C exp
[
−(x− pt/MCs + at2/2)2

2σ2
x

− (p−MCsat)2

2σ2
p

]
dxdp(12.38)

= Π(x, p, t)dxdp (12.39)

where C is for normalization. We now wish to calculate the quantity Π(x, t) =
∫ +∞
−∞ dpΠ(x, p, t),

which describes the number of atoms falling through a particular point in space as a func-

tion of time. This value will be proportional to the experimental fluorescence signal from

a thin “sheet” of laser light located a distance below the falling cloud. First we rewrite the

distribution as a Gaussian in p:

Π(x, p, t)dxdp = C exp
[
+a2p

2 + a1p+ a0

]
dx0dp0 (12.40)
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with the parametrization

a0 = −1
2

(
(x+ at2/2)2

σ2
x

+
(MCsat)2

σ2
p

)
(12.41)

a1 =
t(x+ at2/2)
MCsσ2

x

+
MCsat

σ2
p

(12.42)

a2 = −1
2

(
1
σ2

p

+
t2

M2
Csσx

)
. (12.43)

Performing a simple “complete-the-square” integral over p gives the desired distribution:

Π(x, t)dx =
(∫ +∞

−∞
dpΠ(x, p, t)

)
dx (12.44)

= C
√
−π/a2 exp

(
a0 −

a2
1

4a2

)
dx. (12.45)

For the the repelled sublevels mf there exists a value of the gradient for which gravity is

overcome by the magnetic force. For the mf = 4 sublevel of the f = 4 ground state of

cesium, the value at which the total force is zero is

dB

dz
=

MCsg

mfgfµB
= 23.32 G/cm. (12.46)

Of course, for gradients larger than this in the full three-dimensional model the atoms will

be initially pushed up, but then spill over the edges and eventually fall. Other tomography

techniques are discussed in section 6.8.

12.5.6 Fluorescence Analysis

The total power scattered from a steady-state normal MOT [84] will be:

Pscatt = N~ωΓ
(It/2Is)

1 + 4(∆/Γ)2 + (It/Is)
. (12.47)

The intensity It used is the total intensity from the six beams of the MOT and the saturation

intensity used is the Is = 27 W/m2 for isotropic polarized light [84]. Now the total power

collected from a detector of collection area Ad at a distance of r from the MOT center is

Pcoll =
Ad

4πr2
Pscatt. (12.48)
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By using the above Pcoll can be used to infer N with all other parameters known.

The optical depth can be inferred from the total measured number combined with a

knowledge of the cloud size obtained from a CCD camera. The following two methods

allow one to determine the optical depth more directly.

12.5.7 Measuring OD with Absorption Spectroscopy

Here we derive the absorption versus frequency spectrum so that we can determine the

optical depth of a given sample. For example, if we would like to determine the scattering

from the atoms populating the f = 3 ground state of cesium, we can calculate the absorption

profile as follows. The power being radiated from an atom in a beam of intensity I with

detuning close to resonance with the f line is given by Rf =
∑

f ′ Rf,f ′ where

Rf,f ′ = ~ωΓPf ′ (12.49)

and

Pf ′ =
(I/2Is,f,f ′)

1 + 4(∆f ′/Γ)2 + (I/Is,f,f ′)
(12.50)

is the population of the excited state f ′. For linearly polarized input light, the saturation

intensity from one level is Is,f,f ′ = Is,lin/Sf,f ′ where for the cesium D2 line [84]

Is,lin = 16.5 W/m2 (12.51)

and

S3,2 = 5/14, S3,3 = 3/8, S3,4 = 15/56 (12.52)

S4,3 = 7/72, S4,4 = 7/24, S4,5 = 11/18. (12.53)

Note that these transition strength factors satisfy
∑

f ′ Sf,f ′ = 1 to give the appropriate

far-detuned saturation intensity.

Now the intensity of the probe beam as it crosses an element of length dx follows the
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equation:

dI

dx
= −nRf . (12.54)

If I � Is,f,f ′ for each f ′ then we can ignore the I dependence in the denominator of Pf ′

and express the loss rate as Rf = σfI where

σf =
∑
f ′

Γ~ω
2Is,f,f ′

1
1 + 4(∆f ′/Γ)2

(12.55)

is interpreted as the cross section in units of area. Under this assumption, the above

differential equation can then be solved to give the intensity leaving the uniform sample as

I(x) = I0 exp[−σf (∆)nx] = I0 exp[−OD(∆)], where OD(∆) = σf (∆)nx.

Note that the on-resonance cycling transition (f = 4, mf = 4 to f = 5, mf = 5) optical

depth is given by OD0 = σ0nx where σ0 = 3λ2/2π = Γ~ω/2Is,circ and Is,circ = 11.0 W/m2

for the cesium D2 line [84]. Thus, to convert any of the above hyperfine-specific on-resonance

cross sections (or optical depths) we use the conversion

σ0,lin,f,f ′ ≡
Γ~ωSf,f ′

2Is,lin
= σ0

Is,circSf,f ′

Is,lin
. (12.56)

If not otherwise noted, any detuning independent optical depth stated in this thesis will be

the on-resonance optical depth, OD = OD0, by default.

Now we introduce temperature dependence into the cross sections, primarily for the pur-

pose of deriving the distribution of the room temperature background gas. Hence we allow

for a Gaussian distribution (with temperature implied by the parameter αD) of frequencies

about the nominal detuning and convolve as follows.

σlin,f,f ′(∆, αD) = σ0,lin,f,f ′vf,f ′(∆, αD). (12.57)

The vf,f ′ is the so-called Voigt lineshape and is given by

vf,f ′ =
1√
π

∫ ∞

−∞

exp[−t2]

1 + 4
(

∆f ′−αDt

Γ

)2dt. (12.58)

Notice that for αD = 0 we return to the above case vf,f ′ = 1/(1 + 4(∆f ′/Γ)2). In the
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opposite high temperature limit where αD � Γ we have

vf,f ′ ≈ Γ
αD

√
π

2
exp[−∆2

f ′/α
2
D]. (12.59)

The parameter αD is related (ignoring factors of unity) to the mean velocity via the Doppler

shift by αD = 2π∆f = 2π(c/λ)(v/c) so v = αDλ/2π. In practice, for room temperature

speeds of approximately 100 m/s the Doppler shift will be a few hundred MHz.

Similar calculations for sodium exactly reproduce the absorption spectrum of Figure 2

in the Ketterle group dark-SPOT paper [162]. The two atomic spectra look remarkably

different for similar OD0 because the cesium hyperfine levels are much farther apart in

frequency than the sodium levels.

12.5.8 Measuring OD with Faraday Rotation

The optical depth can also be measured by observing the Faraday rotation of the probe beam

(described at length in previous sections and experimentally in coming chapters) and using

the OD as the only free parameter. Of course, this requires assumptions about both the

model and the pumping efficiency. With regard to the model, there is sufficient faith in the

atomic physics modeling that the only uncertainty should come from order-unity estimations

such as in the probe beam area and intensity. The assumptions about the pumping can be

justified if the degree of pumping is independently confirmed. Several methods of estimating

the pumping are described in the tomography section of this chapter. One such method uses

the same probe signal but in different configurations where the nonlinearity of the tensor

effects can be used to estimate the efficiency with the ratio of two measurements, such that

the pumping efficiency is the only fit parameter. Using probe measurements to fit the OD

is completely valid, but one should be careful in comparing measured ODs from different

stages of the experimental procedure (before or after pumping, etc.) because systematic

effects could change the number of atoms within the beam.

12.5.9 Optical Pumping Simulations

A key stage in all of the experiments considered in this work is state preparation via optical

pumping. Successful optical pumping provides an oriented (separable) collective spin-state,

which can then be used for measuring rotations or preparing more complicated entangled



215

states. The concept of optical pumping was developed many decades ago, and the logic

behind it is (in retrospect) quite intuitive given a basic understanding of transition strengths

and selection rules. Nevertheless, it is a somewhat complicated task to numerically simulate

the optical pumping of an alkali atom with full consideration of all transition strengths and

all hyperfine levels. In this section, we briefly describe two simulations of optical pumping

that both give information regarding expected pumping times, efficiencies, etc.

The first model simply uses the single-atom adiabatically eliminated master equation

(including spontaneous emission) from equation (5.44). The assumptions of that derivation

assumed that the saturation parameter was small, limiting the simulation to situations the

∆ � γ, which may not always be the case in a realistic experiment. However, the advantage

of this model is that the excited states are not included and the detuning does not appear

directly as a numerator term in the Hamiltonian, thus the numerical evolution can use

relatively large timesteps and be less computationally intensive.

The second model is the full unconditional master equation of equation (5.15) prior to

adiabatic elimination. Because the excited states are used and the detuning appears as a

direct term in the Hamiltonian (so we must have ∆ ≈ γ), the numerical evolution is nec-

essarily more computationally intensive than the adiabatically eliminated model. However,

this model allows pump and repump parameters that saturate the transition and faster

pumping scenarios can be effectively simulated.

The first state prepared is the usual coherent spin-state of |f = 4,mf = 4〉 by applying

circular polarized light at the 4–4’ frequency along with repump light to move atoms from

f = 3 to f = 4. Because there is no |f = 4,mf = 5〉 sublevel, the target state is a dark

state.

The second state is the m = 0 state of |f = 4,mf = 0〉 by applying linearly polarized

(π) light on the 4–4’ transition and repump light. This state is a dark state because of the

zero transition strength between |f = 4,mf = 0〉 and |f ′ = 4,mf = 0〉.

The third and final state is the incoherent mixture of the two oppositely oriented ex-

tended states:

ρsplit = (|f = 4,mf = 4〉〈f = 4,mf = 4|+

|f = 4,mf = −4〉〈f = 4,mf = −4|)/2 (12.60)

= (| ↑ 〉〈 ↑ |+ | ↓ 〉〈 ↓ |) /2. (12.61)
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This “split” state can be prepared with linear polarized π light on the 4–3’ transition and

suitable repump light, because there are no |f ′ = 3,mf = ±4〉 sublevels. This state is

potentially useful for experiments that aim to create an “effective” two-level system so

as to remove tensor effects [112]. It could also be used to simulate Polzik’s “double-cell”

experiments, but with both atomic ensembles cold and located at the same position. Such

an experiment would not create spatially separated entanglement, unless the populations

were physically separated in a state-dependent fashion after pumping (and probing).

The simulations are useful because they allow one to calculate the speed and efficiency

of a particular pumping scheme. Also, potential problems can be avoided and realistic sce-

narios can be tested. For example, the necessity of a holding field along a quantization axis

can be determined given an assumed background field uncertainty or noise. The importance

of the repump polarization, intensity, and detuning can be investigated. Finally, the effect

of including all of the hyperfine excited states can be evaluated. The code can also be easily

adapted to the D1 transition, which may allow for more efficient pumping schemes in some

cases.

Once a pumped state has been prepared one needs to be able to measure the degree

to which the pumping has been achieved. Relevant tomography techniques are discussed

in section 6.8, including most notably the use of the tensor Hamiltonian to determine the

pumping efficiency. Corresponding measurements of the pumping efficiency are presented

in section 13.6.

12.6 Motional Effects

In this section, we consider both how much atomic motion (due to temperature, gravity,

and pump/probe forces) will affect the subsequent probing.

12.6.1 Motion Out of the Probe Beam

Now we consider, in rough fashion, how much temperature and gravity will move the atoms

out of the probe beam. In the experiment, the atoms are trapped, then released, and then

probed as they diffuse and fall out of the probe beam (without further trapping). So both

temperature and gravity will place hard constraints on how long we are able to measure the

atoms.
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First, considering temperature, the average speed (in one direction) of the atoms will

be v =
√
kBT/MCs due to equipartition. For reference sake, this gives v = 8, 25, 79 mm/s

for T = 1, 10, 100 µK respectively and v = 137 m/s at room temperature T = 300 K.

(Note that the recoil velocity limit for cesium is vrec = 3.5 mm/s, which corresponds to

sub-µK temperatures.) Thus, for typical temperatures of 10 µK the time to move across

one wavelength of 852 nm is 34 µs and the time to move across a trap of width 1 mm is

40 ms. This latter time is acceptable because most measurement times are limited to order

1 ms, but if measurements are made with a smaller beam waist, the lateral temperature

diffusion will become a significant issue. Note however that the dark-SPOT temperature is

1 mK [162], thus the above time will be reduced from 40 ms to 4 ms. So cooling is absolutely

necessary.

Gravity places similar constraints on the experiment time. In the experiment, the probe

beam is oriented vertically, thus gravity alone will not in principle remove atoms from the

probe beam. However, we are also concerned with atoms falling out of the horizontal pump

beam during pumping. The time it takes the atoms to fall a distance d due to gravity is

simply t =
√

2d/g. For the typical trap size of 1 mm this gives a time of 14 ms and the

time to fall to the bottom of the vacuum chamber (12 in.) is 250 ms.

12.6.2 Pump Beam Forces

One concern is how much momentum a single pumping beam will impart onto the atoms.

If it is too much, then the atoms may move out of the probe beam. Assume that Np

photons are absorbed on the way to the dark state of |f = 4,mf = 4〉, these will impart

a momentum of ∆p = Np~k = MCs∆v onto an individual atom. The single photon recoil

velocity is vr = ~k/MCs = 3.5 mm/s. So if we assume an Np = 8 (required to move from

mf = −4) we get ∆v = 2.8 cm/s. For a typical measurement time of τ = 1 ms, the distance

moved during the measurement time is ∆d = ∆vτ = 28 µm. The typical probe beam size

is a few mm, so this can mostly be ignored, but for not too much smaller traps this would

be a major source of misalignment.

12.6.3 Probe Beam Forces

There is possible interest in moving the atoms to increase the optical depth. The previously

derived equations, mostly the scalar term, give the energy of the atoms as a function of space
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(when the intensity of the probe beam is given as a function of space). The propagating

probe beam will impart two types of forces: dipole and spontaneous emission [38]. The

dipole force for a one-way free-space beam will act lateral to the beam, the spontaneous

emission (absorption force) will act along the direction of the beam.

First consider the situation for a two-level atom, which is valid at large detunings. The

energy shift for the ground state is given by

U = −~Ω2

4∆
(12.62)

where Ω = E0d/~ and the detuning is in radians/sec [38]. As before we use E =
√

2P/ε0cA.

The lateral force is then given by the derivative of this quantity in the directions perpen-

dicular to the beam. If the radius of the beam is r, the force will then be of order F = U/r.

If we assume this to be a harmonic force, with F = −kr we get k = U/r2 and the frequency

of oscillation ω =
√
k/MCs. The time to reach the center of the well from the edge is then

a quarter of the period τ = (1/4)2π/ω = 2π
√
MCsr24∆/~Ω2 ∝ r2 ∝

√
1/P at fixed power.

Note that the dipole force is inversely proportional to the distance scale, thus if we had

counter-propagating beams creating a one-dimensional lattice, the intensity would vary over

λ instead of r and the force would be about r/λ ≈ 1 mm/1 µm = 1000 times greater. The

absorptive force on the other hand is

Fsp = ~kγρee (12.63)

=
~ks0γ/2

1 + s0 + (2∆/γ)2
(12.64)

where s0 = I/Isat [38]. Let us convert this into the time it takes to move an atom across

one radius, r = (Fsp/MCs)τ2/2. This leads to τ =
√

2rMCs/Fsp. For cesium we consider

these quantities at P = 500 mW and r = 1 mm. From this simulation we see, that even at

these high powers the timescales are typically 100 ms for detunings of 10s of GHz, 10 ms

for GHz and, around 1 ms for 100 MHz. At small detunings, Fsp is larger and the beam

pushes the atoms more than it contracts them laterally, at larger detunings the contractive

dipole force Fd is larger. The crossover detuning depends only on the width of the beam

and, for the cesium D2 line, is ∆/2π ≈ 57r GHz/mm.
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Chapter 13

Semiclassical Data

In this chapter, we begin to present experimental results from the apparatus described

in chapter 11. We describe data relevant to the optimization of the experiment and the

confirmation of the semiclassical measurement theory introduced in chapter 6. Hence we

consider only the evolution of the quantum atomic state due to the classical moments of

the input beam or vice versa. Collective noise effects are neglected entirely as we are

only interested in the evolution of the mean moments. A single atom picture is completely

adequate and the effect of measuring many atoms at once is only stronger forward scattering

and a high single-shot signal-to-noise ratio, which allows us to get meaningful results without

averaging over many trials. In contrast, the next chapter describes attempts to leverage

this high signal-to-noise ratio to observe collective quantum projection noise as described

in chapter 8.

We begin by describing the experimental procedure for optimizing the signal-to-noise

ratio. Then several experimental results are summarized that confirm the tensor Hamilto-

nian theory previously developed. The experimental results presented in section 13.4 are

from the paper [29], while every other result is previously unpublished. Included are demon-

strations of the magic angle in Larmor precession and the use of the tensor Hamiltonian

for practical tasks such as measuring the optical pumping efficiency. We close by discussing

the magnetic-resonance scenario, which is relevant to the stroboscopic modulation scheme

of the next chapter.
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13.1 Basic Experimental Procedures

13.1.1 Aligning the Experiment

In this section, we describe the procedure for aligning our apparatus in order to trap and

observe the spin-state of a cold atomic cloud. Our specific magneto-optical trap (MOT)

apparatus has been described in chapter 11, and the physical considerations related to the

preparation of a MOT are described in chapter 12 and the references therein. Prior to

the alignment of the MOT, the DC magnetic field and first-order gradients (due largely to

the ion pump) are cancelled with the large Helmholtz coils detailed in appendix A using a

fluxgate magnetometer. The MOT trapping light is derived from an injection-locked diode

laser and is passed through an acousto-optic modulator, which acts as a switch (along with

a slower mechanical shutter). This beam is then telescopically expanded to fill standard

one-inch diameter optics. When being reflected or transmitted at nonnormal incidence,

larger two-inch diameter mirrors and optics are used. At the output of the expansion an

iris is placed such that the size of the subsequent trapping beams can be adjusted. The

beam is then split into three trapping beams, one for each axis, with waveplates and large

polarizing beam-splitters, before each is appropriately circularly polarized, sent through the

cell, and retro-reflected back through the cell with a mirror and another quarter-waveplate.

Irises are also placed along each of the three input beams to aid with alignment.

The optical access ports in the magnetic shield are registered to the inner magnetic

field coils including the MOT coils, thus the total shield structure provides a convenient

reference for coarsely aligning the MOT beams. The structure is placed about the quartz

cell and the beams are then aligned to it. For each beam, one input mirror is used to align

the beam to the input shield port, while another is used to align it to the output shield

port. The retro-reflecting mirror is then adjusted such that the returning beam is aligned

to the closed-down input iris viewed with an IR camera. Aligning in this fashion makes

a MOT easily visible using typical MOT parameters. In our case, we use 90 mW total of

trapping light, a detuning of 15 to 20 MHz and several mW of repump power along one axis,

and a magnetic field gradient of approximately 10 G/cm. Further alignment of the beams

is achieved by shrinking the iris common to all trapping beams and aligning to achieve a

small MOT centered at the magnetic field zero. Fluorescence measurements (see section

12.5.6) can then be used to optimize the atom number, but given the previous alignment
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procedure, improvements greater than order unity will not be possible.

The parameter of interest in the experiment is the optical depth that the probe beam

“sees” as it passes through the atomic ensemble. To align the probe beam to the MOT, it is

first sent vertically through the cell and aligned to the input and output shield ports. The

trapping beams are then reduced in size via the iris to produce a small MOT that is well

localized at the magnetic center. To align the probe beam to the MOT center, the probe

detuning is tuned near the 4–5’ resonance, placed at full power, and used to destroy the

MOT as observed by the CCD camera. The probe beam can also be reduced in size with an

iris to further improve the alignment. The alignment can also be optimized by turning off

the trap and maximizing the fluorescence observed from the probe beam as the atoms fall.

The optical pumping beam is similarly aligned, but along the horizontal x-axis, as opposed

to the z-axis of the probe.

We are also concerned with the polarization alignment of the optical beam because

certain elements can rotate the polarization in unintended ways as discussed in section

3.2.5. First, we would like to prepare an optical beam polarized along the x-direction at

the location of the atoms. Because the input window (as well as input mirrors) can impart

nontrivial rotations (if the incidence angle is slightly nonideal) we place two compensating

waveplates after the polarizing beam cube and before the mirrors that direct the probe

beam into the cell. These waveplates are coarsely adjusted such that the input polarization

is roughly along x and then the waveplates are further fine tuned using the atoms as will

be discussed in section 14.5.2. Second, the mirrors on the output of the cell can arbitrarily

rotate the optical polarization. Thus we must include a set of compensating waveplates at

the output of the cell and prior to the polarimeter. As opposed to the input compensating

waveplates however, we must arrange the output compensating waveplates to compensate

the mirror’s rotation for any input state. In practice this can roughly be done with three

waveplates (e.g., two quarter-waveplates and one half-waveplate). The procedure involves

using the polarimeter in multiple modes (e.g., measuring Ŝx and Ŝz) to adjust the com-

pensating waveplates for multiple known input states (e.g., linear polarization of arbitrary

angle should give zero Ŝz).

For the data presented in this chapter, we typically use one of the two subtracting

detectors, which were described in section 11.6. For example, with absorptive measurements

where it is desirable that the probe has minimal effect on the atoms, we use the low-power
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detector (which is optical shotnoise limited above 1 µW). For measurements where we are

investigating the effect of the probe itself on the atomic state, e.g., spontaneous emission

decay, we require larger intensities and hence we use a high-power detector (which is optical

shotnoise limited above 1 mW). The beam profile in all of these measurements varies, but

unless otherwise noted is generally non-Gaussian (near flat-top profile) with around 1.5 mm

radius overall but closer to 1 mm when operationally measured assuming a Gaussian profile

(see http://qwiki.caltech.edu/wiki/How_To_Measure_A_Beam_Waist).

13.1.2 Absorptive Measurements: Optical Depth Optimization

The on-resonance optical depth (OD) is the key parameter for optimizing the experimental

signal-to-noise ratio, as discussed in chapter 8. In principle, it is possible to measure the

OD with either the absorption or dispersion of the probe beam. In the next section, we

describe the dispersion case where the sample is cooled, optically pumped, and measured

via Faraday rotation. In this section, we describe absorption measurements that have

two distinct advantages over dispersion measurements when measuring the trap density

characteristics. First, especially for the dark-SPOT configuration, the OD can be measured

continuously with the absorption technique such that it can be quickly and conveniently

optimized in real time. This is as opposed to the dispersion case where the sample must

be prepared, released, and pumped, which takes several seconds per trial. In addition,

with absorptive techniques one can neglect state preparation uncertainties (e.g., pumping

efficiency) that come into any dispersion analysis. The preparation of a known initial state

is often necessary in dispersion measurements because the distribution of spin population

in a trap is often nearly isotropic such that no mean phase-shift or polarization rotation is

expected. In practice, one does see such a rotation due to misalignments, but it is difficult

to make sense of the complicated signal.

To perform the absorption measurement, the probe beam is coarsely aligned to the

MOT (or dark-SPOT) as described previously and the power detected on one channel of

the polarimeter (with the polarizing beamsplitter removed). The frequency of the beam

swept over the cesium hyperfine manifold via the PZT input on the Vortex diode laser that

seeds the slave probe laser. Of course, one must ensure that the slave laser remains injection

locked over the entire sweep range prior to making the measurement. The probe power is

set to be small and the sweep time is set to be sufficiently fast (around 0.1 ms) that the time

http://qwiki.caltech.edu/wiki/How_To_Measure_A_Beam_Waist
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Figure 13.1: Absorption spectrum measurements of the cold atom cloud optical depth. (A)
Absorption spectrum for a dark-SPOT with light tuned to f = 3 lines (OD0 = 117). (B)
Absorption spectrum for a MOT with probe tuned to f = 4 lines (OD0 = 49). The Doppler
broadened background gas contribution is independently fit without cold atoms, leading to
the upper red curve. The black curve is the noisy absorption measurement and the blue
curve the fit. For both measurements, the probe beam was set at a weak power of 2 µW
and a beam radius of approximately 100 µm and the low-power detector was used. The
time to take each trace is ≈ 40 µs.
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spent near resonance is small and the effect of the probe on the trap dynamics is negligible.

If a smaller beam is used one will get larger measurements of the OD because only the

maximal density region of the cloud is measured.

Measuring the absorption spectrum is a much more robust technique than measuring

the absorption at only a single probe frequency for several obvious reasons. First, with

large OD samples if one tries to measure the absorption near resonance, the technical

noise will prohibit any measurement of the very small amount of remaining light that gets

through the atomic cloud, thus any useful information will only come from sufficiently

far-off resonant absorption. Second, the probe beam has nonnegligible but slow power and

frequency fluctuations that will make any single-point measurement unnecessarily uncertain.

By measuring the spectrum, the frequency and power level can also be fit (knowing the

hyperfine splitting of cesium), and the OD will be determined by the quality of the fit in

the off-resonant regions of the spectrum. The theory for fitting the absorption spectrum to

extract the on-resonance OD was described in section 12.5.7.

Typical measurements of the OD for both a standard MOT and a dark-SPOT are shown

in figure 13.1. The optical depths shown here are larger (by order unity) than the optical

depths used in subsequent dispersion measurements because we use a small beam to measure

the optical depth at the peak of the cloud distribution and a large beam to measure all of

the atoms dispersively. Notice that we have accounted for the presence of a significant

amount of Doppler broadened background gas and included its density and temperature as

fit parameters. Thus this is a useful means of measuring the background cesium pressure

whose result should be consistent with the MOT loading time technique described in section

12.5.3. Also note that the quality of the fit near the on-resonance points is not very good

for technical reasons and the actual information is contained in the high quality fit of the

off resonant frequencies. Near resonance one can expect some dispersive deflection of the

beams that also affect the measurement. Because of mode-matching (i.e., beam size versus

cloud size) considerations, the measurement of OD should be taken as valid to within only

order unity because we have not accounted for, or imaged, the spatial dependence of the

OD. However, given a fixed beam profile, relative measurements of the OD can be much

more precise. Notice that in figure 13.1B, when the probe frequency matches the the MOT

trap frequency (red of the 4–5’ transition) the probe is actually amplified, consistent with

previous studies of nonlinear MOT spectroscopy (see page 72 of [172]).
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One can observe this absorption spectrum continuously in time by sweeping the probe

frequency at greater than kHz frequencies. This is an essential step for optimizing the OD

of the dark-SPOT trap in real time by observing the degree of absorption while tweaking

trap parameters (beam alignment, depump power, repump power, etc.). This technique

can also be used to measure the OD as a function of time by turning off the trap and

then measuring several spectra in a row before the atoms have fallen and diffused away.

Because the atoms typically take several milliseconds to disappear and each sweep can be

performed in around 0.1 ms (limited by the diode PZT sweep rate) one can get sufficient

time resolution to observe interesting atomic compression and/or expansion dynamics.

13.1.3 Dispersive Transient Measurements: Faraday Rotation

To perform the Faraday rotation measurement we use the following procedure orchestrated

by the computer system described in chapter 11. The atoms are trapped and cooled with

either a MOT or a dark-SPOT trap as described previously. The trap is then turned

off and the anti-Helmholtz magnetic field decays in approximately 1 ms, the rate being

enhanced by the FET switch discussed in section A.5.4.1. We optionally use polarization

gradient cooling at this stage. While the MOT field is decaying, the atoms are optically

pumped for a few milliseconds using circularly polarized, 100 µW beam with a diameter of

approximately a cm. During pumping a magnetic field (approximately 100 mG) is applied

along the x-axis to define a quantization axis. The probe beam is then switched on at a

preset power and detuning and the measured Stokes component recorded in time. (The

probe beam parameters are such that the saturation parameter is small and the adiabatic

elimination analysis of chapter 5 is valid.) Concurrent with the probe beam being turned

on, magnetic fields are switched on and modulated according to the particular experiment

being performed. Our magnetic field apparatus allows us to apply Gauss level fields over

relatively fast timescales (µs) in an arbitrary direction.

First, we demonstrate the continuous observation of Larmor precession due to a perpen-

dicular magnetic field via Faraday rotation of the probe beam. Figure 13.2A displays the

relative orientation of the spin-state, magnetic field, and probe polarization after pumping.

The spin-state is initially aligned along the x-direction with an optical pumping beam and

magnetic field, then all fields and beams are turned off. Next, a field is applied along the

y-direction, the probe beam is turned on, and the linear polarization rotation of the probe
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Figure 13.2: Real time, single-shot observation of Larmor precession via Faraday rotation.
The probe beam was relatively weak at power 50 µW, radius 1.1 mm, and detuning of
500 MHz, and the low-power polarimeter detector was used. The atomic sample optical
depth is approximately 20. (A) Schematic showing the path of the spin-state on the collec-
tive Bloch sphere and the orientation of the probe polarization (in this case θ = 90 degrees).
(B) The perpendicular DC field is 9.5 kHz/γB4 where γB4 = 350 kHz/G for the f=4 ground
state. Fields giving frequencies of several hundred kHz can be obtained with Gauss level
fields. (C) A weaker DC field of 0.8 kHz/γB4 is applied. (D) A zoom in of the lower fre-
quency plot. At small times, the estimation of the field amounts to finding the slope of the
curve masked by optical shotnoise.
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Figure 13.3: After optically pumping along x, the holding field is left on, parallel to the
spin-state. The field is then slowly redirected in the xz-plane at a rate slower than the
Larmor frequency of the field (110 kHz/γB4) and the spin-state adiabatically follows. The
probe measures the z-component of the spin-state as the field is arbitrarily rotated in time
by the experimentalist. The probe beam for this data was set at power 50 µW, radius
1.1 mm, and detuning 1 GHz and the low-power polarimeter detector used.

beam is measured with the polarimeter. As described in chapter 6 we observe the Larmor

precession of the moment F̂z via Faraday rotation of the probe beam and a measurement

of Ŝy. Figure 13.2B shows the resulting single-shot measurement and figure 13.2C shows

a similar measurement with a smaller field. These plots and a zoom-in of figure 13.2C

displayed in figure 13.2D show the high single-shot signal-to-noise ratio. This last figure

displays the electronic and photon shotnoise along with the early evolution of the spin-

state. The resulting signal-to-noise ratio is as predicted in section 8.2.2. Magnetometry

with weak fields amounts to estimating the slope of this line in the presence of masking

optical shotnoise as discussed in chapter 10.

The only dynamics of the spin-state here appear to be the Larmor precession and decay.

If the measurement were truly nondemolition this would be the case, but we see in the

next section that one can observe the effect of the tensor Hamiltonian on the evolution of

the oscillating spin-state via the lifetime of the decay. After this discussion we discuss the

measurement and sources of the decay more fully.

Another simple experiment involves keeping the magnetic field applied along the spin

polarization direction (initially x) and then rotating the field (while keeping the field at a



228

constant magnitude) such that the spin-state adiabatically follows the field direction. As

long as the rotation rate (typically kHz scale) is much less than the Larmor precession rate

about the field (typically hundreds of kHz) then the adiabatic approximation will remain

valid. One example of the arbitrary way in which the spin-state can be dragged around

is shown in figure 13.3. Notice that at certain nonsmooth points of the trajectory, the

spin-state “falls off” the field direction nonadiabatically, leading to small observed Larmor

precession. This holding field technique is used to isolate the tensor Hamiltonian effect of

the spins on the light (while reducing the tensor Hamiltonian effect of the light on the spins)

in section 13.4. (Note that when the background cesium pressure is sufficiently high, the

background gas alone will give a Faraday signal that changes as the field changes, which

must be distinguished from the contribution of the cold atoms.)

When tweaking up the experiment, the above Larmor precession (or the adiabatic drag-

ging signals) are used to optimize the experiment over various experimental parameters,

including the pumping beam parameters, the trap parameters, and the cooling procedure.

Further, the background fields can be zeroed and the applied fields calibrated in strength

by measuring the frequency of the induced Larmor oscillations.

13.2 Faraday Rotation and the Magic Angle

As discussed in section 6.5, and shown in figure 5.1, the tensor Hamiltonian leads to inter-

esting nontrivial dynamics when the spin-state is rotating due to a magnetic field. Here,

following the results of [25], we present experimental results confirming the expected be-

havior. In figure 13.2A, we show the angle of the probe linear polarization relative to the

applied magnetic field, which is perpendicular to the spin-state oscillating in the xz-plane.

At zero degrees, for example, the tensor Hamiltonian effect on the spin-state will cause the

observed spin decay to occur faster than the decay expected due to spontaneous emission

or other sources. This is a single-atom dephasing effect that is purely Hamiltonian and

reversible in principle. If given sufficient time to act and ideal experimental circumstances,

this dephasing should eventually lead to rephasing and hence an echo in the observed decay

signal. Without spontaneous emission or inhomogeneities, this revival would be complete.

However, we do not usually observe the echo cleanly primarily due to probe intensity inho-

mogeneity over the atomic sample, which causes different subsamples to dephase at different
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Figure 13.4: Measurements of the Larmor precession decay time as a function of the relative
angle between field and optical polarization shown in figure 13.2A. At the magic angle of
54.7 degrees, the tensor dephasing vanishes and the decay is due to only the spontaneous
emission. Here we used a probe beam of power 5 mW, radius 1.3 mm, and detuning 815 MHz
with a high power shotnoise limited detector. The DC magnetic field was 70 kHz/γB4 and
0.2 ms of each trace was used to obtain the fit giving the decay time constant.
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rates. To get rid of these technical nonidealities, one could imagine either making the probe

more homogenous or performing a reversal along the lines of usual spin-echo techniques,

although we have not spent much time on either front.

In any case, we can observe the dependence of the initial decay time on the relative

angle of the field and optical polarization. We expect from section 6.5 that the decay time

should be smaller than that due to spontaneous emission alone for all angles other than

the so-called “magic angle” of θ = 90− arctan(1/
√

2) = 54.7. Furthermore, it is seen that

the Hamiltonian (hence the decay strength) in equation (6.92) should be a factor of two

different for relative angles of 0 and 90 degrees. This behavior was also mentioned earlier

in respect to figure 5.1.

Figure 13.4 shows the fit decay time as a function of the relative angle between the

field and the optical polarization. In practice we fix the input optical polarization along

x, adiabatically rotate the spin-state to be aligned along z, and apply the field in the

appropriate direction in the xy-plane while turning on the probe light. The factor of two

difference in decay times is clearly seen for angles of 0 and 90 degrees. To demonstrate the

full symmetry, the field angle is varied completely from 0 to 360 degrees, displaying all four

magic angle points. Under different probe imaging configurations one can observe echo like

dynamics in the non-magic-angle inset time traces, whereas here we only see a leveling off

of the Larmor precession indicating a inhomogenously mixed version of the echo. While

we have observed echo dynamics, the results of [25] pay more attention to imaging and

intensity homogeneity, thus more cleanly observe the shape of the echos shown in figure

5.1. We have also observed evidence of the nonrotating frame DC echos displayed in figure

5.2A.

13.3 Decay Data

In this section, we detail attempts at characterizing the decay of the atomic state due to the

measurement process itself (spontaneous emission) and more technical sources. We present

two methods for measuring the decay, both of which avoid the tensor Hamiltonian induced

dephasing mentioned in the previous section. In the first method, we simply measure the

decay of the Larmor precession with the probe polarization placed at the magic angle (as

a function of probe beam parameters). In the second, we investigate the decay of the
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state while it is held with a parallel magnetic field, which gives a Hamiltonian that is large

compared to the tensor probe Hamiltonian.

In section 5.2.2, we calculated the expected decay of a spin-state due to spontaneous

emission alone. There we showed that, as expected, the decay rate depends upon the

relative orientation of the probe polarization to the spin-state alignment. This results from

the difference between Clebsch-Gordan coefficients that determine the decay rate under

different orientations. In the subsequent data interpretation, we reference two representative

rates of decay, one for a polarized spin-state parallel to the optical polarization, and one for

the spin-state perpendicular to the optical polarization.

Figure 13.5 shows the measurement of the decay of the Larmor precession at the magic

angle as a function of both probe power and probe detuning (as seen in the middle inset

of figure 13.4). For a high power (or small detuning), the spontaneous emission loss is

dominant and the decay rate follows the expected scaling in detuning (or power). During

Larmor precession, the spin-state is alternately perpendicular and parallel to the probe

polarization hence we expect the overall decay rate to be intermediate between the expected

rates for perpendicular and parallel polarizations alone, which is indeed where the data fall.

The value at which the rate levels off is likely given by many sources, among them the

diffusion of the atoms out of the beam due to temperature and gravity, magnetic field

inhomogeneities, and residual tensor effects due to slight geometrical misalignment.

The second way in which the spontaneous emission scaling has been investigated is by

observing the decay of the spin-state while it is held stationary with a parallel magnetic

holding field. This situation was previously simulated in figure 5.2. Figure 13.6A shows

experimental results with three different scenarios. In the middle (blue) curve, the coherent

spin-state is first prepared via pumping along x, then it is adiabatically rotated to the

z-direction, then a probe beam with a linear polarization along x is applied and used to

measure the z-component of the spin. Thus this curve represents “perpendicular” decay

and results from one single measurement. In contrast, the lower (red) curve represents a

situation in which the coherent spin-state is first prepared via pumping along x, the spin-

state held along x, the probe beam is turned on and off for the time shown, the spin is

adiabatically rotated to the z-direction, and the probe beam is turned on again to measure

the resulting decay from the previous pulse. In this curve, which represents “parallel” decay,

each point represents a distinct trial. Finally, the upper (black) curve is obtained from the
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Figure 13.5: The decay rate of Larmor precession (for a perpendicular field of 30 kHz/γB4)
with probe polarization at the magic angle with respect to the field. (A) At a fixed probe
power of 16 mW (and radius 1.3 mm) for various detunings. At small detuning the sponta-
neous emission dominates and the decay time scales as ∆2. (B) At a fixed probe detuning
of 665 MHz, for various powers. At large powers the decay time scales as 1/P . In both
plots, we show the expected decay rates for parallel (lower, red) and perpendicular (upper,
blue) spins.

previous procedure, but without the first pulse of probe light. Thus this curve represents the

nonspontaneous emission decay and each point represents a distinct trial. (Actually, to avoid

the complication of intertrial atom number fluctuations, each procedure also included a first

rotation up to z and a very short measurement of the initial vector by which the subsequent

curve was normalized.) We see that the upper curve shows us the timescale at which non-

probe-induced decay takes place, the middle curve includes additional spontaneous emission

decay, and the lower curve represents even more spontaneous emission decay (as predicted

in section 5.2.2).

Figure 13.6B shows the exponential timescale of (perpendicular orientation) decay for a

fixed probe power at different detunings (each point from a fit of the middle curve in figure

13.6A). First we notice that for smaller detunings (∆ < 2 GHz) the scaling of the decay

timescale is as expected from the predicted blue line, even showing the elbow at ∆ ≈ 1 GHz

resulting from a consideration of all hyperfine levels. Notably, however, there is a difference

of around a factor of three in the absolute value of the prediction (from an independent

measurement of the probe beam intensity) and the experimental result. We attribute this
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Figure 13.6: The measurement of spontaneous emission decay with a magnetic holding field
present. The measurements were performed as discussed in the text, with a holding field
of 110 kHz/γB4, a probe beam power of 15 mW and radius 1.5 mm, and the high-power
polarimeter detector. For all plots a 1.5 ND filter is used to avoid saturation of the high
power detector. (A) At a fixed detuning of 1 GHz, the decay of the spin-state is measured:
without probe induced spontaneous emission (top, black), with perpendicular polarization
decay (middle, blue), and with parallel polarization decay (bottom, red). (B) The decay of
the perpendicular decay example measured as a function of detuning. The light gray curves
represent the scalings of ∆ and ∆2 for reference, while the predicted values for perpendicular
and parallel decay are below.
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Figure 13.7: Measurements of the semiclassical effect of the spin direction (adiabatically
held with a 110 kHz/γB4 holding field) on the polarization of the probe beam. In all
measurements the probe beam has power 10 µW and radius 1.5 mm. Each trajectory is
averaged 10 times. (A) For an input probe beam with x-polarization and a detuning of 150
MHz, Ŝy and Ŝz were measured for both the xz and xy trajectories (described in the text)
resulting in the solid curves. All trajectory times are τ = 2 ms, during which we observe
some atomic decoherence that causes the prediction (dotted curves) to stray from the data.
(B) As a function of probe detuning, we plot the peak of the Ŝy measurement (for the
xz trajectory), which depends only on rank-1 terms, and the peak of the Ŝz measurement
(for the xy trajectory), which depends only on rank-2 terms. The predicted behavior
(solid curves) shows good agreement with the data out to large detunings where the curves
asymptote to the 1/∆ and 1/∆2 lines provided to guide the eye.

difference to probe inhomogeneity effects. At detunings in the range of 2 GHz < ∆ < 6 GHz

the decay time increases but at a slower rate and eventually saturates near 8 ms. For larger

detunings closer to the 9 GHz, we begin to measure the atoms that have been depumped

into the f = 3 ground state. While the fits are poor in this region, the feature reminds

us that this complication exists and constrains where the probe detuning should be placed

in further experiments. Given that the power (and intensity) setting is near maximal for

these plots and that we want to be operating in a spontaneous emission dominated regime,

the optimal detuning is near a few GHz. A smaller detuning would increase the relative

size of the tensor contribution and complicate the QND description of any quantum limited

experiment.
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13.4 Dragging Data

In this section we summarize the basic result of [29] where the tensor Hamiltonian dynamics

were investigated by adiabatically dragging the spin coherent state to a particular position

with a magnetic holding field and observing the semiclassical effect on the polarization of the

probe light. The theory of this procedure was previously discussed in section 6.4. In figure

13.7A we show the measurement record for two different paths and two different measured

Stokes variables. In the first, the spin-state is dragged in the xz-plane and in the second

it is dragged in the xy-plane perpendicular to the probe propagation direction. The input

light for all cases is polarized along x. As expected, the measurement of Ŝy for the xz-path

gave the largest optical rotation due mainly to the vector term, while the measurement of

Ŝz for the xy-path gave a smaller but measurable oscillation at twice the frequency due to

the tensor term. The other terms (Ŝz for xz-path and Ŝy for xy-path) are quadratic in the

overall rotation vector (which is small) and their effect can barely be measured.

Figure 13.7B shows the value of the peaks of figure 13.7A as a function of detuning.

As expected from chapter 6, the vector term falls off as 1/∆ and the tensor term falls off

as 1/∆2 for detunings larger than the hyperfine splitting. More complete spectra for the

vector and tensor terms are presented in section 13.5. The technique used here can also

be used to measure the pumping efficiency of the coherent spin-state as we show in section

13.6.

13.5 Dispersion Spectrum

In section 6.3, we displayed and interpreted the spectra of the prefactors of the tensor Hamil-

tonian. The zeros of the coefficients at detunings comparable to the hyperfine splittings were

also calculated. The plot of figure 13.7B displays a limited version of this spectrum and

now we generalize to measure the spectrum over the entire hyperfine frequency range. The

spectra are measured with a single shot of an experimental run with the following proce-

dure. After optical pumping along x, the coherent spin-state is adiabatically rotated with a

magnetic field to a particular position and held at that position. A weak probe beam is then

turned on and the frequency swept over the hyperfine manifold. This sweep is performed

quickly compared to the overall probe-induced decay time.

For measuring the vector spectrum, the input light is polarized along x, the spins are
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Figure 13.8: Vector Hamiltonian coefficient measured as described in the text in real time.
The frequency was swept over 0.5 ms to give the trace shown at fixed spin and optical
polarization positions. The probe beam had power of 15 µW, and radius 1.1 mm and a
low-power polarimeter detector was used and detected with the high-power detector. The
holding field was 70 kHz/γB4. The optical depth of the sample was approximately 10.

aligned along the z-axis, and the quantity Ŝy is measured while the frequency is swept.

This corresponds to the peak of the larger curve in figure 13.7A. The full vector spectrum is

shown in figure 13.8. For measuring the tensor spectrum, the input light is polarized along

x, the spins are aligned along the (ex + ey)/
√

2 direction, and the quantity Ŝz is measured

while the frequency is swept. This corresponds to the peak of the smaller curve in figure

13.7A. The full tensor spectrum is shown in figure 13.9.

The only free parameters in the fit of the theory to the experiment were the amplitude

(constant prefactor) and the frequency offset and slope (versus time) of the theory curve.

The fit is surprisingly good given the hasty nature of the measurement procedure. The fit

strays from the experiment near resonance primarily because of the limited bandwidth of

the detector (approximately 1 MHz). Note that the measurement also reproduces all of the

appropriate signs and zero-crossings of both the vector and tensor terms.
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Figure 13.9: Tensor Hamiltonian coefficient spectrum measured as described in the text in
real time. The frequency was swept over 0.5 ms to give the trace shown at fixed spin and
optical polarization positions. The probe beam had power of 5 µW, and radius 1.1 mm and
a low-power polarimeter detector was used and detected with the high-power detector. The
holding field was 112 kHz/γB4. The optical depth of the sample was approximately 10.

Figure 13.10: A measurement of pumping efficiency versus pumping time as described in
the text. The probe beam had power 5 µW, detuning 150 MHz, and radius 1.1 mm and
the high-power detector was used. The pump beam had a power of 45 µW and a radius of
several mm. The DC holding field was set at 112 kHz/γB4, the optical depth was around
10 and each point was measured 10 times. (A) The curves of figure 13.7A for increasing
pumping time. (B) The peak values of those curves. (C) The ratio, which can be mapped
to the pumping efficiency via theory.
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13.6 Pumping Measurement

Despite the fact that the tensor Hamiltonian complicates the simple QND model of our

experiment, it is also useful for many practical tasks. Here we demonstrate the use of it for

estimating the efficiency of the optical pumping (towards a coherent spin-state) preparation

process used in our experiment. In the next chapter, we will also see that the the tensor

term allows us to fine-tune the geometric alignment of the experiment (as can also be seen

from the result of section 13.2).

In section 6.8 we discussed how to potentially measure the pumping efficiency of a

coherent spin-state by measuring the ratio of the two curves in figure 13.7A. When the

probe parameters are known and the tensor coefficients are used the ratio gives the pumping

efficiency in a way that is independent of many experimental parameters, including the beam

size, mode matching issues or atom number. Figure 13.10A displays the same measurement

as figure 13.7A, but for different pumping times. Figure 13.10B then shows the peak value

of these curves as a function of pumping time. (A model for how these values increase given

the pump beam parameters can be found in section 12.5.9.) The ratio of these two curves

is then taken and plotted as a function of pumping time in figure 13.10C and converted

to a pumping efficiency using the thermal model discussed in section 6.8 (although at the

pumping efficiencies we observe, this mapping is largely model independent). We see that,

as expected, the ratio monotonically increases with pumping time saturating at a level that

corresponds (via the theory) to a value between 90% and 100%.

To extract the pumping efficiency using the technique described above one needs to do

two separate measurements. However, it is a trivial matter to make a pumping efficiency

measurement in a single shot by dragging the spins in a combination of the paths in the

xy- and xz-planes while measuring an optical polarization variable such as Ŝz + Ŝy with the

polarimeter and taking a ratio of two points in one trajectory. This still requires that the

probe beam is sufficiently weak (to avoid too much decay) and the rotation is sufficiently

small (such that the measurement is linear in the angle). One could presumably also do an

analysis that includes decay and optical shotnoise to determine the single-shot measurement

fidelity one could possibly attain. However, here we were only interested in ensuring our

pumping efficiency at the level of 10%, which is clearly possible.
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13.7 Magnetic Resonance Data

In the next chapter, we discuss an alternate means of observing spin-squeezing with a

modulation scheme. This corresponds to a magnetic-resonance scenario, which is as follows.

As before, the atomic cloud is optically pumped along the x-direction with a magnetic

holding field. The pump beam is then turned off but the magnetic holding field along x

is kept on. The probe beam is then turned on (to measure F̂z) and at the same time an

oscillating field along y is applied. The frequency of the field is chosen to be near or at

resonance with the Larmor frequency given by the holding field. The spin dynamics given

this scenario are analyzed in full detail in appendix D.

A typical magnetic resonance measurement is presented in figure 13.11A with param-

eters given in the caption. As expected the measurement signal is a modulated sinusoid

of the Larmor frequency, with the beat frequency given by the magnitude of the small,

resonant perpendicular field. In practice the cancellation is not complete because of field

inhomogeneities that cause the signal to be not completely resonant with every atom. Figure

13.11B shows the measured signal for a perpendicular field sinusoid of a larger amplitude

(but equal resonant frequency) than the case of figure 13.11C.

In the short-time limit of figure 13.11C, shown in figure 13.11D, notice that the signal

is simply a sinusoid of linearly increasing amplitude masked by optical shotnoise. Thus

when performing magnetometry at small times, one needs to derive the field from the slope

of the sinusoidal amplitude rather than just the slope as in the DC case of figure 13.2D.

To perform quantum limited magnetometry, discussed in chapter 10 for the DC case, one

should use stroboscopic measurement as discussed in the next chapter.

In this experimental scenario, without a perpendicular magnetic field applied, one can

vary the holding field to observe the ambient field fluctuations at particular frequencies

(using an FFT of the signal to identify frequencies in the neighborhood of the DC field

frequency). The sources of these high-frequency fields are further discussed in appendix A.



240

Figure 13.11: A continuously observed magnetic resonance signal. (A) The geometry of
the measurement. A large field (100 kHz/γB4) is applied along x, where the spin-state
begins. A small field, resonant with the large field, and of varying amplitude is applied
along y causing the spiraling motion of the spin-state. (B) The small resonant field has an
amplitude leading to a 4 kHz beatnote frequency. (C) The small resonant field has a smaller
amplitude leading to a 1 kHz beatnote frequency. (D) A zoom in of the previous figure,
showing the sine wave with linearly increasing amplitude. For all of these measurements,
the probe beam was of power 50 µW, radius 1.1 mm, and detuning 1 GHz and the low-power
detector was used. The signal was amplified and filtered with a low-pass at 1 MHz. The
optical depth was around 20.



241

Chapter 14

Quantum Data

In the previous chapter, we presented several experimental measurements that confirmed the

single-atom, semiclassical theory of the interaction Hamiltonian between the cold atoms and

the optical probe beam. Now we turn the focus to the fully quantum, collective description

of the experiment, which accounts for the fact that all atoms simultaneously interact with

the same probe beam. As discussed previously, the full description predicts that, for a

sufficiently optimized experiment, the collective atomic state should impart projection noise

onto the probe beam that, when detected, implies the conditional preparation of collective

spin-squeezed states. With the observation of this projection noise being the ultimate goal,

this chapter discusses the technical experimental difficulties in this pursuit and proposes

various techniques to overcome them.

We begin by reviewing the expected behavior of the projection noise and how it relates

to conditional spin-squeezing. Next, to place our work in the context of the larger commu-

nity, we briefly summarize the particulars of other experiments in the field that have aimed

to produce spin-squeezing. The basic technical noise sources and limitations are then intro-

duced including detector and magnetic field fluctuations. Two regimes of the experiment

are then considered in contrast. First, we consider the most basic low-frequency (“DC”) ver-

sion of the experiment. Our initial experiments were of this type, and we discuss why those

experiments were both flawed and technically limited. Second, we consider a high-frequency

modulated (“AC”) version of this experiment using a magnetic resonance configuration that

in principle removes the primary obstacle of low-frequency detector noise. This technique

draws inspiration from “stroboscopic QND” proposals originally introduced in the context

of measuring quantum harmonic oscillators below the standard quantum limit.

While, in the end, we fail to prepare well characterized spin-squeezed states, the tech-
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Figure 14.1: Schematic depicting conditional preparation of spin-squeezed states due to
filtering of noisy measurement record (DC Scheme).

niques developed here will hopefully play a role in future work that does prepare correlated

atomic states via measurement for use in metrology applications.

14.1 Ideal Shot Noise and Averaging (DC)

Here we summarize the ideal scenario for producing spin-squeezed states via the dispersive

interaction with and QND measurement of a polarized probe beam. The basic theory of

this concept was analyzed in detail in chapter 9 where the (experimentally difficult) long-

time limit was also considered. And in chapter 8 we related this idealized theory to our

physical Faraday rotation experiment with multilevel cesium atoms, deriving the relevant

signal-to-noise ratio that predicts the expected degree of squeezing.

We again refer to the standard configuration of figure 14.1, where the spin-state is ini-

tially aligned along x. The probe beam propagates along the z-axis, linearly polarized

along x. The quantity Ŝy is then measured with the polarimeter. As seen in figure 14.1

we expect the statistics to be such that white optical shotnoise masks a constant offset

(atomic projection noise) on every trial. This offset is nominally constant within a trial

(neglecting decay), but between trials the offsets are random and the standard deviation of

this projection noise distribution is proportional to the number of atoms measured. Con-

ditional squeezing amounts to no more than averaging away the optical shotnoise to reveal

the underlying constant with increasing certainty. Thus, the observation of the projection

noise for a single sample under this idealized scenario is equivalent to the preparation of a
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conditional spin-squeezed state.

From chapter 8, the degree of squeezing expected is

W ≡ 〈∆F̂ 2
z 〉t

〈∆F̂ 2
z 〉0

(14.1)

=
1

1 + SNR2 . (14.2)

For a coherent state of N spin f = 4 atoms, the signal-to-noise ratio is given as

SNR2 = ηOD
τsc
τss

(14.3)

where the optical depth is OD = Nσ0/A = ρLσ0, A is the cross sectional area and L

the length of the cloud. The decay timescale τsc is given by equation (5.46) and the spin-

squeezing time is given by equation (8.38) and the ratio discussed in section 8.2.4.

As we have discussed, maximizing the optical depth is critical for achieving a measurable

degree of spin-squeezing in free-space. However, the experimental game is not exactly that

simple as there are many other technical points to consider. The probe interaction must

be strong enough that the spontaneous emission timescale τsc is dominant relative to the

other sources of decay (e.g., atom diffusion). Furthermore, we must ensure that we work in

a regime where the tensor interaction (and possibly related propagation effects) does not

destroy the simplified description above. Finally, there are sources of optical and magnetic

field noise that could potentially obfuscate the observation of projection noise entirely.

Once all of these problems are eliminated and the projection noise identified with cer-

tainty, several additional experiments trivially follow, e.g., quantum limited magnetometry

(chapter 10) and quantum feedback for deterministic state preparation (chapter 9 and [15]).

However, the purpose of this chapter is to not get ahead of ourselves and to focus on the

unambiguous identification of the projection noise.

14.2 Status of Experimental Atomic Squeezing

Here we briefly review the status of experimental progress creating large scale atomic en-

tanglement as was touched upon in a larger context in section 1.3.

Certainly the most developed means of entangling a handful of particles has been in ion
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trapping groups around the world, e.g., [40]. However, in parallel to these developments,

there has been much work in the last decade in entangling a large collection of atoms at once.

The idea behind the experiment of this thesis is perhaps one of the simplest for achieving this

kind of mass entanglement. Much of the current literature cites as the first demonstration of

spin-squeezing the work of [37], which is similar to our effort in some respects but crucially

different in many others. That experiment did not prepare a single sample of atoms in one

squeezed state. Rather it claims to have measured the (antisqueezing) enhanced projection

noise from subsamples of a room-temperature cell full of atoms, which is concurrently

pumped and probed. Furthermore, the experiment used a magnetic field to observe this

projection noise at high-frequencies but without the stroboscopic considerations discussed

below. Thus, the end result of their measurement is a thermally mixed collection of atomic-

subsamples, each of which has been measured but in a non-QND manner. In contrast, we

aim to prepare a single sample of atoms all of which are collectively squeezed into (ideally)

a pure squeezed state as the conditional result of a single-shot measurement pulse.

Also within the past decade, there has been much highly publicized work by the Polzik

group where two ensembles are entangled into two-mode squeezed states via a common

measurement pulse [36]. This work supposedly avoids the above thermal subsample problem

by pumping and probing the samples sequentially in time and measuring all of the atoms

with a combination of a large beam and appropriate timescales. More importantly, this

work uses a trick that allows them to perform a truly joint variable QND measurement at

a high frequency by applying independent and opposite magnetic fields to each cell. (The

Polzik group has also reported the preparation of a spin-squeezed state in a cold atomic

cloud via the absorption of a squeezed optical beam [39].)

Our work is different from both of the above in that we work with cold atoms and

aim to prepare a single squeezed state. Several other groups are similarly interested in

measuring the state of a cold atom cloud continuously in time, including the Jessen group

[24, 25, 46] and the Takahashi group [43, 44, 173]. However, while both of these groups

have continuously observed spin dynamics, as we have presented in chapter 13, they have

not yet observed quantum projection noise.

Along with [37] another work that is commonly cited as an experimental demonstration

of spin-squeezing is our own work [27] and the following magnetometry paper [28]. Be-

low, in particular section 14.4, we explain why this work is flawed and discuss subsequent



245

improvements.

Several groups are continuing this work currently. The Polzik and Jessen groups are

extending this scheme to the clock transition [45, 46], while the Kasevich group is developing

the means to perform these measurements in a cavity [47] where much more squeezing is

possible.

14.3 Technical Issues (DC and AC)

The idealized quantum measurement scenario presented above is complicated by several

technical issues and constraints. Here we go over the various problems and potential solu-

tions before presenting experimental attempts to observe atomic projection noise.

14.3.1 Polarimeter Noise

In the simplified measurement scenario above, the quantum projection noise on a given

trial is represented by a random DC offset. Clearly, if there is low frequency technical

noise on the balanced polarimeter detector of a nonatomic origin, this noise will mimic

and hence obscure any underlying quantum fluctuation. Indeed such low-frequency noise

(e.g., 1/f noise) is prevalent in all of experimental science, hence the prevalent use of high-

frequency modulation schemes, lock-in amplifiers, etc. Unfortunately, in some quantum

limited measurement scenarios, broadband detection and control is necessary, for example

in the “adaptive phase measurement” experiment of [12]. In this section we identify the

sources of this detection noise in the polarimeter detectors described in section 11.6 and

possible ways to avoid this technical problem.

As mentioned previously, we have two sets of balanced polarimeter detectors in use, one

of which is capable of operating at relatively high optical powers. The currents from each

of the two photodiodes in a detector are subtracted prior to a transimpedance amplifier

such that in unbalanced configuration the detector can only take so much power before

the amplifier rails, whereas in nearly balanced configuration (with nearly equal powers on

each detector) the nominal signal is zero and the detector can take much more power. As

the powers are increased in balanced configuration the response of the detector eventually

becomes nonlinear due to a variety of effects including heating and diode current supply

issues. Also technical noise fluctuations on the polarimeter become so large that they
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imbalance and rail the detector. Our detectors are optically shotnoise limited over their

broad bandwidth between two powers. On the low end, the not-quite-white electronic noise

floor sets a bound, and at a particular noise equivalent power (NEP) the optical shotnoise

equals this native noise. On the high end, the detector nonlinearities set in and the noise

floor is no longer due to primarily the optical shotnoise. In between these powers, the

white noise floor from detection of the probe beam scales as the square root of the power

as previously discussed. For our “low-power” detector, the NEP= 1 µW and the detector

becomes nonlinear around a mW (bandwidth is DC to 1 MHz). For our “high-power”

detector, with significantly larger photo-diodes, the NEP= 1 mW and it becomes nonlinear

around 30 mW (the bandwidth is 0 to 5 MHz).

To balance the detector properly, one should do more than zero the DC output of the

detector because amplifiers and other effects can add a DC offset. Therefore the best way

to zero the signal is to sinusoidally modulate the power of the probe beam (at relatively low

frequencies) and align optical elements until the amplitude is minimal. The balancing is

typically performed by simply tweaking the waveplate prior to the analyzer beam-splitter.

One could also balance by changing the effective efficiency of one of the detectors (e.g., by

adjusting a circuit element within the detector), but this should not be done by adjusting

the alignment of a beam on one of the photodiodes as this will possibly exacerbate pointing

noise fluctuations. It should be noted that we are interested in relatively low-frequency

balancing (less than the MHz bandwidth of our detectors), thus we do not necessarily need

phase-matching elements between the photodiodes within the detector (as are used, for

example, in the high frequency heterodyne detectors of the Kimble lab optical squeezing

experiments).

Even in an aligned and balanced configuration, it becomes clear from the amplified

(nominally zero) output that there is a small, but significant amount of low-frequency noise

on the signal, which, as mentioned above, can obscure the desired quantum fluctuation sig-

nal. For typical atom numbers in the experiment, this amounts to resolving the polarization

rotation to less 10−5 degrees and the technical noise is generally much larger. The amount

of experimentally observed low-frequency noise is indicated in figure 14.3 and corresponds

to a fluctuation of order 10−2 degrees of optical rotation. The details of this figure are

discussed further later where this noise is compared to the superior high-frequency noise

levels.
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The low-frequency noise offset noise is potentially caused by various effects. For smaller

photodiode detectors, one must ensure that the diode is detecting all of the light and slight

pointing fluctuations will not affect the balancing significantly. Even for larger diode detec-

tors, there may be native polarization fluctuations or pointing noise that gets translated into

polarization fluctuations. This is not entirely surprising as the beam passes through many

elements (reflective and transmissive) that can potentially cause polarization and/or point-

ing noise over the long timescales observed (greater than 0.1 s) via mechanical and thermal

effects. Slow mechanical fluctuations of the vacuum apparatus (with non-AR coated inter-

faces) and optical elements are one possible source, which could be improved with better

mechanical stabilization (passive or active). Air-current density fluctuations are also a pos-

sible source of noise, which could be improved by surrounding the apparatus in a controlled

gas environment. The expected order-of-magnitude of this effect has not been calculated

by us, but other labs have reason to believe it is important for sensitive detection. Pointing

noise can also be caused by the AOM, which serves as a shutter for the light beam (with the

probe beam coming from the first-order beam). With all of these suspicions, I attempted

to reduce the measured fluctuations with a test setup where the beam was sent through an

optical fiber after the AOM and immediately into the polarimeter with minimal interven-

ing optics. Although this effort was not exhaustive, improvements in the offset noise were

marginal at best.

Signal noise can also come from frequency noise on the probe light translated into am-

plitude and/or polarization noise on the post cell beam by way of interacting (by absorption

or phase shift) with the room temperature thermal distribution of atoms and slightly im-

perfect optical balancing. This effect is much worse at the maximally sloped region of the

absorption profile at several hundred MHz detuning. In practice, the New Focus Vortex

probe laser has frequency fluctuation of a few MHz in depth at near kHz modulation rate

and the problem obviously becomes worse closer to resonance. One could minimize this

sort of problem (and speed up the MOT loading time) with nonthermal, beam loading of

the MOT (e.g., with a separate two-dimensional MOT), but this technical improvement has

been put off for subsequent generations of the experiment.

Other possible sources of noise include imbalanced detection of background light (al-

though this is not likely given attempts at shrouding the detectors) and also an unidentified

source of low frequency noise from the detector electronics present only when the photodi-
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odes are generating current.

We point out that, depending on our goal, we do not need to completely remove tech-

nical offset noise because it is possible to observe projection noise on top of the technical

noise. In this case however, the smaller the relative difference between the size of the noise

levels, the more data are needed to resolve them. And if the technical noise is larger than

the expected quantum projection noise, this means that we may be able to observe the pro-

jection noise but not prepare conditional spin-squeezed states due to the ignorance imposed

by the technical offset.

Now we turn to possible solutions for eliminating or avoiding the technical low-frequency

detection noise. First, because of the fact that some technical noise becomes worse with

increasing power, one might be inclined to work at lower powers. However, the experiment

demands that the overall measurement time should be approximately the spontaneous emis-

sion decay time and to keep this less than technical atomic decay timescales, the probe power

needs to be sufficiently large. Alternately, one could decrease the power and decrease the

detuning, but then the tensor Hamiltonian complications come into play, as discussed be-

low. As mentioned in section 8.1.4, it is possible to do some detection tricks whereby the

overall power detected is decreased (and polarization rotation “magnified”) at no cost to

the signal-to-noise ratio. However, when using this technique, the electronic noise floor

becomes effectively larger and eventually the detection is no longer shotnoise limited.

Another technique involves subtracting a reference offset signal on every trial, i.e., the

atomic and technical offset are measured, the atoms quickly removed, then just the technical

offset measured. The atomic signal is then extracted on a per-trial basis from the subtracted

signals. As long as the technical noise fluctuations are slow enough, this will be an effective

method. However, the reference signal needs to measured and averaged for much longer

than the atomic signal such that the subtraction does not add shotnoise related noise to the

result. When the atomic measurement time needs to be practically of order a millisecond

and the reference time much longer, in practice it becomes difficult to maintain the slow

fluctuation assumption this technique requires.

Finally, we discuss the potential for modulation schemes to avoid low-frequency noise

sources. As with all modulation schemes one needs to modulate the probe such that only

the system of interest responds at that same frequency. However we must also be mind-

ful of whether the desired quantum measurement dynamics are retained under the new
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measurement scheme.

As the first modulation scheme, we consider frequency modulation, with inspiration

from successful techniques in cavity based spectroscopy (e.g., NICE-OHMS). Suppose in

our case that the probe frequency is modulated (e.g., by a depth of several MHz about an

overall detuning of a several hundred MHz) at a rate of a few hundred kHz. In reference to

the signal prefactor theoretical plot figure 6.2B or its experimental confirmation in figure

13.8, the frequency dither would map to a modulation of the vector coefficient prefactor

along some point of the dispersive spectrum. There are a few problems with this technique.

First, if we dither about an arbitrary detuning center point where the signal is nonzero, and

keep only the sinusoidal dither component, we will be throwing away the DC signal, which

contains information about the state, thus significantly reducing the effective quantum

detection efficiency of the measurement scheme. In contrast, if we were to dither about the

4–2’ point in figure 6.2B where the vector coefficient crosses zero, then the loss of effective

efficiency would not be a problem, with the additional benefit that the tensor coefficient

is also zero near this detuning (figure 6.2C). Second, the cold atoms may not be the only

element along the beam path that responds to the frequency dither. The background gas

absorption (along with imperfect balancing), frequency dependent power fluctuations on

the probe laser, and etalon effects may all create a noisy background signal at the desired

dither frequency.

As the second modulation scheme, we consider the stroboscopic Larmor scheme, dis-

cussed in detail below in section 14.5. As opposed to the above scheme, this technique has

the advantage that the frequency signal is created with a DC field. As a result, neither

the unpumped background gas (nor any other element) will create a response signal at the

expected Larmor frequency of the cold atoms. However, to retain the QND nature of the

measurement the probe light has to be strobed at twice the Larmor frequency.

Indeed, there be a more clever or practical means of avoiding low frequency noise sources

than is discussed in this section. However, we hope to have given the reader some sense

of the challenges in detecting quantum fluctuations in from a technically noisy dispersive

measurement signal.
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14.3.2 Magnetic Field Noise

From figure 13.2D in the constant field case (and figure 13.11D in the high frequency field

case) it is clear that the application of an unknown, random magnetic field will also degrade

the amount of spin-squeezing or make it altogether impossible depending on the estimation

procedure used.

In Table 10.2 we quantify the degree to which spin-squeezing is obscured when perform-

ing simultaneous spin and (constant) field estimation. While the field and spin estimation

noise decouples after some timescale (from the other’s prior), it is generally prohibitive to

have too much field noise present when trying to create a conditionally spin-squeezed state,

especially when that preparation is marginal to begin with.

In appendix A we go into more detail on the field cancellation required and techniques

for managing the magnetic field. Here we summarize only a few points pertinent to spin-

squeezing. The larger number of atoms present, the smaller the subtended uncertainty angle

is for the variance at the end of a coherent state, thus the smaller the field fluctuations

must be to observe squeezing. Strategies that we have employed to reduce field fluctuations

include both passive shielding, cursory attempts at active shielding, and line-locking the

experiment to the 60 Hz frequency of the lab power supply. One further approach is to

increase the measurement rate to be high enough that field does not have time to rotate the

state significantly over the course of the measurement. However, this requires more optical

power (and detection capabilities) than what we currently have.

An advantage of the high-frequency modulation scheme described below, in addition to

the negation of low frequency detector noise, is that the spins are only sensitive to fields with

a frequency in the vicinity of the Larmor precession frequency given by the holding field.

Thus, not only can one move away from the noisy low-frequency region, but the particular

frequency band can be chosen to be one that happens to be relatively quiet. Below we

discuss how the high-frequency spectrum is measured with the spins and how a sufficiently

quiet working frequency is chosen.

14.3.3 Tensor Dynamics

In section 7.2, we calculate the dynamical effects of the tensor Hamiltonian on the first

and second-order moments describing the collective spin-state. From that analysis, it is
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clear that close to resonance the tensor dynamics are capable of destroying the simple

QND description described earlier, no matter what the relative polarization orientation is.

Although the single atom evolution is not influenced by tensor terms for a perfectly aligned

system (with probe polarization parallel to the spins, see section 6.7), the collective tensor

terms appear for any orientation. Furthermore, slight misalignments of even the single-

atom master equation will lead to non-QND effects near resonance. Coupled with technical

atom number fluctuations, the tensor Hamiltonian can confuse the interpretation of the

data significantly.

There are several strategies available for resolving this issue. With all of them the

range of applicability, e.g., for metrology applications, is modified, but the primary aim is

producing squeezed states in some basis. First, one could simply work with a truly two-

level system such that the tensor dynamics do not exist in the first place, such as the clock

transition [45, 46]. Second, the initial state of the system can be manipulated such that the

dynamics are effectively two level, as in [112]. Third, the parameters of the system (e.g.,

spin direction, or probe frequency) could possibly be adjusted in time such that the tensor

dynamics (at the quantum level) cancel and only the vector dynamics remain, in analogy

to the magic angle technique demonstrated in section 13.2. Such a technique would ideally

allow one to take advantage of the better scattering timescale to measurement timescale

close to resonance (see section 8.2.4) without worrying about the tensor dynamics.

The final strategy is to simply work at a large enough detuning that the ratio between

tensor and vector Hamiltonian components is sufficiently small (see figure 6.4). The primary

drawback here is that it takes a significant amount of optical power to keep the measurement

time small compared to other decay timescales.

Even for the high-frequency scheme considered below, at relatively large (few GHz) de-

tunings, the tensor Hamiltonian introduces dynamics that, combined with atom number

fluctuations, leads to noise that masks the desired quantum projection noise signal. Mea-

surements demonstrating the effect (and how it is used to align the system) are presented

in section 14.5.2.

14.3.4 Atomic Calibration and Optimization

When attempting to observe the atomic projection noise, it builds confidence in the final

results to have as many independent calibrations of the experiment parameters as possible.
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In our case, it is critical to know the probed atom number to know where to expect the pro-

jection noise level should be. Ideally, the measured projection noise would not only be near

the independently calibrated theoretical expectation, but also scale in the appropriate way

as the number is increased. Unfortunately, in free-space, when small amounts of squeezing

are expected, the dynamic range in the number over which the scaling can be tested will

not be great.

In principle the atom number can be calculated from the dispersive measurement of

the optical depth (through the height of the Larmor precession trajectory) and knowledge

of the beam and atom cloud size. To double check these numbers one can use the same

probe beam to measure the absorption induced by the atoms, either at a single frequency

or with a frequency sweep as discussed in section 13.1.2 for atoms in the steady-state trap

or as they diffusively fall. At the same time, we can measure the resulting fluorescence

with a detector off the axis of the initial beam, which should match the in-line absorption

measurement by energy conservation. The nice thing about these measurements is that they

measure the atoms that the probe beam actually sees. As a final check, one can measure

the total number of cold atoms (some of which the probe beam detects, some of which it

does not) with fluorescence detection from the MOT beams themselves. This, along with

spatial imaging of the MOT cloud, gives an indication of the size and density of the cloud,

which combined with knowledge of the probe beam size can be used to get a final estimate

for the probed atom number. When comparing all of these techniques, it is important

to distinguish measurements that are performed under different conditions (continuously

trapped versus free falling, optically pumped or not, etc.).

Given an experimental scenario with constraints (such as a limited optical trapping

power budget), the goal is then to maximize the observed number and, more importantly,

the optical depth. In chapter 12 and chapter 13, we allude to many of the techniques we

have tried. The available options include adjusting the geometry of the trap (e.g., to create

a large optical depth cigar shaped cloud), the steady-state trapping technique (e.g., MOT

versus dark-SPOT), and post-trapping transient techniques (e.g., cooling and compression

via magnetic field gradients).
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14.3.5 Trade-offs and Choosing Probe Parameters

In summary, we can use the following procedure to pick the probe parameters for our spin-

squeezing experiment, minding various technical trade-offs and constraints. We first choose

the measurement timescale we wish to work with. Because of the finite bandwidth of the

detectors and the acquisition rate of our computer card (and the bandwidth of potential

feedback actuators), we desire the measurement time to be significantly greater than 1 µs.

However, because of the timescale of decay is limited to several milliseconds (see figure

13.6) by technical factors such as atomic diffusion we want to keep the measurement time

smaller than this so that the measurement is spontaneous emission limited. We also want to

keep the measurement time short to avoid the long-term influence of undesired background

fields.

Now three parameters go into the measurement timescale (spontaneous emission given

by equation (5.46)), the probe detuning, power, and cross sectional area. If our strategy is

to avoid the tensor effects, then we desire the detuning to be large (∆ � 300 MHz) such

that the ratio of tensor to vector coefficients is small (given in figure 6.4). However, we

cannot make the detuning very large because for one, we have a limited power budget to

keep the timescale sufficiently small, and two, we eventually run into measuring the f = 3

state close to 9 GHz if the probe is blue detuned (see figure 3.1).

As for the area of the probe beam, we can consider two options. In the first, we can

choose to measure all of the atoms in the cloud at once, making the area of the probe beam

just greater than the cross sectional area of the atom cloud (typically of scale mm to cm).

This is aesthetically and functionally pleasing as including all atoms ignores the issue of

subensemble mixing (by diffusion) and thus the sample stays squeezed for longer after the

state preparation. In contrast, one could make the area of the beam much smaller than

the cross sectional area of the atom cloud, but still large compared to the wavelength to

avoid extreme diffraction issues. This is possibly appealing for the reason that given a fixed

power budget we can make the measurement time short by reducing the area to increase

the intensity. Furthermore, this decreases the number of atoms used and thus increases the

relative size of the atomic projection noise. However, one must be mindful of the atoms

diffusing between the measured and nonmeasured regions as discussed in section 12.6. In

practice, we typically keep the beam large for this reason.
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After setting the desired timescale, detuning, and beam size, the probe power is then

determined and is often in the range of many mW. First, one needs to ensure that the

resulting intensity and detuning do not violate the weak saturation parameter condition

(equation (5.25)) necessary for the adiabatic elimination procedure and dispersive interac-

tion to hold up as a valid approximation. The goal is then to build an optical shotnoise

limited detector for this power, with an electronic noise floor (NEP) sufficiently below the

desired power optical shotnoise over a bandwidth acceptable for the experiment (e.g., DC to

several MHz). Of course, one must also build a laser that can supply this power cleanly, as

we have done with the master slave setup described in section 11.6. For power in the range

of several mW, large mm scale photodiodes are necessary to ensure a linear response. For

larger powers, one could make the diodes larger, but then the capacitance becomes larger

and the detector bandwidth begins to suffer.

14.4 Low-Frequency Measurement (DC)

Here we consider the pursuit of the basic nonmodulated spin-squeezing scheme. In the end,

the technical complications of our experiment have prohibited the possibility of observing

DC spin-squeezing. We explain this disappointing result in the historical context of our

previous papers where we temporarily believed otherwise [27, 28]. In the next section, we

consider a modification of the experiment to high frequencies to avoid low-frequency sources

of noise.

Because we want to avoid non-QND tensor Hamiltonian complications (seen, e.g., in fig-

ure 5.2C-D) it makes the most sense to measure the atoms with a probe detuning much larger

than several hundred MHz, which requires powers larger than a mW (for mm size beams)

to keep the spontaneous emission the dominant source of decay at millisecond timescales.

At these large powers, the offset noise fluctuations are simply dominant and much larger

than the expected atomic projection noise. Magnetic field fluctuations and residual tensor

Hamiltonian induced dynamics are also a large concern, but the primary limiting factor

is the low frequency polarimeter offset fluctuations. Using all of the techniques discussed

above, I could not reduce this technical noise below the expected atomic projection noise

level even at small µW level powers. This, in retrospect, is the simple motive for moving

to the modulation scheme of the next section, although this fact has been significantly
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obscured by premature conclusions about the capabilities of our experiment.

Historically, our understanding of the experimental limitations and results has been

convoluted to say the least. Our initial Larmor measurement results were consistent with

the semiclassical results of the last chapter, although we had then misunderstood many

effects. At the time, although crude two-level approximations existed, we had not derived

the expected multilevel atomic signal and noise levels, and neither did we appreciate the

non-QND role of the tensor Hamiltonian at the near-resonance probe detunings we were

using. However, we proceeded with the näıve QND model working at an arbitrary set of

probe parameters.

As a result of measurements taken by JM Geremia near the end of 2003, we then quickly

published the work of [27], which appeared to show projection noise and hence conditional

spin-squeezing. Although the claims were somewhat tempered and the work was not entirely

calibrated, the paper gave the unmistakable impression that spin-squeezing enhanced by

real time quantum measurement control had been achieved. In addition, the work claimed

the observation of the antisqueezing side effect of the measurement and magnetic field

feedback was used to make the process more deterministic. Following on these results, a

paper implementing the scheme to perform magnetic field estimation in the presence of the

supposed projection noise was eventually published [28]. Unfortunately, it is now apparent

that there are many reasons to doubt the quantum-level claims of these papers, a few of

which we mention here.

In the course of the following two years, I resumed control of the experiment and began

to work out the detailed theory of the atom-light interaction resulting in much of this thesis.

Inspired by the Jessen group observations [24], I eventually confirmed experimentally the

predicted tensor dynamics as seen in both [29] and, more completely, the results of the

chapter 13.

After attempting to reproduce the squeezing results, it became clear that our previous

work [27, 28] can be disputed on many levels. First, regarding the experiment, it appears

now that the technical polarimeter noise (discussed above), among other problems, prohibits

spin-squeezing at experimentally feasible atomic and probe parameters. Second, ignoring

technical noise and comparing the results of [27] to the updated atomic theory alone, it

is clear that there are several inconsistencies. Regarding the supplemental information

section of [27] there is an error in which the signal-to-noise ratio is taken with respect to
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the full scale signal (〈F̂z〉 ∝ N) as opposed to the coherent state noise (
√
〈∆F̂ 2

z 〉 ∝
√
N),

although the calculated numbers given there seem to reflect the latter adjustment. (The

correct derivation of the SNR is given in section 8.2.3.) Despite this error, for the fixed set

of probe parameters, the crude two-level theory given in the supplement roughly gets the

same order-of-magnitude signal and noise sizes (and decay times) as the updated multilevel

theory. (However, the updated theory should obviously be used to get precise results for

general probe parameters.) The primary problem with [27] is that the atom number cited

therein (1011) is nearly two orders of magnitude larger than what can currently be achieved

(around 3×109) with our experimental parameters. As discussed in chapter 12, the smaller

number is also more in line with theoretical expectations for the trap parameters. If one

could possibly achieve this larger atom number then (ignoring technical noise) one could

expect an SNR2 of order unity for averaging times near 10 µs and much greater for the

larger spontaneous emission limited timescale (of order milliseconds). Even if this atomic

number (and the absence of technical noise) were correct, there is still a large discrepancy

between the apparent observed squeezing (several dB) and the smaller amount expected

from theory for the short measurement times used. Also, the averaging procedure of [27],

only calculates statistical correlations using 10 µs windows even though the probe beam is

on prior to these windows for 40 µs. In other words, not all of the measurement record

available is used in the statistical analysis. Thus one expects much more antisqueezing than

was observed and the squeezed/antisqueezed uncertainty product should have been larger.

The anomalously large atom number of 1011 cited in [27] implies an on-resonance optical

depth of 8700, which is much larger than the parameters achieved in more well-equipped

experiments (see section 12.4) and would cause a full-scale Larmor precession signal that

completely rotated the optical rotation by thousands of degrees at typical probe detun-

ings. I have never observed either absorption or dispersion calibrations indicating this atom

number and the typical results I have seen are two orders of magnitude smaller as shown

in chapter 13. Even if the trap did contain this large number of atoms, independently

observed magnetic field noise would randomly rotate the spin by much greater than the

coherent state projection noise angle during the measurement time, obscuring the quantum

noise severely.

Finally, these papers do not address at all the possibility of unconditional evolution of the
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uncertainty distributions. In figure 5.2 we see that the single-atom uncertainties can increase

due to the tensor dynamics (perpendicular polarizations) and/or the spontaneous emission

(parallel polarizations). Furthermore, the results of section 7.2 indicate that the many-atom

uncertainties can evolve in entirely nontrivial ways (for both parallel and perpendicular

polarizations) due to the non-QND tensor Hamiltonian close to resonance. It is a telling

sign of the confusion in the previous work that the dependence of the spin-squeezing on

the measurement time and the effect of the decay and tensor effects on the uncertainty

distributions are not investigated at all.

If the source of the statistical fluctuations were not true projection noise, then the

question remains, “What caused the state-dependent statistics?” I did not take the data,

however, it could have been related to a semiclassically driven nonzero signal (from tensor

dynamics) coupled with classical noise fluctuations (in the polarimeter offset and/or atom

number).

In summary, the work of [27, 28] is flawed because an overestimate of the likely atom

number was used, there exist unknown reasons for the measurement statistics matching

a näıve theory with that atom number, non-QND tensor Hamiltonian and spontaneous

emission effects were not adequately considered, and the expected effects of independently

observed technical noise were not accounted for. The claims of [27, 28] were over stated

and these papers should not have been published as they are currently written. Due to the

litany of problems and confusion surrounding this early work, much of my subsequent time

in the lab was spent pursuing the modulation scheme presented in the next section.

14.5 High-Frequency Measurement and Oscillator Dynamics

(AC)

To avoid the pervasive technical noise in the spin-squeezing scenario above, we now introduce

a scheme to create spin-squeezed states using resonant high-frequency modulation of the

spin-state and probe light. In section 13.7 and appendix D, we have already discussed

and demonstrated the dynamics of the semiclassical spin-state undergoing evolution in the

presence of a large magnetic field, initially parallel to the coherent spin-state direction, as a

small resonant time-varying magnetic fields are applied along the perpendicular direction.

Now we consider the same basic scheme but without time-varying fields and with a focus
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Figure 14.2: The stroboscopic measurement scheme. With the spin-state aligned along
x, a parallel constant magnetic field causes the spin uncertainty distribution to oscillate
at a frequency ω0. The probe intensity is modulated sinusoidally at a frequency of 2ω0,
such that the spin-state is measured with max intensity when the squeezed axis lines up
with the measured axis and with minimum intensity when the antisqueezed axis is along
the measured axis. With the probe on continuously the measurement is not QND, but by
strobing it the measurement can be made more effectively QND.

on the quantum dynamics of the collective spin-moments in the yz-plane, as shown in figure

14.2.

This configuration approximately “simulates” a harmonic oscillator as follows. The

collective spin-state is initially pumped into a coherent spin-state along the x-axis, with

possibly some small deviation from the “origin” of 〈F̂y〉 = 0, 〈F̂z〉 = 0. When a magnetic

field B0 is applied along the x-axis, the small y- and z-components will oscillate into each

other at a frequency ω0 = |γfB0|. If we somewhat artificially define the quantum operators

for “position” and “momentum” as

X̂ =
F̂z√
〈F̂x〉

(14.4)

P̂ =
F̂y√
〈F̂x〉

(14.5)

where F̂x ≈ F is approximated as a classical number, we see that the dynamics and commu-

tator properties of the system are equivalent to that of a harmonic oscillator with natural

frequency ω. As long as the measurement and magnetic field dynamics ensure that the

collective spin-state remains in the local region around 〈F̂x〉 = F , 〈F̂y〉 = 0, 〈F̂z〉 = 0 then

this analogy will hold. Essentially, the states are restricted into a local phase space that

does not extend far with respect to the curvature of the sphere, and hence appears locally

flat. This Gaussian approximation is discussed in more detail in section 9.7. Now if we
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include the measurement of X̂ (or F̂z), then we see that the position distribution is initially

squeezed some, but then the harmonic oscillator Hamiltonian rotates the antisqueezed mo-

mentum distribution into the measurement direction. In other words, the measurement of

position is no longer QND because the measured variable no longer commutes with the full

Hamiltonian.

The solution is to use stroboscopic measurement to squeeze the position over timescales

longer than the period of the oscillator. The idea is to only turn on the probe of the position

(stroboscopically) at times tn = nπ/ω0 (with n integer), when the squeezed distribution is

aligned with the measurement axis. Using a strobed measurement to measure oscillator

below the standard quantum limit is an idea that dates back to papers from the 1970s and

1980s in relation with LIGO, where the goal is to measure gravity waves via the displacement

of the position of an interferometer mirror [78, 41]. More recently, the idea has been

presented in the context of measuring nanomechanical oscillators with continuous quantum

measurement [174]. The basic conclusion in these latter papers is that when one expects a

larger degree of total squeezing, the duty-cycle of the measurement should be made smaller,

i.e., the measurement pulse time should be made smaller relative to the oscillator period.

For small amounts of squeezing, a sinusoidal probe power is expected to be adequate.

In the case of the spin-simulation, oscillating perpendicular magnetic fields play the role

of harmonic oscillator forces. In appendix D, this is analogy holds true for short times,

as demonstrated in figure 13.11D. The analysis of noise in the stroboscopic scheme is also

presented theoretically in appendix D.

In the following sections, we consider two distinct modes of measurement. For the first,

we consider performing the measurement in an explicitly non-QND way, with a holding

field but with a constant probe intensity. In this case, the measurement record is still

analyzed at the appropriate high frequency (given by the field), but the probe beam is not

strobed. Our strategy is to first use this scheme to eliminate technical sources of noise and

reach a regime where projection noise is expected. Given this success, our next goal is to

then move on to strobing the probe light and observing projection noise in a more QND

manner. It remains an open question what the best way is to observe the projection noise

in the constant probe, non-QND scene. As opposed to the QND scenario where the spin

effectively assumes a constant offset masked by shotnoise, in this case the spin projection

will diffusively wander with competing dynamical timescales given by the measurement rate
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and the Larmor frequency.

The rest of this chapter proceeds as follows. In the next section, the advantages of the

high-frequency scheme are considered, and experimental noise cancellation demonstrated.

We then detail the tensor Hamiltonian induced complications that occur if the system is not

very precisely aligned. In section 14.5.3, we demonstrate the high-frequency (but nonstro-

boscopic) measurement of the collective atomic state and show how close the experiment

is to being atomic projection noise limited. Finally, in section 14.5.4, we summarize our

progress with stroboscopic measurement.

14.5.1 High-Frequency Advantages and Disadvantages

In this section we consider the experimental details of the stroboscopic detection scheme

and discuss its practical advantages and disadvantages. Many of the specifics for the data

processing of the stroboscopic signals are left to appendix D.

In practice, the strobing of the probe beam is controlled by modulating an AOM with a

beatnote generated by mixing two high quality signals of slightly different frequencies (see

section 11.6). The signal generators are synchronized with the rest of the experiment and

the probe is modulated at the beatnote frequency. The holding field Larmor frequency is

tuned to be half of the beatnote frequency by observing large angle Larmor precession about

the holding field and adjusting the magnetic field size to maintain this resonance condition

for the lifetime of the atomic signal. We then extract the sine and cosine quadratures (at the

Larmor frequency) from each signal trajectory and average the in-sync quadrature to obtain

the estimate of the spin amplitude as detailed in appendix D. Noise variance statistics are

then calculated and compared to the theoretically expected noise levels from independent

calibrations.

First and foremost among the advantages is that the scheme, as designed, renders low

frequency fluctuations of the polarimeter output unimportant. This can be seen in the

experimental data of figure 14.3, where the high-frequency noise statistics of the probe beam

are analyzed without the influence of the atomic contribution. The data was taken with the

probe beam on continuously, and the strobing case is considered later. Each measurement

in the plot consists of two parts, the continuous running estimate is a spiky line, and the

dots at the local minima of those curves are the estimates for times corresponding to an even

number of cycles. The even cycle points correspond to minima because the offset noise from
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Figure 14.3: Optical noise data without atoms and without strobing. (A) The estimate
variance as a function of time for various estimate procedures. The upper (green) flat
curve is the DC offset variance from the optical signal (0.01 degree fluctuations). The
lower (magenta) flat curve is the DC offset variance for the electronic signal of the detector
alone. The lowest (black) flat line represents the expected level of DC projection noise at a
(large) optical depth of OD = 100, a detuning ∆ = 2 GHz, and beam radius r = 1.1 mm.
The vertical black line represents the expected decay time at these parameters τsc. The
blue (optical noise) and red (electronic noise) sloped curves represent the estimate at a
frequency of 100 kHz. The difference indicates the degree that the detectors are optical
shotnoise limited. (B) The value of the previous components for different powers at the
decay time τsc. The photodetector becomes optically shotnoise limited above 1 mW and,
without technical noise, it appears that spin-squeezing should be possible at higher powers
and an optical depth of around 100 (as the blue dips below the black line).

each pulse needs to cancel their subtracted partners. The spiked peaks of the incomplete

estimate are indicative of the high level of low frequency noise. Thus the success of the

procedure is indicated by the fact that the minima lie on the expected shotnoise curves.

The technique will not be as effective for more complicated, higher frequency background

noise spectra, but for typical set of probe parameters the plot in figure 14.3 shows that it

works well enough.

Of course there are still many technical hurdles to overcome even with the modulation

scheme. Quite generally, if the mean spin-state direction becomes misaligned with the large

holding field for any reason, this will produce a mean signal at the Larmor frequency with

an amplitude proportional to the degree of misalignment. If there are classical fluctuations

in the number of atoms in the probed volume (as there typically are at the level of 10%)

this will create amplitude noise on the misaligned signal, which will then mask the desired
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quantum fluctuations.

There are several imaginable ways by which the spins could become misaligned with

the field. The first is through residual tensor dynamics, as discussed in section 7.2 and

below in section 14.5.2. Even if the spins start aligned with the field, a slightly misaligned

polarization of a strong enough probe beam can drive the spins off of the field direction,

after which a signal at the Larmor frequency is apparent. Second, the spin-state may start

slightly misaligned with the field in a random manner. Assuming the optical pumping

beam direction to be fixed, the holding field could nominally drift about this due to low

frequency field fluctuations, which could possibly lead to an initially misaligned state and

field direction. Fortunately it appears that the spin-state is more aligned to the field over

the pump beam direction after the pumping process such that this is not a problem. Third,

magnetic field fluctuations resonant with the Larmor frequency of the holding field can lead

to misalignments due to the magnetic resonance interaction demonstrated in section 13.7.

Fortunately, only frequencies in the neighborhood of the Larmor frequency matter, and this

can be tuned to a value (several hundred kHz) where ambient noise is minimal. Thus the

spins can be used as a field spectrometer to locate regions quiet enough to perform spin-

squeezing measurements. In practice, the noise generally decreases at higher frequencies,

although there are spikes at particular frequencies due to equipment sources.

A final complication of the stroboscopic scheme is that the measurement time is dilated

by a factor proportional to the duty cycle of the strobing. This is an issue because while

the needed time to create squeezing increases, other limits on the time of the measurement

(e.g., atom diffusion) do not, thus there is less flexibility in adjusting the measurement time

relative to other timescales. For large degrees of targeted squeezing, this is an extreme

problem because the duty cycle needs to be such that the probe is on for a total time

much less than the total oscillation period [174]. However, for smaller amounts of targeted

squeezing, the dilation factor is of order unity and is not a critical problem.

14.5.2 Tensor Oscillation

As mentioned in and section 6.7 and section 7.2, the tensor Hamiltonian causes nontrivial

evolution of the mean spin moments for near resonant probe detunings. From equation

(6.97) and equation (6.98), it is clear that if the probe light does not maximize 〈Ŝx〉 (i.e.,

〈Ŝy〉 or 〈Ŝz〉 are nonzero), then the spin-state initially aligned along x will rotate in either
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Figure 14.4: The spin-state is optically pumped along x, adiabatically rotated slightly, then
an optical probe beam polarized along x and propagating along z is applied. A holding field,
corresponding to a Larmor frequency of 110 kHz, is on for the duration of the measurement
and is used to adiabatically rotate the spins. The optical polarization rotation is measured
(nominally proportional to 〈F̂z〉). The blue curves (top and bottom) represent the state
rotated ±10 degrees toward the z-axis, the red curves represent the state rotated ±10
degrees towards the y-axis, and the black (zero curve) represents the state held along x.
When misaligned from the x-axis, the tensor Hamiltonian drives the state off of the field
direction, after which it rotates at the Larmor frequency of the field. For the blue z-rotation
curves, the z moment is observed as the decaying offset via the usual vector measurement
Hamiltonian. The probe parameters used were: power 20 mW, detuning 2 GHz, beam
radius 1.1 mm and the optical depth was approximately 20.

the y- or z-direction, leading to a misalignment between the spins and the holding field with

subsequent oscillations due to the field. Again, atom number fluctuations on top of this

signal can lead to noise that masks the desired quantum projection noise fluctuation. Thus,

it is our goal to align the linear optical polarization axis to the spin and field direction, or

vice-versa, depending on what is chosen to define the x-axis. In practice, this is achieved

through minimizing the observed oscillation signal (possibly closer to resonance than usual

to amplify the signal) by adjusting the input waveplates that determine the polarization of

the probe beam.

In figure 14.4, we demonstrate representative trajectories for a fixed probe polarization

and a rotated spin-state. For trajectories where an oscillation and offset are observed

the spin-state has a small initial nonzero F̂z-component and for trajectories with only an

oscillation the state has a small initial nonzero F̂y-component. It is clear for many reasons

that these oscillations are induced by the tensor Hamiltonian and not, for example, simply

the spins nonadiabatically slipping off of the field direction during the rotation that is not
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shown. First, the shape and symmetry of these curves are well reproduced by simple single-

atom master equation simulations (from chapter 5), which show the feature that the tensor

induced oscillations decohere faster than the spontaneous emission damping offset. Second,

the peak-to-peak size of the oscillations increases relative to the vector offset as the detuning

is decreased. Third, the phase of the oscillation is fixed to the (variable) time that the probe

is turned on.

These effects as well as the data in section 13.2 emphasize the utility of the tensor

Hamiltonian for aligning the system in a way that would not be possible with the QND

vector Hamiltonian alone. The tensor effect has also been shown to be useful in pumped

state tomography in section 6.8 and section 13.6. Despite these practically useful features

of the tensor Hamiltonian, the tensor Hamiltonian potentially ruins the idealized QND

description of the interaction. Even if the system is aligned as above to eliminate the initial

evolution of the mean spin moments, the results of section 7.2 indicate that the tensor

Hamiltonian also affects the spin uncertainty distributions in this configuration (parallel

spins and probe polarization). The deterministic evolution of the uncertainty distribution

induced by the tensor Hamiltonian can be both single-atom and collective in origin. Near

resonance, these terms are of the same order as the uncertainty evolution via conditional

QND detection and will influence the optimal description of the spin-squeezing process. For

the stroboscopic scheme of this section, the nontrivial tensor dynamics will be different from

the constant probe scheme (as seen in figure 5.2), but still important when the detuning is

close to resonance.

Despite these complications, the measurements discussed below aim to first get to the

level where projection noise can be expected. After this level of sensitivity has been achieved,

we can begin to consider distinguishing between the QND projection noise and the tensor

induced uncertainty evolution.

14.5.3 High-Frequency Nonstroboscopic Measurements

Here we present the results of spin variance measurements using the high-frequency mea-

surement scheme, but without strobing the probe beam. In the next section, we consider

the same measurements but with strobing, which is the scenario under which one ideally

expects to observe the projection noise most cleanly. (Without strobing under otherwise

ideal circumstances, the spin state would diffuse in a way that our typical averaging fil-
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ter would not optimally observe.) However, unfortunately, it turns out that the technical

problems presented in this section also plague the stroboscopic case and prevent the clean

observation of projection noise and, hence, squeezing in any case.

Before the experiment is run, we optimize by maximizing the observed optical depth,

aligning the polarizations to avoid tensor fluctuations, and locating the holding field Larmor

frequency at which the ambient field noise is minimal. Then we reproduce the procedure of

figure 14.3 (where only the optical shotnoise and technical noise was considered), but with

optically pumped, cold atoms present.

As discussed previously, there will be a few sources of technical noise that potentially

obscure our observation of projection noise, even with modulation. One is the tensor oscil-

lations due to misalignment as shown in figure 14.4. The second is the presence of magnetic

fields on-resonance with our bias field Larmor frequency. Before showing the high-frequency

atomic variance results along the lines of figure 14.3, we briefly discuss estimating an applied

on-resonance field.

In chapter 10 we discussed the theory of estimating a small DC field at the quantum

limit. Then, in section 13.7 and appendix D, we discussed the semiclassical magnetic

resonance method for observing a particular high frequency field in a tunable fashion. An

analogous version of a tunable AC magnetometer, except in a high temperature vapor cell,

is presented in [175]. Now we investigate the level at which we can observe AC magnetic

fields with our cold atom apparatus. In analogy with the DC scheme of chapter 10, the

optimal procedure would be to fit the early time signal to a sinusoid with linearly increasing

amplitude. The quantum projection noise offset in this case is represented by the initial

amplitude and the field value by the slope of the amplitude in time.

The result of estimating AC fields in a suboptimal way is shown in figure 14.5. The signal

for each field is multiplied by a sine of the appropriate phase and frequency (we assume

both as known). At early times, the sign of the multiplied signal is then all positive, and

to estimate the field we simply perform a running average and normalize appropriately in

time (assuming we know the atom number) as given in equation (D.22). This is equivalent

to suboptimal procedure for the DC case presented in [28] where, instead of independently

fitting the slope and offset of the short-time signal (discussed in chapter 10), we estimate

the slope by measuring the average of the total curve. This procedure is suboptimal because

it unnecessarily convolves the spin-uncertainty into the field-uncertainty. However, for the
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Figure 14.5: (A) Red curves are the photocurrent trajectories for the NMR scheme with
different amplitudes for the perpendicular oscillating fields. The blue curves are the pho-
tocurrents multiplied by a sine wave of the same frequency (all positive for the first half
cycle). (B) Estimates of the perpendicular fields (for smaller field values) over short times
using equation (D.22). The parameters for this measurement were OD = 12, ∆ = 2 GHz,
P = 3 mW, f = 270 kHz.

current situation, we are not yet atomic projection noise limited and the two procedures

will give a similar result.

In [28], for the DC case, we investigated the difference in procedures that accounted

for the initial offset (fitting the slope) and those that did not. The expected difference

was apparent, however, in retrospect we believe that those experiments were not projection

noise limited and the offset noise was technical in nature.

Now we measure the noise-floors explicitly, as in figure 14.3 but with atoms. The results

are shown in figure 14.6A and described further in the caption. Unfortunately, there are

two primary problems. One is that the optical depth is not large enough to observe the

expected leveling off of the measured signal before the decay time sets in. The second is

that there are still sources of technical noise that are proportional to the atom number

and optical depth. Although they are not apparent in this plot, the tensor fluctuations

cannot be completely zeroed and the atomic technical noise floor is typically greater than

the photon shotnoise floor. (A more typical result can be seen in the data of figure 14.7.)

Thus, to solve the first problem, we need to increase the optical depth further with more

creative, less technically limited methods. However, as the optical depth is increased the

second problem becomes worse, and we must simultaneously reduce the tensor oscillation

and other technical sources of noise.
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Figure 14.6: High-frequency, constant probe noise statistics. (A) Spin-noise of high fre-
quency signal (270 kHz). The vertical line represents the expected decay time. The hori-
zontal line represents the expected level of the atomic projection noise. The bottom data
gives the electronic noise floor. The black sloped curve is the expected optical shotnoise
floor. The top data points show the atomic noise with a small AC field present. The blue
data points show the atomic noise floor (at zero field) and lie roughly on top of the opti-
cal shotnoise floor. The fact that the projection noise level is below the optical shotnoise
level at the decay time indicates that we do not expect to see much squeezing. (B) The
corresponding field sensitivity using an averaging estimator as described in the text. The
parameters for this measurement were OD = 18, ∆ = 2 GHz, P = 25 mW, f = 270 kHz.

In figure 14.6B, the spin noise data of figure 14.6A are converted into the corresponding

estimate of the fluctuating field. For larger fields, atom number uncertainty multiplies each

estimate leading to a noise above the photon shotnoise floor of size BdN/N , where B is the

size of the field and dN/N is the relative fluctuation of the atom number (typically around

10%). This uncertainty does not play a role for near-zero fields or if feedback is used to zero

the field. For near-zero fields, the optical depth is small so that the measurement is limited

by the photon shotnoise and the atomic projection noise does not play a role in the final

sensitivity. Regardless, figure 14.6B shows that the measurement has a sub-µG sensitivity

over millisecond timescales.

14.5.4 High-Frequency Stroboscopic Measurements

Here we present the results of spin variance measurements using the high-frequency measure-

ment scheme, but now using stroboscopic modulation of the probe beam. If the experiment

were capable of observing quantum projection noise and hence preparing conditionally spin-

squeezed states, this would be apparent in these statistics as a leveling off of the variance
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Figure 14.7: High-frequency, constant probe noise statistics, more typical than figure 14.6.
The presence of slight tensor oscillations shown in figure 14.4, combined with atom number
and alignment fluctuations lead to a noise level greater than the expected projection noise
level. The lower data represent an attempt at normalizing the data by a later measurement
of the total Larmor height, resulting in only marginal improvement. The parameters for
this measurement were OD = 25, ∆ = −5 GHz, P = 20 mW, f = 250 kHz.

of the estimate in time at the expected projection noise limit. However, in the end, the

technical problems demonstrated in the last section also plague this scenario.

First we consider only the noise statistics of the strobed optical beam to confirm that

no additional technical noise is introduced via the sinusoidal pulsing method schematically

shown in figure 14.2. Similar to the plot of figure 14.3, the noise statistics for a typical

optical strobing parameter set are displayed figure 14.8 and described in the caption. The

sine quadrature is by definition in phase with the pulsing and the cosine quadrature out of

phase. As detailed in section D.2, the sine quadrature variance is 3/8 smaller than the DC

case and the cosine quadrature is 1/8 smaller. However, each of the data curves are bumped

up by the nonnegligible electronic noise floor. The frequency of the strobing is actually

limited at higher frequencies where the AOM will put out a pulse fringe with nonoptimal

visibility. The phase of the pulsed light (fixed by phase-locking the function generator

triggering the experiment and those controlling the probe modulation) is determined by

measuring the output of the polarimeter in slightly unbalanced configuration.

In the nonstrobe case, the quadratures were equivalent and the conditioning frequency

could be chosen post-measurement to match the experimental field. In the strobe case,
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Figure 14.8: All optical variance data (without atoms). The probe light of power Pmax = 18
mW is strobed at fstrobe = 200 kHz and both quadratures extracted from the measurement
record. The upper blue data display the in-phase sine quadrature (again with the points at
an even number of cycles), and the green data the out-of-phase cosine quadrature. Each is
bumped slightly above the expected line (solid black for sine and dashed for cosine) because
of the presence of electronic noise shown below in red. The vertical decay time line τsc,‖
and the horizontal projection line are shown assuming a detuning of ∆ = 2 GHz and a large
possible optical depth OD = 100. The number of trials used was 500.
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Figure 14.9: Atomic variance data. The probe light of power Pmax = 16 mW is strobed
at fstrobe = 500 kHz and both quadratures extracted from the measurement record. The
upper blue data display the in-phase sine quadrature (again with the points at an even
number of cycles), which is above the black optical shotnoise level. The vertical decay time
line τsc,‖ and the horizontal projection line correspond to the detuning of ∆ = −5 GHz and
the independently measured optical depth OD = 25.

however, one needs to ensure that the strobing frequency matches the field frequency before

running the experiment. This calibration is performed by aligning the spins perpendicular

to the holding field and allowing them to Larmor precess at full scale about it. The strobe

frequency is then tweaked between trials until the strobe and the Larmor precession remain

in phase for the duration of the measurement time. In practice, this is easier to achieve if

one waits a few extra ms after optical pumping to ensure that the decay of the MOT field

is no longer causing the holding field to change in time.

A representative plot of the atomic noise with strobing is shown in figure 14.9, with

specifications given in the caption. As with the nonstrobing case, there are again two

problems. First the expected projection noise level is below the point where we expect

to see anything. Second, even for this relatively low optical depth, the atom dependent

technical noise obscures even the optical noise floor. The observed atomic noise is technical

in origin and the size is expected from a measurement of the nonzeroed, deterministic signal

resulting from misalignment, combined with expected atom number fluctuations of around

10%. Again, the deterministic nonzero signal is due to both tensor misalignment effects and

possible stray fields. The tensor effect would get better with larger detunings, but then the



271

decay times at available power becomes unacceptably long. The field noise generally gets

better at larger frequencies (larger holding fields), but then we are limited by the size of the

holding field, the speed that we can strobe at, and the sample rate at which we can record

data.

In summary, we have yet to unambiguously observe the atomic projection noise, or infer

the preparation of spin-squeezed states, but technical noise levels are now well characterized

and approaching the quantum projection noise limit. There are several experimental refine-

ments that can be expected to lower the technical noise sources, and once the projection

noise is observed there are several directions for future experiments. Suggestions for both

are mentioned in the next chapter.
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Chapter 15

Future Directions

By looking at the long list of references in this thesis, it should be quite clear that the work

presented here stands on an intimidating amount of research stretching back more than a

century. But, despite its length, this thesis is incomplete in many ways and represents a

potential touchstone for future investigations. As I leave, I more than anybody know the

holes that exist here, and I also have my own tastes for how I would like to see this research

develop. In this final section, I outline a list of topics, both theoretical and experimental,

which I would be very interested in working on if I were to somehow start graduate school

again with what I know now.

15.1 Theory

There are a host of interesting research directions that build on the more theoretically

inspired work of this thesis, including the entanglement results presented in chapter 4 and

the control of stochastic differential equations discussed in chapter 9. However, due to my

increasingly applied interests, all of the theoretical questions I discuss here are more directly

motivated by particular quantum metrology experiments.

15.1.1 Polarimetry Conditional Master Equation

In chapter 8, we reasoned by analogy why the stochastic master equation for our experiment

should be similar to the one derived in the context of homodyne measurement. Although we

have derived the unconditional version of the master equation in chapter 7, we have yet to

derive the conditional master equation from a physical model of the polarimetry experiment.

The derivation of the SME will be different than the usual homodyne case where the local
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oscillator is taken to infinity to simplify the expressions. Instead, the input beam will likely

have to be divided into a semiclassical mean and additional quantum fluctuations. I expect

the resulting SME to be as we have expected via physical considerations, but this does not

take away from the importance of knowing this is true from a proper derivation.

(Update: Led by Luc Bouten, our group has recently finished a paper in which the

polarimetry stochastic master equation is derived and shown to be as assumed in this thesis

[111]. The paper uses a formal quantum stochastic differential equation (QSDE) formalism

and also shows that the scheme is equivalent to performing homodyne detection on the y

channel when the probe beam is initially polarized along x. This technique is potentially

useful for limiting the power on the detectors under a situation where the local oscillator

power is much less than the total probe power but much greater than the probe light

scattered into the y channel.)

15.1.2 Three-Dimensional Scattering Physics

In this thesis, we have mostly chosen to work with an extremely simplified one-dimensional

physical model to focus clearly on such things as the single atom interaction Hamiltonian,

quantum filtering, and magnetometry. However, in truth we are dealing with a very com-

plicated physics problem, involving a three-dimensional probe beam propagating through

a spatially extended cloud composed of more than a billion diffusing atoms. Classically,

one can imagine this cloud of atoms as a random array of dipole antennas that prefer-

entially scatter the input beam in the forward direction. Under simplified circumstances,

this would indeed give us the one-dimensional approximation we desire. However, under

different atom-probe geometries, the validity of this approximation will vary, as the beam

may be focused and distorted significantly.

One of the fundamental ideas of this work, as discussed in the introduction, is the

fact that truly symmetric measurement, with physical indistinguishability of particles, can

enable the preparation of entangled states. So the question becomes, given a realistic spatial

model of the atom-light interaction, “Does the measurement of the scattered light allow us,

in principle, to distinguish the spins or not?” Of course this question is very complicated and

model dependent, and the trick is to simplify it, but not so much that the core idea is lost.

Several papers have considered three-dimensional diffraction from the an optically probed

ensemble in the context of quantum measurement [118, 115, 176], but the full story is still
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incomplete. The issue of decay via spontaneous emission is often modeled näıvely in spin-

squeezing applications, but it is also intimately tied up with the scattering physics discussed

here [96, 177]. Ideally, one would like to think of a preferred atomic mode and a preferred

optical mode that interact to give our simple model, but there exist nonpreferred atomic and

optical modes that cause additional uncertainty. The leaking of information from the atomic

mode into unobserved optical modes is what we call spontaneous emission and the leaking

of information from nonpreferred atomic modes into the observed optical mode is another

source of uncertainty [118]. From a more abstract perspective, the work of [178] considers

the case of inhomogenous coupling to the atoms and calculates the general consequences of

mode-mismatching between entangled state preparation and read-out stages.

Although our experiment involves many atoms, it is physically insightful to consider the

example of two radiating atoms. If the atoms are close enough, some modes of radiating

light will be symmetric, while detecting in other modes will allow one to distinguish the

particles. Many of the techniques needed to understand this formally in free-space can be

found in the work of Van Enk [179]. Although not discussed in the measurement terms

used here, this type of example has been demonstrated in an experiment that observes

interference fringes in the radiation from two trapped ions [180].

Even in one-dimension the existence of a non-QND Hamiltonian like the tensor Hamil-

tonian discussed here can lead to very interesting propagation effects [26]. Furthermore,

one can show that simply due to angular-momentum conservation, the probe beam may

be deflected as it propagates through the ensemble [32]. Clearly, when probing atoms with

spatially extended probe beams there are many geometrical effects that may need to be con-

sidered. Using an optical cavity could simplify the problem to a degree because the modes

then become more natural to describe, but there will still be similar mode-matching issues.

Hopefully, simplifying approximations will enable efficient modeling of these systems, but

those approximations should always be justified from the full physical model.

15.1.3 Nonsymmetric States for Metrology

For most of this thesis we have considered only symmetric states for metrology for several

good reasons. First it is often experimentally convenient to manipulate all of the atoms at

once, thus symmetric states are often easier to produce in the lab. Second, there are several

symmetric states, namely the spin-squeezed state and the GHZ state that have been shown
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to be useful in rotation measurement applications. However, the symmetric subspace is only

a tiny fraction of the total Hilbert space available for a spin ensemble, and one is tempted

to believe that by accessing more of that space higher precision measurements may indeed

be possible. Of course, one needs to address the issue that with less symmetry comes the

demand for more experimental resources to manipulate the parts of the entire system, but

in many situations the trade-off may work out in favor of the nonsymmetric states.

Our group is currently working on investigating these ideas in an experimentally relevant

context. Much of this work is inspired by, for example, [7] where it is shown that particular

nonsymmetric spin-states are optimal for transmitting reference frame direction informa-

tion. Again, it will be important to consider the mode-matching and symmetry properties of

the experiment to determine entanglement production capabilities of the experiment [178].

15.1.4 Non-QND Collective Physics

In chapter 7, we derived the unconditional master equation describing the collective spin-

state of the atomic ensemble with each atom evolving due to the full tensor Hamiltonian.

Because of the assumption of full symmetry (indistinguishability), this master equation

appears able to produce spin-squeezing unconditionally. However, in a physical experiment

with a spatially extended cloud this approximation would not be completely valid. The non-

QND tensor terms would lead to nontrivial semiclassical propagation effects as described in

[26]. The QND approximation is often desired because of its logical simplicity, but it would

be interesting to know what the expected quantum effects of the non-QND terms are, both

because they occur for real alkali atoms and because the results of chapter 7 show them to

be potentially useful.

On the other hand, one could try to avoid the tensor effects altogether to recover the

QND approximation. The easiest way to do this is to move the probe detuning far away

from resonance, but this is not always technically feasible. Other strategies involve defining

new level schemes such that the tensor effects are avoided [112]. However, then one needs to

address the issue of what metrology applications are suited to the newly defined level scheme.

In any case, the experimental significance of the tensor terms needs to be acknowledged,

especially for experiments operating somewhat close to resonance.
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15.1.5 Stroboscopic Modeling

In section 14.5, we gave a very limited introduction to the idea of stroboscopic measurement

of an oscillating spin state. In the case that the technical problems of this thesis are

sufficiently resolved, it will be a priority to more seriously consider a stochastic master

equation model including stroboscopic measurement. Again, these ideas were brought up in

the context of LIGO [78, 41] and more recently considered in the context of nanomechanical

oscillators [174]. However, we will be interested in extending the model to account for the

particulars of our experiment beyond the intuitive, but potentially näıve, perspectives used

earlier.

15.2 Experiment

15.2.1 Free-Space Continued

There still remains much work to be done on the core “free-space” experiment described

in this thesis. First, one could attempt to reduce the low frequency optical noise on the

polarimeter output that has made prohibited DC squeezing thus far. As discussed in chap-

ter 14, this noise likely comes from many sources, and it may not be possible to achieve

sufficiently low levels for realistic experimental parameters. Therefore it may be neces-

sary to continue with the modulation scheme discussed earlier, which successfully bypasses

low-frequency detector and magnetic field noise.

The optical depth can continue to be optimized via a combination of dark-SPOT and

compression techniques. Even if a significantly larger OD is obtained however, there may

also be larger amounts of technical noise that also increase with the optical depth. Thus,

methods of identifying and reducing these sources of technical noise will be critical.

As mentioned in section 8.2.4 and chapter 14, we could also try to implement an approach

that allows us to adjust the probe detuning closer to resonance, where the measurement

rate is expected to increase relative to the spontaneous emission rate, thus allowing more

squeezing. Unfortunately, this also means that the tensor terms become more important.

However, if we work in a particular rotating frame it is conceivable that the tensor terms

will time average away while the spin-squeezing dynamics remain. It is definitely worth

pursuing such a scheme if the needed separation of timescales proves experimentally feasible.
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However, it may still turn out to be necessary to work at even larger detunings, where the

problems associated with a high power probe beam must be confronted.

After unambiguously observing the projection noise and spin-squeezing, one could pro-

ceed with doing truly quantum limited metrology. Thus we could demonstrate quantum-

limited magnetometry measurements and also inertial sensing experiments, at low or high

frequencies depending on the experimental limitations.

15.2.2 Free-Space Alternatives

Besides the spin-squeezing and magnetometry experiments discussed here, there are several

other ideas that might be implemented in the current free-space configuration. Following

a proposal presented in [86], one can imagine producing polarization squeezed light by

passing the probe beam through the cold atomic ensemble multiple times. A high-frequency

modulation scheme could possibly be designed to take advantage of the double-pass scenario

of that proposal to successfully avoid ubiquitous low-frequency noise.

Another possibility is to somehow divide a single atomic cloud into two independently

accessible, oppositely polarized subensembles that can be jointly measured with a common

probe beam. In this manner, one could imagine reproducing the experiments of the Polzik

group [36], where two spatially separated vapor cells were entangled (into a two-mode

spin-squeezed state) with a common probe beam. This experiment, which could also be

reproduced with two well-separated MOT clouds, has its own set of difficulties, but takes

advantage of the feature that the relevant information is at a high (Larmor) frequency, thus

avoiding low-frequency noise.

This idea may benefit from using a “split” state (an incoherent mixture of coherent

states pointing opposite directions). This state and others can be prepared by modified

optical pumping schemes as discussed in section 12.5.9. These alternate states may also

prove useful for verifying quantum noise levels. For example, as detailed in section 3.3.4,

the transverse variance of the m = 0 state should differ from that of the coherent spin-state

by an expected factor of five.

Finally, one could do more sophisticated AC magnetometry than has been discussed

here, e.g., detecting the phase of an oscillating magnetic field. This measurement could

even be done adaptively, in analogy with the optical phase measurements from the first

experiment I was involved with [12], thus bringing our research full circle.



278

15.2.3 Next Generation

Much of the motivation for creating spin-squeezed states comes from using those states

in devices such as atomic clocks or interferometers, where the clock transition defines the

pseudospin of interest. Accordingly, there has been much interest in using the techniques

described in this thesis to create spin-squeezed states on the clock transition. Several

groups have made great progress towards these ends by observing the dynamics of the

clock transition via continuous measurement [45, 46, 47]. However, as described earlier,

in free-space the amount of available spin-squeezing is limited by the optical depth of the

ensemble, and to achieve significant degrees of squeezing the use of an optical cavity is

necessary. Along these lines, the Kasevich group has made significant progress in achieving

a robust cavity system, with many atoms contained in a relatively large cavity mode [47]. As

a result of their efforts, they have achieved record cooperativity parameters, the key metric

for attaining squeezing in a cavity mode. To increase measurement times there are also

efforts to contain the atoms in an optical lattice within the cavity. While the use of optical

cavities and lattices present a host of new technical problems for the experimentalist to

combat, they represent the future of spin-squeezing research, and the research of our group

as well as many others is moving quickly in this direction.
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Appendix A

Magnetic Field Management

A.1 Introduction

The art of controlling magnetic fields is of extreme importance in many atomic physics

experiments. Whether we intend to cool and trap atoms or measure their collective spin-

state, we must cancel stray fields and apply driving fields with high levels of precision.

This is especially true in experiments with broadband measurement and control, where low

frequency sources cannot be avoided. Here we discuss some of the experimental details

related to our use of magnetic fields in the experiment described in this thesis.

First, to motivate one to pay sufficient attention to field control, we state the stringent

field cancellation requirements that our experiment demands. Next, we detail the sensors

we have available to measure magnetic fields. Then we briefly characterize all of the field

sources within a typical lab setting as measured by these sensors. In the next section, we

discuss the specifics of applying fields with current coils. Then we discuss the electronics

needed to drive these coils. Finally, we detail techniques for either canceling or avoiding

stray fields.

A.2 Field Requirements

To be able to resolve the projection noise of measured atomic spin ensembles, the rotation

of the spin vector due to stray fields during the measurement must be small compared to the

expected angular projection of the measurement. For an ensemble with N spins polarized



280

perpendicular to the probe direction, we expect the projection angle to be

θp ≈

√
〈∆F̂ 2

z 〉

〈F̂x〉
=

√
fN/2
fN

=
1√

2fN
. (A.1)

A transverse field of size b will cause the vector to rotate via the angle θb ≈ γbt. Setting

these equal, shows that we need to reduce the field size to

b ≈ 1
2πγB4t

√
2fN

. (A.2)

For f = 4, γB4 = 350 kHz/G, and typical parameters of N = 109 and t = 1 ms, this gives

b ≈ 5 nG. This is a small field when compared to typical ambient laboratory DC fields

(around 1 G) as well as AC fields (approximately 1 mG at 60 Hz and 0.1 mG at sub-Hz

frequencies).

In addition to nulling the average field over the sample, we must also take care to cancel

any field gradients over the extended sample region. Any gradient over the atomic cloud

would cause unnecessary dephasing of the atomic coherence, because different atoms would

see different fields. If we demand that the field difference across the sample is approximately

the needed field resolution from above ∆b = 5 nG with a sample diameter of ∆x = 2 mm

this gives a needed gradient of ∆b/∆x ≈ 25 nG/cm. The typical gradients found in the

lab (near sources such as ion pumps) are of order 10 mG/cm, thus we need to cancel this

gradient by a considerable amount.

A.3 Magnetic Field Sensors

Now we discuss a wide array of commercially available magnetic field sensors. Under opti-

mal working conditions, the highest resolution sensor in the lab may in fact be the atoms

themselves, but it is of critical importance to have a collection of other sensors (with a

variety of trade-offs) available for the following reasons: (1) to measure the fields quickly,

continuously, and conveniently, (2) to characterize and cancel the ambient fields (DC and

AC) sufficiently well that a signal from the atoms is even possible, and (3) to calibrate

applied fields.

There are a number of excellent reviews in the literature for understanding the inner-
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workings and relative performances of existing field sensors [181, 182]. Typically, sensors

are divided into two classes: those that measure fields larger than 10 G or so (termed

“Gaussmeters” or “Teslameters”) and those that measure smaller fields well (called “mag-

netometers”). A further division can be made of sensors into vector magnetometers (which

can measure orthogonal field components independently) and scalar magnetometers (which

only measure the absolute field value).

A.3.1 Gaussmeters

Gaussmeters are useful for coarse zeroing of fields within atomic physics labs, but are typi-

cally used to measure very large fields in, for example, condensed matter labs. Gaussmeters

include the following sensors, many of which can measure with resolutions of mG: mechan-

ical devices (reed switches, relays, compass needles, wire deflection), Hall effect devices,

magneto-diodes, magneto-transistors, and magneto-resistors.

A.3.1.1 Hall Effect

The F. W. Bell 9950 Gaussmeter was the first field sensor purchased by the Mabuchi lab.

It is mostly good for measuring large fields and zeroing fields coarsely, but it has reliability

issues and frequently needs to be reset and zeroed. This is a Hall effect device operating in

the ranges of 3 G–300 kG, with resolutions 1 mG–10 G, and bandwidth 0–400 Hz in DC

mode and up to 50 kHz in AC mode.

A.3.2 Magnetometers

Magnetometers do not typically have the range of Gaussmeters (in open-loop configura-

tion) but have much better resolution Different types of magnetometers include: magneto-

resistors, induction coils, fluxgates, fiber-optic sensors, proton precession magnetometers

(scalar), optically pumped magnetometers (scalar), and SQUIDs.

A.3.2.1 Magnetoresistive

These are the cheap, midrange sensors that we bought initially intending to surround the

atomic sample symmetrically to get an average measure of the field at the atom cloud

position, as done in [183]. Their noise floor is about a factor of 1000 worse than the best



282

fluxgates, but these are reasonably fast (1 kHz), an order of magnitude less expensive, and

smaller (around 1 inch). We purchased a set of 3-axis (Honeywell HMC2003) sensors for

about $200 a piece. The chips have a range of −2 to 2 G, a noise floor of 30 µG/
√

Hz at 10

Hz, a sensitivity of 1 V/G, and a bandwidth of 0–1 kHz (which can be made slightly larger

by removing capacitors). A reset pulse is needed to realign the sensor after significant field

(e.g., the field from a MOT coil) is applied to the sensor.

A.3.2.2 Induction (Search) Coils

It is quite easy to create a homemade sensor from an induction coil, which serves as an

antenna for measuring magnetic fields along its axis. By attaching a coil to an amplifier,

the current running through the coil can be converted to a voltage. Because a changing

field leads to a changing flux that leads to a current, this sensor can be good at sensing

alternating fields. Without further loop shaping, the output voltage would be the derivative

of the field (thus containing a factor of frequency in the spectrum). This is the easiest and

most reliable method for locating and measuring higher frequency field sources (greater

than 10 kHz).

A.3.2.3 Fluxgates

Fluxgates are essentially induction coils but with an internal high permeability material to

amplify the field and the signal. One could use an unaided ferromagnetic material inside,

but the permeability would only be high in the unstable region where the material is not net

magnetized. To account for the inherent instability of ferromagnetic materials, the fluxgate

uses a driving coil to alternately polarize the material one way and then the other (at some

fast 10s of kHz repetition rate). In between being polarized, the permeability spikes to a

high value (as opposed to when the spins are polarized/saturated, giving a permeability

that is no better than vacuum). By demodulating the signal at the repetition rate, one can

get a high resolution measurement of both DC and AC fields, which are slower than that

rate. Although many different designs exist, most fluxgates consist of a regular cylindrical

pickup coil with a toroidal ferromagnet inside which is wrapped with a driving coil. Because

the driving coil is wrapped on itself, the field it produces does not contribute to the pickup

coil signal. See [184, 181, 182] for more on the design principles of fluxgate magnetometers.

There are several kinds of fluxgate probes available. The high-end fluxgate designs are
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the best available sensors for use in the lab, short of using a SQUID. Vendors for fluxgate

devices include MEDA, Walker, Applied Physics Systems, and Bartington (vendor GMW).

We borrowed an APS unit from the Kirschvink lab at Caltech temporarily before opting to

purchase a Bartington ($4000 sensor $6000 signal conditioning unit) because the noise floor

was almost an order of magnitude lower and the bandwidth was an order of magnitude

greater than the APS. The fluxgate unit is a Bartington Mag03MS100 (with Low Noise

Option) with a range of 1 G max (1 mG min) 0.04–0.06 µG/
√

Hz at 1 Hz and bandwidth

0–3 kHz.

A.3.2.4 SQUIDs

Although SQUIDS (and optical magnetometers) are among the best available sensors in the

world, we do not consider them for obvious reasons: they are too big, clunky, labor intensive,

and expensive. Also, their bandwidths are typically slow compared to other devices (of order

Hz). SQUIDs are cited to have resolutions around 1 nG [182]. Typical noises are 10 pG/
√

Hz

(1 fT/
√

Hz) but noise floors as low as 0.1 pG/
√

Hz have been reported. Although the optical

magnetometers appear similar there are a variety of other criteria that make SQUIDs more

desirable for microscopy applications. For example, the inability to work at high fields is a

serious flaw of optical magnetometers compared to SQUIDs [185].

A.3.2.5 Optically Pumped

The GEM Potassium magnetometer has a specified resolution of 1 nG. For commercial

optical magnetometry information see http://www.gemsys.ca. In the lab, noises as small

as 5 pG/
√

Hz (0.5 fT/
√

Hz) have been reported in a different optical setup [34] where the

theoretical limit of the device is expected to be around 0.1 pG/
√

Hz. These magnetometers

operate on much of the same physics as our experiment, but in a hot vapor cell, and in a

configuration that is concurrently pumped and probed.

A.3.3 Current Measuring Devices

There exist a number of devices that use the principles of magnetic field measurement for

measuring the current passing through a wire (ammeters, current probes). Of course, these

are useful in the lab for a variety of reasons, including field management. A typical device

http://www.gemsys.ca
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(such as the Tektronix A622) will clamp around a wire, using an induction coil measure the

AC field and a Hall probe measure the DC field.

A.4 Stray Fields

Now that we have described the limitations of our measurement capabilities, we shall de-

scribe the ambient field properties in our “typical” lab environment. Although it is often

difficult to distinguish, these can be divided into two rough categories, fields due to people

and fields due to natural processes (which, for example, could be measured at similar lev-

els in the middle of a desert). Understanding all of the field noise present is a necessary

prerequisite for designing a field canceling system.

A.4.1 Measured Total Stray Fields

Here I summarize what field spectrum our sensors see when placed at the center of our

optical table. Before identifying a field source, one should make sure that the noise seen

is not purely electrical, especially at low frequencies. One can confirm the signal is truly

magnetic with the use of shielding, or looking for coincidence with multiple sensors.

At any point in the lab we typically observe a DC magnetic field of in the neighborhood

of 0.1–1 G, with the largest component pointing down (due to the earth, the table, the ion

pump). The AC field on the other hand is dominated by the power line noise (including

electrical fan motors) and we observe mG scale fields fluctuating at the multiples of 60 Hz.

We also observe fluctuations of a few hundred µG at sub-Hz frequencies. The people

at LIGO have measured a similar noise floor to the one we see with the same sensor:

http://www.ligo-la.caltech.edu/PEM_Ref/magref/magref.htm.

We are also concerned with the spatial variation of the AC and DC noise fields. For the

DC fields, we are only able to cancel the field and gradient well, while the curvature is more

difficult to deal with. For the AC fields, the spatial variation has important consequences

for how we decide to cancel AC fluctuations (e.g., getting a lockable line signal from a

nearby sensor). The ion pump alone produces DC gradients around 50 mG/cm and DC

curvatures of 1 mG/cm2. For the AC fields, the phase of the near-field line noise changes

over a relatively small length scale. Moving the sensor across the table by hand (near scopes,

function generators, etc.) shows that the phase of the 1 mG signal changes phase by 180

http://www.ligo-la.caltech.edu/PEM_Ref/magref/magref.htm
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degrees in about a meter.

A.4.2 Low-Frequency Sources

Here is a list of low frequency (less than 1 kHz) field sources and expected contributions to

the noise spectrum. For those objects that are stated as giving only DC fields, note that

those sources may move and create slow time-varying fields.

A.4.2.1 Natural

Lets first consider signals you would possibly see in a hypothetical location with no elec-

tronics around except for the sensor itself.

The earth below: There is a large body of literature that discusses the earth’s magnetic

field, for example [186]. The earth’s field is typically around 0.5 G but it is difficult to isolate

given other Gauss-like sources in the lab. The website http://williams.best.vwh.net/

magvar.htm will calculate the expected field components of the earth for your location. For

our zip code, it gives Bx = 0.23 G (north), By = 0.06 G (east), and Bz = 0.44 G (down).

The DC measured field in the center of the table with the trim coils off is Bx = 0.04 G

(north), By = 0.14 G (east), and Bz = 0.42 G (down) (whereas near door the field is [0.35,

0.16 0.27]), and the field from the pump is probably canceling most of the earth’s x-field.

The atmosphere above: Certain atmospheric processes (e.g., solar winds driving the

magnetosphere) are capable of contributing around 0.1–1 mG at sub-Hz frequencies [186].

The scale of noise depends on environmental conditions and can be much larger during

magnetic storms.

A.4.2.2 Experimental System

Now we move from the desert to consider things closest to our atomic system. These sources,

residing on and above the optical table, are necessary for the experiment itself and need to

be where they are or else we would move them far away.

Optical table: Our magnetic optical table is a significant source of DC and AC fields.

The DC field perpendicular to the table ranges from 1 G near the surface to 100 mG a few

http://williams.best.vwh.net/magvar.htm
http://williams.best.vwh.net/magvar.htm
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feet above. The DC field parallel to the table due to the table is much less. The AC field

perpendicular to the table is around 1.5 mG p-p near the surface and 0.5 mG p-p a few feet

above, whereas the parallel AC field is not affected much by the distance from the table

and is around 0.5 mG p-p. If one wants to avoid these fields, note that it is possible to buy

a table made from nonmagnetic steel (e.g., from TMC).

Ion pump: We use a VacIon Plus 40 ion pump in our vacuum system. The manual

contains approximate plots of the fields that are confirmed by measurement. The maxi-

mum field from the pump is 1–3 G within 20 cm of flange and less than 0.5 G beyond.

The maximum gradients are of order 50 mG/cm. The maximum curvatures are around

1 mG/cm2. There are no known significant AC fields from the pump because it operates

with DC electric and magnetic fields. Currently the pump is shielded with two layers of

mu-metal, so the fields are much less.

Vacuum chamber: There exist both magnetic and nonmagnetic steel parts for vacuum

chambers. Although our primary system is within a quartz cell and we have tried to keep

most materials in the near vicinity nonmagnetic, the adjoining steel parts give some amount

of field, but most of it is nonmagnetic. At our cell distance (10s of cm), magnetic steel gives

approximately 100 µG fields, while nonmagnetic steel gives less than 1µG fields.

Magnetic mounts: Standard magnetic mounts produce many mG at a meter and 100s

of µG across the room.

Electronics: All electronics boxes (function generator, scopes, etc.) put out order 1 mG

at 60 Hz, largely due to the magnetic motors of cooling fans. For some reason, the SRS

function generator puts out 20, 40, 150 Hz into air.

Speaker shutters: The flagged speaker shutters are obviously DC magnetic and when

switched give a changing field. Close to the switch (around 1 foot) the on/off change in field

can be as high as 0.5 mG. At the distance of the MOT from the switches, the on/off change

in field is more like 10 µG. Because of the solenoid geometry, most of the field change is in

the vertical direction.
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Transformers: Many devices require transformers to be powered. These transformers

are huge antennaes of 60 Hz noise. For example, the Thorlabs detector transformer gives

significant noise around 1 mG p-p at the 60 Hz multiples. We would move them farther

away but there is so much 60 Hz noise that it is hardly worth it.

A.4.2.3 Peripheral

Most common items in the room produce a field. The following produce fields of a few

hundred µG: lab doors (inner and outer), screen partition, chairs, stools, metal floor planks.

At the larger range of mG are things like metal carts, file cabinet drawers, and screwdrivers.

The ladders in lab are actually mostly nonmagnetic but still produce fields of about 10 µG.

CRT monitors: The adaptive computer monitor does not appear to give any noise (at

least less than 1 µG) in operation, but gives a 10 µG kick when turned on. However,

the black CRT monitor on the desk causes modulation of the 60 Hz noise at a few Hz. It

probably contains a transformer from 50 Hz that creates the beatnote. This should definitely

be turned off during experiments as it increases the line-locked variance by a factor of 10

or so.

Battery chargers: There is one emergency light in every room with a battery that is

continuously being charged. We started to suspect these as sources of noise after seeing the

noise from Striker’s battery, but we have not measured any significant noise from them. If

necessary, they can be removed from the wall.

Surge protectors: The APC surge protectors will give 0.5 mG at 2 Hz signal when

plugged in but not connected to anything.

Printer: The outside printer gives a characteristic 50–100 µG oscillating signal as it is

moving the paper.

VWR oven: After much searching, I found one of the most annoying sources of field

noise in the lab. It turns out that the VWR oven/incubator in the bio-lab will draw spikes

of heater current every 2 seconds (as can be seen from the front LED) when it is near its

temperature equilibrium. I initially noticed a 50 µG signal of this character in the ensemble
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lab and tracked the noise source up to the conduits on the ceiling. The noisiest conduit

was followed back the the bio-lab where the oven source was eventually discovered. This

noise is intermittent because apparently the oven occasionally loses lock and the peaks are

of random orientation for some unknown reason.

A.4.2.4 Neighbors

Machine Shop: In the next door machine shop, there were toy magnetic pendula that

gave around 20 µG p-p noise at 0.5 Hz, which have since been removed. There is also a

backup “trickle-charge” battery in this room that can be observed via its field noise.

Low-Temperature Labs: In the Mabuchi Lab (subbasement of Sloan), there is a cryo-

stat with a superconducting solenoid in the Eisenstein lab directly east of the bio-lab. I

performed some tests with Xerxes (a grad student in the Eisenstein group) on 3/19/04 to

measure the fields produced on each of our three optical tables from their magnet. Here are

the results with x pointing up, y north, and z west, and numbers stated in mG produced

in our lab versus Tesla inside their coil. In the bio-lab: Bx = 2500 µG/T, By = 700 µG/T,

and Bz = 1750 µG/T. In the QED (center) lab: Bx = 350 µG/T, By = 250 µG/T, and

Bz = 350 µG/T. In the adaptive/ensemble lab: Bx = 300 µG/T, By = 100 µG/T, and

Bz < 50 µG/T. Their coils are capable of going as high as 9 T and typical ramp rates

for them are 1 T/min although they can be faster. When they are doing experiments the

magnet is ramping 90% of the time.

Miscellaneous: It is expected that the elevator, cars, and subway lines can contribute

mG signals but none of these have been investigated.

A.4.3 High-Frequency Field Sources

For the DC magnetometry experiments, we must be very careful in creating a low frequency

magnetic environment and negate the sources above. As mentioned earlier, an AC scheme is

also possible where fields at a particular high frequency (50–500 kHz) can be measured via

magnetic resonance (see appendix D). To observe a particular frequency with the atoms, a

holding field is placed along the spins and motion of the spin-state off of the holding field

is only possible given a near-resonant, perpendicular AC field.
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Although the noise spectra in general gets quieter at higher frequencies there are certain

frequencies with a lot of noise, mainly due to power supply switching. If a quantum limited

experiment is to be performed, it should be at a frequency largely absent of this noise.

Here is a brief summary of some high frequency sources in the lab, as observed with

either the atoms or an inductive search coil: Fluxgate (16 kHz multiples, from internal

modulation), CRT Toshiba (very large 15.75 kHz multiples), Mini-Vac ion pump high volt-

age source (17.75 kHz multiples, especially 53.25 kHz), Vortex diode laser supply (27.6

kHz), Gaussmeter (13.6 kHz (large) 4 kHz spaced chain), Acopian power supplies (small 32

kHz), Fluorescent lights (7.5 kHz, huge 46 kHz, mound at 60 kHz, 90 kHz), HP supplies

(many peaks, spaced by 1kHz), Oscilloscope (23.5 kHz, 38 kHz, 47 kHz, 53 kHz), Spectrum

Analyzer (47 kHz), Laptop (60 kHz).

Above 200 kHz or so the “forest” of peaks becomes less dense and it is easier to find a

frequency at which to perform a quiet measurement.

A.4.4 Fundamental Limits of Field Noise

Ultimately, the field noise floor is limited by the thermal noise. To get a sense of the scale of

this noise consider the set of large shim coils, which have a conversion ratio of approximately

1 G/A and a total resistance of R = 8 Ω. The Johnson voltage noise floor (in V/
√

Hz) is

vR =
√

4kTR and the current noise floor is iR =
√

4kT/R. Using k = 1.38e − 23 J/K,

T = 300 K, and the conversion factor below, the latter gives bR = 5 × 10−11 G/
√

Hz. See

page 351 of [1] and [34], for a similar analysis that predicts a comparable noise floor near a

thermal conductor.

The current shotnoise is given by iS =
√

2qIb where q is the electron charge and Ib

is the bias current. Using Ib = 1 A and the above conversion factor this gives bS =

6× 10−10 G/
√

Hz.

A.5 Applied Field Sources: Coils

In this section, we discuss how to apply magnetic fields with current carrying coils of wire.

First we discuss basic magnetostatic physics and how different fields can be produced with

certain coil geometries. We summarize field formulas for basic coil configurations and pro-

vide references for more refined geometries. Subsequently, we discuss more practical con-
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siderations for how the coils are constructed. We then include specifications for particular

coils in the experiment. Finally, we describe the precision current drivers needed for each

set of coils.

We also consider only moderate size fields and do not discuss Tesla size fields produced by

superconducting magnets (sold, for example, by Oxford for condensed matter applications)

or small-scale fields as produced on atom chips. The highest fields we might possibly need

are for strong field gradients for a Stern-Gerlach analysis of the atoms as discussed in [187].

At some point we may want to include a discussion of RF field sources (horns), especially

if we ever use the clock transition, but currently we do not.

A.5.1 Coil Physics and Modeling

A.5.1.1 Biot-Savart

All one needs to do most magnetostatic analysis of current carrying wires is the Biot-Savart

law, which is discussed in any elementary electromagnetics book [188]. To get an order-of-

magnitude sense of current to field conversion, consider the simplest possible wire geometry:

an infinitely long straight wire. Recall that the transverse field a distance R from the wire

with current I running through it is

B = µ0I/2πR. (A.3)

For a distance of R = 1 m from a wire carrying I = 1 A, there is a field of B = 200 nT =

2 mG. Given the simple Biot-Savart law, one is equipped to design a wide array of static

field sources. See http://www.netdenizen.com/emagnet/index.htm for fields produced

by common wire geometries.

A.5.1.2 Coil Fields

A typical concern is to produce a uniform field of constant magnitude in an extended space.

Of course, the best way to do this is to make a large solenoid around the sample with many

turns. This is not often done because, among other problems, it limits optical access to

the sample. The most common solution is to use two coils in a Helmholtz configuration,

which is an approximation of the solenoid, where two coils are oriented in the same direction

and produce a large field along the midpoint of the axis. Reference [137] discusses higher-

http://www.netdenizen.com/emagnet/index.htm
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order approximations with more than two coils that allows for field uniformity over greater

volumes.

For square coils of length L (per side), the coils should each be d = 0.27L from the

center (such that their spacing is 2d) for optimal uniformity. In this configuration, the

central field is B = 18/L mG/A with L in meters.

Another concern, for example when creating a magneto-optic trap (MOT) is to produce

a point in space with zero field, but a large field gradient. The simplest solution to this

problem is to use two oppositely oriented coils in anti-Helmholtz configuration. The field

on the axis of a single circular current carrying coil is (p. 211 [188])

B =
µ0I

2
R2

(R2 + x2)3/2
(A.4)

for coil of radius R at a point x from the center. Placing two oppositely oriented coils of

radius R a distance d from the center position (such that their total separation is 2d) and

measuring a distance z � R, d from that point along the axis, we get a central axial field

gradient of

δB

δz
= 3µ0I

d

R3

1
(1 + (d/R)2)5/2

. (A.5)

Setting R = 2d maximizes the gradient at the value 0.86µ0I/R
2.

Finally, one can imagine trying to design a coil that produces higher-order derivatives

of the field with more and more funky shapes. This is a common goal in MRI where the

goal is to cancel residual fields to very high derivative order.

A.5.1.3 Inductance

Given a coil geometry another quantity of interest to calculate is the self-inductance. The

inductance fundamentally limits the bandwidth that the coil can be driven to the frequency

ω = R/L where R is the appropriate resistance from the driving circuit. Inductances are

a little nasty to calculate, but the equations for most common geometries are available

in standard references (see [189] and the following website that uses those results: http:

//emcsun.ece.umr.edu/new-induct/).

Here we state the inductance formula for the two most standard coil shapes: a square

http://emcsun.ece.umr.edu/new-induct/
http://emcsun.ece.umr.edu/new-induct/
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and a circle. The inductance of a square coil is given by:

L ≈ N2 2µ0L

π
[ln(L/a)− 0.774] (A.6)

where N is the number of turns, L is the length of a side, and a is the radius of the wire.

The inductance of a circular coil is given by:

L ≈ N2Rµ0[ln(8R/a)− 2] (A.7)

where N is the number of turns, R is the radius, and a is the radius of the wire.

A.5.1.4 Modeling

For standard coil geometries, the above approximate analytic treatment is completely ade-

quate. For more complicated wire geometries, like microtraps, simulation software is very

useful. In the past, we have used a magnetic field calculation program called Vector Fields

(OPERA). Currently, we are using FEMLab (for Finite Element Method), a generalized

Matlab PDE solver, which can do electromagnetic problems as well as thermal, stress, etc.

A.5.2 Coil Construction

The first thing to consider when constructing a coil is what magnet wire to use. Con-

siderations here include the gauge (diameter), cross section (square/circular), insulation,

temperature range, etc. The company we typically order wire from is MWS. If using small

currents, a convenient option might be to use ribbon cable for the coils.

When constructing the mounts there are a few things to consider. One should definitely

not use a magnetic material, unless the design calls for amplification of some kind. Alu-

minum is typically a good nonmagnetic metal, but if one cares about eddy currents, metals

are a problem. When going to a nonmetallic material one must worry about machinability

and heat conduction. Teflon and Kevlar are among the nonmetallic materials with adequate

structural and thermal properties.

Although we have not had to worry about this, when applying a significant current one

must worry about heating (particularly runaway heating). There are a few cooling options

available, one of which is to use hollow wires with water running through as a coolant.
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Alternatively one could just cool the mount itself with separate cooling tubes.

For winding magnets, a setup using a lathe as the winder is usually most efficient.

Although one might be attempted to use square cross section wire for neatness, it is some-

what difficult to keep the rows aligned when winding, and we do not think it is worth the

frustration.

A.5.3 Lab Coil Specifications

Here we outline the specifications for the various magnetic coils used in the lab.

A.5.3.1 MOT Coils: Anti-Helmholtz

A MOT requires an anti-Helmholtz coil set up with zero field and gradient of approximately

10 G/cm at the center. See schematics for exact geometry of our coils, which have approxi-

mately R = 2.75 inches and d = 1.75 inches (the 2d separation is only slightly nonoptimal).

With the number of turns N = 175− 180, this gives approximately 3.7 G/cm/A. The wire

used has 1.5 mm diameter, which, for the above single coil inductance gives L ≈ 12 mH.

A.5.3.2 Bias Coils: Small Helmholtz

For our square coils, L = 10.5 inches (d is close to the optimal 2.86 inches), and the number

of turns is N = 4, which gives B = 270 mG/A. The wire used is 1 mm diameter, which,

for the above single coil inductance gives L ≈ 19 µH. Via the field controller, the applied

voltage gets transferred to the current with a sense resistor R, which we have as being 10 Ω

for coarse fields and 1 kΩ for fine fields. This leads to applied fields of size 27 µG/mV and

0.27 µG/mV, which is almost exactly what is measured when calibrating with a fluxgate.

In the latter case, with a measured noise voltage of 0.5 mV this gets mapped into an applied

field noise of 135 nG, but this is probably a worst case estimate.

A.5.3.3 Trim Coils: Large Helmholtz

Around the entire experiment we have a frame made of 80/20 about which square Helmholtz

coils are placed to zero the field and gradient at the sample location. The frame is 36” across,

30” tall, and 30” deep. For a single-turn Helmholtz coil, L ≈ 33 inches gives B = 22 mG/A

and (with 1 mm diameter wire) L = 4.5 µH.
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• Top/Bottom Pair (and Close/Far Pair): Number of turns is 28 per coil. With N = 28

the field becomes B = 616 mG/A and the inductance L = 3.5 mH. If operated in

anti-Helmholtz configuration, the gradient generated is 5 mG/cm/A.

• Left/Right: Number of turns is 50 per coil. With N = 50 the field becomes B =

1.1 G/A and the inductance L = 11 mH. If operated in anti-Helmholtz configuration,

the gradient generated is 9 mG/cm/A.

With the power supplies of current resolution 0.01 A, the corresponding field resolution

is 6 mG for one set of coils and 11 mG for the other. This is too large to be useful hence

we typically have another set of single turn coils with a homemade current supply for fine

zeroing.

A.5.4 Current Drivers

A.5.4.1 MOT Coils: Anti-Helmholtz

The MOT coils are supplied with a few amps of current via a Bipolar Operational Power

Supply (Kepco BOP 20-10M). During our experiment we need to turn off the large magnetic

fields quickly because the atoms begin to fall/diffuse and there is not more than a few

milliseconds that we can waste. If we simply turned off the supply voltage the system

would ramp down at the τ = L/R timescale, which for R = 1.3 Ω and L = 2 × 12 mH

is τ = 18.5 ms. This is too long. We reduce the damping time by more than an order of

magnitude by using a circuit design from [190] using a high-voltage MOSFET (International

Rectifier, IRFP140N), a high power resistor (actually four high power resistors in parallel,

100 Ω, 50 W, giving an overall resistance of 25 Ω), and a diode (MUR415 9423).

In operation, the Kepco (in voltage mode) supplies the box and the box supplies the

coils. A TTL signal from the computer turns off the MOSFET switch after the atoms have

loaded. To keep the current flowing the other side of the MOT coils go to a high voltage

(which the MOSFET can withstand) and the current flows through the parallel high power

resistors and diode. Because the high-power resistor is larger than the natural resistance of

the MOT, the damping time is considerably decreased.

Alternatively, one can decrease the ramp-down time of the MOT fields and the eddy

current fields from nearby metals, by using techniques from [191].
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A.5.4.2 Bias Coils: Small Helmholtz

The key magnetic components in our experiment are the field drivers used to apply fast and

precise fields along all three spatial directions in the lab with the “cube-coils” mentioned

previously. These coils can apply up to 1 G in less than 1 µs, which is a task needed for

performing the optical pumping, the DC field experiments, and the AC field (magnetic

resonance) experiments described in this thesis.

The ramping time of a magnetic coil is limited by the inductance of the coil. Even

though the Helmholtz coils are made relatively small to keep the inductance low, the L/R

time for the coils described would not be as fast as 1 µs without further effort. The idea

is to achieve faster switching times with a high speed, high voltage power supply. If one

requires a fast step function of the field, instead of just applying the end-voltage to start,

one applies a much larger transient voltage to “overpower” the inductor into achieving a

faster performance. In practice we use a High voltage MOSFET Power Op Amp (APEX

Microtechnology PA05) with a magnetic deflection design taken from the Apex Application

Note 5.

For the power supply, we have used two Lambda 150048-RA supplies, which provide

±48 V to the op-amps (and up to 32 A or 1500 W). Unfortunately, as with most power

supplies, these supplies put out a significant amount of high frequency switching noise (in

particular at 60 kHz), which is an experimentally relevant noise source especially for our

AC measurements. To alleviate this problem, Anthony Miller has built a charger circuit

such that we can supply the Apex chips with a quiet battery supply during the experiment

and charge the batteries with the Lambda supplies when the experiment is offline. More

on the charger can be found at http://qwiki.caltech.edu/index.php/QwikiCharger.

A.5.4.3 Trim Coils: Large Helmholtz

There are actual two large (1 m) Helmholtz pairs of coils for each axis meant to zero the DC

field and gradient. The first set of coils has many turns and is supplied with HP E3630A

voltage supplies (six total). The second set of coils is only a single turn and is supplied

by a homemade current supply box provides six bi-lateral, manual/programmable supplies

of ±0.8 A. The design can be found in my electronics notebook, but is based on a design

from page 388 of Horowitz and Hill [192]. The design uses a voltage divided from two

http://qwiki.caltech.edu/index.php/QwikiCharger
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precision references (±7 V, National Semiconductor LM399) as the manual signal, which is

amplified with a power operational amplifier (National Semiconductor LM675). The same

basic circuit design can be found on page 7 of the LM675 data sheet.

A.5.5 Field Calibration

Once the experimental system is setup the Larmor precession signal from the atoms can

be used to both calibrate and align (or orthogonalize) the fields. The absolute calibration

comes from a knowledge of the gyromagnetic ratio. The more subtle orthogonalization

procedure uses effects of the tensor Hamiltonian.

A.6 Nulling Stray Fields

Given the stark contrast between the stringent field cancellation requirements stated above

and the native fields present in the lab, it is clear that we need to do an intelligent job of

zeroing the fields. One way around this nasty problem is to use a spin system that is field

insensitive (e.g., the clock transition, with RF induced transitions). Although low frequency

fields are hard to cancel, by the same token, they are easy to produce, and we accept this

trade-off.

Here we outline strategies for reducing the effects of stray fields. The first is the most

obvious: avoid magnetic sources. By understanding what devices produce significant fields

and how to hunt down sources of unique signals, much frustration can be saved. The

next strategy is the standard approach of using magnetic shielding of some kind. However,

because our experiment requires a significant amount of three-dimensional optical access,

the shielding cannot be a complete solution. Subsequently, we discuss using cancellation

coils to both passively and actively negate ambient fields. Short of full-scale feedback,

given stable AC noise, one can use precision timing (line-locking) to significantly reduce the

effects of that noise. Finally, we discuss in detail how to use our best sensor (the atoms) to

periodically zero the field.
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A.6.1 Passive

A.6.1.1 Nonmagnetic Mounts

Clearly, one wants to keep the volume close to the atomic sample free from magnetic material

and metals. Nonmagnetic metals (aluminum, copper, nonmagnetic steel) are better than

magnetic materials, but when ramping large fields, these may cause annoying eddy currents.

If possible use nonmagnetic and nonmetallic materials (e.g., teflon, nylon, kevlar, plexiglass)

to avoid this. See [193] for more on materials and nonmagnetic steel.

We avoid a lot of these problems by using a quartz cell (ordered from either Techniglass,

for our old cell, and Starna, for new cell) rather than a metal chamber (like those from

Kimball Physics). One tradeoff here is that one cannot reliably AR coat the inside of the

cell. As a compromise we ordered a bunch of AR coated cover slips that we put on the

outer faces of the cell with an index matched fluid in between.

A.6.1.2 Shielding

Given noise fields that are unavoidable, a common technique to cancel fields is to surround

the sample or source with shielding material to either keep fields out or contain them.

The basic idea of all shielding is that if an ambient field is applied to a high-permeability

shielding material, that material will produce its own field that cancels the original. In

general, the shielding performance is geometry dependent. For example, when shielding

a source, one wants to “wrap” the field lines onto themselves in an intelligent way. For

most applications though, one usually just makes as smooth of an enclosed cage as possible

around the volume of interest.

The best magnetic shields in existence are superconducting bottles. For example, the

superconducting shield in the Kirschvink lab gives a factor of 1012 suppression (120 dB).

Unfortunately, we cannot use these shields because they do not allow the optical access we

need (in addition to being expensive to maintain and bulky). Other shielded rooms have

shown shielding factors of around 105 at 60 Hz and 500 at DC [194].

We opt for the simpler approach of using high-permeability materials such as mu-metal

(from Magnetic Shield Corp.). These come in a variety of thicknesses, but even thin foils

give approximately a factor of 3 suppression per sheet. The highest suppression obtained

with multilayer mu-metal cans is a few hundred (as in the Kirschvink lab at Caltech). A
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single layer mu-metal shield around the fluxgate sensor gives suppression factor of 5 for DC

(50 mG to 10 mG) and 8 for AC (400 µG to 50 µG). There exist more refined techniques for

simultaneously shielding both DC and AC fluctuations at once by using a multilayer shield

with alternating mu-metal (for DC) and aluminum, which damps AC fluctuations because

of its conductivity. When creating shields with angular geometries, it is useful to use thin

foils (either mu-metal or cobalt alloy foil), especially for corners. Mu-metal, like any other

iron alloy, may become saturated if applied to fields that are too large. If this happens, the

shield needs to be degaussed. One technique for degaussing is to apply a large fluctuating

field powered by a Variac.

If it is possible to have a sample in a room where a minimal number of sources are

present, a good strategy is to shield the entire room, keeping as many sources of noise

outside as possible. Ritek is one of many companies that specializes in creating shielded

rooms.

A.6.1.3 Shields in Lab

In the lab, we have shielded both the ion pump (2 layers) and the glass vacuum cell (4

layers), such that the driving coils are inside the shield. See chapter 11 for more on these

shields, including pictures.

A.6.1.4 Passive Coils

Given the large trim coils previously described we can null both the absolute field and the

gradient by supplying current to each of the two coils independently. Note that this only

provides cancelation for the gradients δBi/δxj where i = j, not for i 6= j.

Because of the NMR/MRI industry, there is a lot of knowledge out there on how to

passively cancel gradients and higher-order derivatives of the field using funky shaped coils.

Actually it is not so complicated; the shape of the coils are related to each term in a Taylor-

like functional decomposition of the field. For more on this, Russ Jacobs at Caltech is a

useful resource.
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A.6.2 Active

Passive cancellation of the field is of little use if the field is fluctuating with significant am-

plitude at experimentally important timescales, as we know it is from the above discussion.

One possibility is to try to cancel the fluctuations continuously in real time with feedback.

Originally we had intended to do this, along the lines of [183], by placing the magnetore-

sistive sensors symmetrically around the cell to give a reading of the field at the center. This

sensed field was fed back to the small drive coils in real time. As in [183], we succeeded in

canceling the 60 Hz fluctuations from about 1 mG p-p to 100 µG, but the signal-to-noise of

the sensors did not allow better performance. With any feedback process, there is going to

be a bandwidth/precision trade-off, which is inherently related to the signal-to-noise ratio

of the sensors.

An additional complication arises if one wants to cancel fluctuations below some fre-

quency, but also apply fast fields that do not get cancelled themselves. I developed a

feed-forward style controller, which satisfied this goal for all three channels. Ultimately, we

decided to skip this feedback for the sake of simplicity opting to use only passive shielding

and line-locking techniques.

A.6.2.1 Line Lock

Assume that there is field noise within the lab, but that it is stable and repeatable with

respect to some reference. The 60 Hz noise in our lab is of this kind because, if we trigger

on the power line, the phase of the field noise with respect to the line is fixed. If our

experiment takes place over very short timescales τ compared to the period of this noise

T = 16.6 ms, such that τ � T we can take advantage of this fact. Assuming the noise is

sinusoidal (with amplitude Bn, if we start every experiment on the side of the fringe then

the total change in field during the experiment is the linear δB = Bn(τ/T ). Even better,

if we start at the top of the fringe (and apply DC field −Bn) then the total change is the

quadratic δB = Bn(τ/T )2/2. For Bn = 1 mG, T = 16.6 ms, and τ = 100 µs, this gives

δB = 6 µG for the linear case and δB = 18 nG for the quadratic case. Clearly, if our timing

and triggering are good we can do quite well.

There are a few qualifications to this analysis. The first is that the field in different

directions will certainly have different phases, thus if we arrange the triggered phase (or
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delay) such that one direction gets the quadratic benefit, the other directions may do as

poorly as the linear case. Second, the zeroing here is only as good as the timing of the

trigger, thus if the trigger signal has noise on it, this will lead to corresponding variance in

the field, which may be worse than the drift calculated. In practice, we use a high signal-

to-noise ratio line signal, so we think this is not much of an issue. Finally, it is obvious that

some slow sources are not phase locked to the line. If there is a slow sub-Hz noise source

that is faster than our DC rezeroing rate, then it can render the line-locking less effective.
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Appendix B

Conditional Dynamics of an Atom
in a Two-Sided Cavity

This appendix regards the conditional dynamics of a single three-level atom interacting

with a Fabry-Perot cavity mode, which leaks out both sides of the cavity. There were

multiple motivations for investigating this problem. First, I wanted to understand the

realistic case of a two-sided cavity, as opposed to a typically idealized one-sided cavity, and

confirm the fact that ignoring one output of a symmetric cavity is equivalent to cutting the

effective detection efficiency in half. Second, the Kimble lab was at one point considering

an experiment that investigated measuring both sides of the cavity and conditioning the

internal atomic state accordingly. Third, and most important, these notes provide a nice

tutorial example for using the quantum measurement formalism introduced in chapter 2. In

particular, the example nicely illustrates the notion of unravellings by considering detecting

the dual outputs of the cavity in multiple, physically distinct, ways.

B.1 Abstract

We discuss in tutorial fashion the formalism for describing the conditional evolution of

one of the simplest open quantum systems: a driven cavity containing an atom with all

output fields potentially monitored in real time with photo-detectors. We emphasize the

flexibility of the formalism for modifying the form of the measurement: mixing output

fields with themselves or local oscillators, imperfect quantum efficiencies, etc. Examples

(with accompanying simulations) are included that emphasize the role of the stochastic

master equation as a filter that updates the observer’s state of knowledge according to the
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measurement record.

B.2 Introduction

A single atom strongly coupled to the electromagnetic field within a high finesse Fabry-Perot

cavity is one of the simplest open systems that can be used to study conditional quantum

dynamics. Experimental progress is being made in the control of such systems [195, 196]

and it is becoming ever more relevant to consider developing the rigorous theoretical tools

that will help the experimentalist optimally map the measurement record to the proper

state description of the joint intracavity quantum system.

This appendix is meant to serve as a tutorial demonstration of the quantum conditioning

process, using a generalized jump operator formalism, with the atom-cavity system as the

guiding example. With an experimental perspective in mind, we aim to derive the stochastic

master equation that the observer will use to update his state of knowledge optimally as

measurement results arrive. Much of foundational work summarized here can be found in

several references [52, 69], notably the thesis of Wiseman [57].

With any quantum system, even the optimal state of knowledge will be incomplete

in that predictive uncertainty about some potential measurements will remain. Learning

how to manage this uncertainty is the primary objective of quantum filtering and control.

Although the estimation equations discussed here will always apply, they are perhaps most

useful when the observer wants to control the system in real time with a system parameter

that is made a function of the optimal estimate. However, we do not discuss feedback

directly here, as we are mostly concerned with the experimental details of observation and

conditioning dynamics.

This appendix is organized as follows. In section B.3, we outline the components of

the model to be subsequently analyzed, including the relevant atom and cavity parameters.

Section B.4 provides the derivation of the stochastic master equation that serves as the filter

from measurement results to optimal state description using jump operator notation. This

includes imperfect photo-detection and reformatting the output beams to give different

unravellings of the unconditional dynamics. We begin the analysis of the conditioning

equation by discussing the special unconditional case in B.5. Finally, in section B.6 we

examine special cases of the conditional dynamics. This includes the conditioning equations
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Figure B.1: An experimental schematic very similar to the scheme of [197]. The parameter
β represents the strength of the input coherent state, which is coupled into the cavity with
a polarizing beamsplitter and a rotating waveplate to allow for the back-reflection to be
directed to detector 1. The µi are the reflectivities of the beam-splitters and the κi are the
optical decay rates out of either mirror. The cavity mode is described with operator â and
the atom with operator σ̂. In the text, we consider two simulations, one with µ1 = µ2 = 0
and one with µ1 = µ2 = 1, µ3 = 0.5. In the latter case, we allow the freedom to adjust the
phase φ of the cavity output light.

for when one output channel is ignored and also for when the two output channels are

subsequently mixed on a beam-splitter, changing the effect of conditioning substantially

and creating a “which way” (or “welcher weg”) type of interferometer [197].

Each simulation used in this appendix relies on the quantum optics toolbox and its

stochastic integration routines [99].

B.3 System

In this section, we describe the components of our system of interest in preparation for

the conditional equations derived in the next section. Each component is displayed in the

schematic of figure B.1, which is similar to that from [197].

B.3.1 Cavity

The high finesse Fabry-Perot cavity at the center of the schematic contains the field that

will be one component of our quantum system, the other being an atom’s internal state.

The two mirrors of the cavity are coupled to the environment modes by the rates κ1 and κ2,

which we do not necessarily specialize to either the symmetric or one-sided configuration. If

the mirrors are somewhat transmissive, the cavity modes can be both driven and measured.
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We will not model absorptive loss from the mirrors for simplicity, although this can be

included in a quantum efficiency term. The cavity is of length L so the spacing between

modes, or free spectral range, is FSR = c/2L. The inclusion of multiple modes would allow

for the possibility of pulse propagation within the cavity. For simplicity we assume that all

relevant rates, detunings, and bandwidths are much smaller than the FSR so that only the

mode with frequency ωC nearest the atomic frequency ωA and the driving laser frequency

ωL will ever be populated. This is a good approximation for physically realizable cavities.

The annihilation operator for the cavity mode will be labeled â and the free Hamiltonian

of the cavity is simply ĤC = ωC â
†â, which, in the rotating frame oscillating at ωL, becomes

ĤC = (ωC − ωL)â†â ≡ ∆C â
†â. (B.1)

The ωL term comes from the time derivative of the density matrix ρ̂ when the entire master

equation is transformed into the rotating frame as follows.

B.3.1.1 Rotating Frame

In a frame rotating at the laser frequency ωL we transform a general operator X̂ to X̂R by

X̂R = exp[iωLt(â†â+ σ̂†σ̂)]X̂ exp[−iωLt(â†â+ σ̂†σ̂)]. (B.2)

For the cavity mode and atomic lowering operators this gives

âR = exp[iωLt(â†â+ σ̂†σ̂)]â exp[−iωLt(â†â+ σ̂†σ̂)] (B.3)

= exp[iωLtâ
†â]â exp[−iωLtâ

†â] (B.4)

= exp[−iωLt]â (B.5)

σ̂R = exp[iωLt(â†â+ σ̂†σ̂)]σ̂ exp[−iωLt(â†â+ σ̂†σ̂)] (B.6)

= exp[iωLtσ̂
†σ̂]σ̂ exp[−iωLtσ̂

†σ̂] (B.7)

= exp[−iωLt]σ̂. (B.8)

Where the commutation relations for either can be used to show the final identity [68].

We also have â†R = exp[iωLt]â† and σ̂†R = exp[iωLt]σ̂†, â
†
RâR = â†â, and σ̂†Rσ̂R = σ̂†σ̂.

Throughout this appendix, we implicitly work in the rotated frame and remove the R
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subscript.

B.3.2 Atom

During the course of our measurements, we allow a single atom to interact with the cavity

mode. For illustrative purposes, we consider a three level atom with an excited state |e〉, a

long-lived ground state |gc〉, which is coupled to the excited state by the cavity light, and

another stable ground state |gu〉, which is uncoupled to any field.

The annihilation operator for this atom will be labeled σ̂ (where |gc〉 = σ̂|e〉 and the free

Hamiltonian of the atom is simply ĤA = ωAσ̂
†σ̂, which, in the rotating frame oscillating at

ωL, becomes

ĤA = (ωA − ωL)σ̂†σ̂ ≡ ∆Aσ̂
†σ̂. (B.9)

Again the extra term comes from the transformation of the time derivative of ρ̂ in the full

master equation.

Under the rotating wave approximation (RWA) we allow the atom to interact with the

field mode via the Hamiltonian (in the rotating frame)

ĤJ = ig(σ̂†â− σ̂â†) (B.10)

where g is mode volume dependent coupling constant. Now we define the system Hamilto-

nian (ignoring bath couplings) as

Ĥ0 = ĤC + ĤA + ĤJ (B.11)

= ∆C â
†â+ ∆Aσ̂

†σ̂ + ig(σ̂†â− σ̂â†). (B.12)

In practice there are two simple situations to consider with regard to the relative posi-

tions of the atom and field mode. In the first, we simply pin down the position of the atom

such that g is a constant, which is becoming more realistic for long experimental timescales

[195]. In the second we allow the atom to drift through the field mode in some way (as in

[196]). In this case one could imagine either estimating the position of the atom concur-

rently with its internal state (see [198] for more on quantum position tracking) or removing

the position from the estimation by approximating it as a perfectly known classical variable,



306

which is currently unrealistic. In later sections, we consider the atom to drift through the

mode in a known way such that g is a Gaussian in time. In practice, without trapping the

atom, the incoming trajectory is random but approximately Gaussian. We also ignore light

atom forces and axial g variations to focus on the conditioning physics.

The atom will not couple solely to the cavity mode because it can spontaneously emit

radiation out the side of the cavity. The rate at which this emission happens is labeled γ.

Just as the mirrors leak information at the rates κi, this provides another output channel

and its effect on the dynamics will be described shortly.

We assume all of the output channels to be destructively measured (whether or not the

results are ignored), and our description of the system that we wish to update according to

these measurements includes both the field mode and the atom, ρ̂ = ρ̂AC . We also assume

the initial field and atomic states to be uncorrelated such that

ρ̂(0) = ρ̂A(0)⊗ ρ̂C(0). (B.13)

The coupling Hamiltonian ĤJ will produce entanglement between the two such that ρ̂(t)

cannot be written this way for all times.

In principle, the field mode has a basis of infinite number, but in practice the driving

field can only populate so many number states so that in simulation we can get away with

using only NA Fock states and the total density matrix will have size (3×NA)× (3×NA)

B.3.3 Environment Coupling

No system is completely closed. If one were, we would not be able to talk about it. Here

we describe the interaction of the field modes with the environment field modes. The

interaction of the atom with the noncavity modes it spontaneously emits into is similar and

the result will simply be written down later. The input state to the mirrors will always

be coherent states, with known complex amplitude, which are by definition unentangled

with any other system. Mostly, we will only consider driving the cavity from side 1 with

a coherent state β1(t), but for generality we initially consider also driving the other side

with β2(t), which can be set to zero subsequently. Also we assume the environment to be

roughly at zero temperature, which is a good approximation at optical frequencies.

Thus in timestep dt, on either side we let the coherent states of the the traveling envi-
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ronment modes interact with the cavity mode via the evolution operator

Û(dt) = exp[−iĤ0dt+
√
dt(
√
κ1[b̂

†
1â− â†b̂1] +

√
κ2[b̂

†
2â− â†b̂2])]. (B.14)

In the Heisenberg picture, application of Û(dt) leads to the evolution of the input field

operators b̂i,in. Expanding to first-order in dt and using the commutation relation for b̂, the

input evolves into the output field operator as

b̂i,out = Û(dt)†b̂i,inÛ(dt) (B.15)

=
√
κiâ+ b̂i,in. (B.16)

After bouncing off the cavity mirror, the output traveling mode is no longer independent

of the intracavity state because it depends on â.

B.3.4 Detection Scheme

Even though we can determine the field operators emanating from each cavity mirror in

terms of the cavity mode operator and the input field operators, we are not forced to measure

these fields directly. There are many options on how to perform the measurement of either

field. One could perform any combination of mixing the fields with each other, mixing with

local oscillators coherent fields, and phase shifting before doing direct photon detection at

the end of the optical setup. Just as the driving fields are coherent states, we also imagine

all input states to beam splitters to be coherent states (possibly vacuum) uncorrelated to

anything else.

Of course, the unconditional master equation must be invariant to any of this “refor-

matting” of the output fields because the traveling modes interact with the cavity in a

Markovian manner. How this happens in detail will be discussed in the next section. The

important point is that some set of transformations of the measurement operators, which

leave the unconditional evolution invariant, may correspond to a realistic physical way of

analyzing the output fields. The physical unravelling that is chosen in the lab will obviously

have important consequences for the conditional dynamics.
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B.4 Constructing the Conditional Quantum Filter

Because the unconditional dynamics are a special case of the conditional description, we

begin by formulating the procedure for updating ρ̂(t) based on continuous projective mea-

surement of the formatted output fields. In the next section, we detail example situations

of varying levels of conditioning, from complete ignorance of the results to perfect efficiency.

B.4.1 Detectors 1 and 2

Imagine the following procedure for deriving the conditional dynamics for the atom cavity

system. Each timestep of length dt we let a different spatially localized traveling mode

interact with the system from either side of the cavity through Û(dt). After dt has elapsed

we make a projective measurement of each output channel with detectors 1 and 2 without

any optical adjustment of the beams. We make dt small enough such that there are three

possibilities, zero photons in each output channel, or one photon in either (but not both).

(We take for granted the highly nontrivial association of a photo-detection event with pro-

jective number measurement of the traveling mode.) The conditional state of the atom and

cavity mode before dt is labeled by ρ̂(t), and we let the traveling modes on either side be in

the coherent states, |β1(t)
√
dt〉1 and |β2(t)

√
dt〉2. These states are unentangled with either

the system state or any other state. The final total state is then described by

ρ̂T (t+ dt) = Û(dt)ρ̂T (t)Û †(dt) (B.17)

= Û(dt) [ρ̂(t)⊗ ρ̂E(t)] Û †(dt) (B.18)

where the environment state is

ρ̂E(t) ≡ |β1(t)
√
dt〉1|β2(t)

√
dt〉2〈β1(t)

√
dt|1〈β2(t)

√
dt|2. (B.19)

If we label the results of the subsequent measurement by 0 for no clicks on either output,

1 for a click on detector 1 but not 2, and 2 for a click on detector 2 but not 1. Then the

state of the atom and cavity prior to the next dt is given by

ρ̂(t+ dt) =
Ω̂i(dt)ρ̂(t)Ω̂

†
i (dt)

Tr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)]

(B.20)
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where from the projective measurement rule, we have

Ω̂0(dt) = 〈0|1〈0|2Û(dt)|β1(t)
√
dt〉1|β2(t)

√
dt〉2 (B.21)

Ω̂1(dt) = 〈1|1〈0|2Û(dt)|β1(t)
√
dt〉1|β2(t)

√
dt〉2 (B.22)

Ω̂2(dt) = 〈0|1〈1|2Û(dt)|β1(t)
√
dt〉1|β2(t)

√
dt〉2. (B.23)

To get the actual form of these jump operators, we expand Û(dt) and the coherent state to

first-order in dt

|βi(t)
√
dt〉i ≈ (1− |βi|2dt/2)|0〉i + βi

√
dt|1〉i (B.24)

to get

Ω̂0(dt) = 1− iH0dt− ((κ1 + κ2)â†âdt/2 (B.25)

−(
√
κ1β1 +

√
κ2β2)â†dt− (|β1|2 + |β2|2)dt/2) (B.26)

Ω̂1(dt) = (
√
κ1â+ β1)

√
dt (B.27)

Ω̂2(dt) = (
√
κ2â+ β2)

√
dt. (B.28)

The probability for getting the result i is simply

Pi = Tr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)] (B.29)

and by conservation of probability we have

Σ2
i=0Ω̂

†
i (dt)Ω̂i(dt) = I. (B.30)

Notice that, in the case where no photons are detected, we still update the state in a non-

trivial manner because any result corresponds to a gain of information. The unconditional

evolution is the incoherent sum of all possibilities

ρ̂(t+ dt) = Σ2
i=0Ω̂i(dt)ρ̂(t)Ω̂i(dt)†. (B.31)
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B.4.2 Formatting the Measurement: Output Channel Division and Mix-

ing

The collapse operators are the same as the output field operators (with the b̂ operator

replaced by the number β). So by manipulating the output fields we simultaneously ma-

nipulate the collapse operators and, if the fields are eventually detected, we can change the

information content of detection event. We might imagine “formatting” the output fields

in several standard ways: dividing with beam-splitters, adding phase shifters, mixing with

coherent local oscillators for homodyne/heterodyne rather than direct photo-detection, etc.

We assume all added beams to be in known coherent states, uncorrelated with anything

and in the vacuum state unless otherwise stated. For example, we could split up the fields

with beam-splitters with reflectivities µi as in the figure B.1, giving us four measurement

channels. Assuming now that β1 = β 6= 0 and β2 = 0, the corresponding jump operators

then become

Ω̂0(dt) = 1− iH0dt− (κ1 + κ2)â†âdt/2

−
√
κ1βâ

†dt− |β|2dt/2) (B.32)

Ω̂1(dt) =
√

1− µ1(
√
κ1â+ β)

√
dt (B.33)

Ω̂2(dt) =
√

1− µ2
√
κ2â

√
dt (B.34)

Ω̂3(dt) = [
√
µ1
√
µ3(

√
κ1â+ β)

+
√

1− µ3
√
µ2
√
κ2 exp[iφ]â]

√
dt (B.35)

Ω̂4(dt) = [
√
µ2
√
µ3
√
κ2 exp[iφ]â

−
√

1− µ3
√
µ1(

√
κ1â+ β)]

√
dt (B.36)

where we have used the general beam-splitter relations for mapping input fields to output

fields.

B.4.3 Formatting the Measurement: Adding a Local Oscillator

Besides dividing and mixing the fields, there exist other (unitary) transformations of the

collapse operators under which the unconditional evolution is invariant. Some of these

transformations correspond to physical ways of analyzing the fields emanating from the

cavity. For example, we could add a coherent field γi (i 6= 0) to each output channel by
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reflecting the beam off of a mirror with infinitesimal transmission with a strong driving beam

on the other input port. Measuring the photon number of the resulting beam corresponds

to either a homodyne or heterodyne measurement depending on how the phase of γi is

adjusted in time. We can write this transformation as

˜̂Ωi(dt) = Ω̂i(dt) + γi

√
dt (B.37)

˜̂Ω0(dt) = Ω̂0(dt)− ΣN
i=1(γ

∗
i Ω̂i(dt)

√
dt+ |γi|2dt/2) (B.38)

where γi is a complex number representing the known coherent state of the local oscillator.

The operator ˜̂Ω0(dt) can be derived by demanding the unconditional master equation is

independent of γi, i.e.,

Σ2
i=0Ω̂i(dt)ρ̂(t)Ω̂i(dt)† = Σ2

i=0
˜̂Ωi(dt)ρ̂(t)

˜̂Ωi(dt)†. (B.39)

When the collapse operators are written out, there is a superficial similarity between the

role of the driving β and the local oscillator γ, but the fact that one appears in ˜̂Ω0(dt)

with an annihilation operator and the other appears with a creation operator ensures that

only the driving appears in the unconditional evolution. Because the addition of the local

oscillator is downstream it must have no physical effect on the unconditional evolution.

In actuality, we would perform a balanced homodyne or heterodyne measurement with

a 50/50 beam-splitter, thus increasing the number of output channels and adding a local

oscillator.

B.4.4 Imperfect Efficiencies

Now consider what the appropriate conditioning procedure should be when each output

channel is detected with an efficiency ηi, which is not necessarily unity. Proceeding every

dt again, if we get a click on channel i 6= 0 then the appropriate procedure is to collapse

the state with the appropriate operator as before

ρ̂(t+ dt) =
Ω̂i(dt)ρ̂(t)Ω̂

†
i (dt)

Tr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)]

(B.40)
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but now the probability of this event is

Pi = ηiTr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)]. (B.41)

When no click is measured in dt, we should consider both the possibility that no pho-

ton should have been detected Ω̂0(dt) and the possibility that a photon should have been

detected but was not due to the poor detector. So if no click is registered we apply

ρ̂(t+ dt) =
Ω̂0(dt)ρ̂(t)Ω̂

†
0(dt) + ΣN

i=1(1− ηi)Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)

Tr[Ω̂0(dt)ρ̂(t)Ω̂
†
0(dt) + ΣN

i=1(1− ηi)Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)]

. (B.42)

Of course the average behavior is still described by the unconditional master equation.

B.4.5 Stochastic Master Equation

We have completely described the basic rules for updating the conditional density matrix

stepwise in time. Now we collect these rules into one equation, henceforth referred to as

the stochastic master equation:

ρ̂(t+ dt) = ρ̂(t) + dρ̂(t)

= Ω̂0(dt)ρ̂(t)Ω̂
†
0(dt)

+ΣN
i=1(1− ηi)Ω̂i(dt)ρ̂(t)Ω̂

†
i (dt)

+ΣN
i=1dNi

[
Ω̂i(dt)ρ̂(t)Ω̂

†
i (dt)

Tr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)]

− ρ̂(t)

]
+ΣN

i=1E(dNi)ρ̂(t) (B.43)

where dNi is either zero or one and becomes one in an infinitesimal time increment dt with

probability

E(dNi) = ηiTr[Ω̂i(dt)ρ̂(t)Ω̂
†
i (dt)] ∝ dt. (B.44)

In equation (B.43), the −ρ̂(t) term is to cancel the ρ̂(t), which comes from the Ω̂0(dt) term

when a jump is made. In turn, the final term is to cancel that term when the average

evolution is taken such that the unconditional master equation is obtained. Note that

taking all ηi to zero also returns the deterministic unconditional master equation. Thus

there are two ways to get an unconditional solution, by averaging stochastic trajectories
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with some ηi 6= 0 or simply evolving the above equation with all ηi = 0.

It is important to emphasize that the dNi represent the physical measurement record.

If our model was wrong, then the statistics of each dNi would be different and, if we were

smart enough to recognize this, we would alter our model (not the state) accordingly. Thus

in simulation, one could imagine producing dNi with the optimal filter and feeding these

results to a less perfect observer with a nonoptimal filter. Here, however, we always assume

complete knowledge of all system parameters and our only sources of ignorance are possibly

the initial state (pure versus mixed) and the inherent randomness of the measurement.

In the case where the outputs are measured by homodyne/heterodyne detection one

could use the ˜̂Ωi(dt) jump operators described previously and take the large γi limit such

that the dNi noise is replaced with a white noise dWi term [57]. Also notice that the

transformation into a rotating frame only adds the energy terms to the SME because the

collapse operators always appear in pairs so exponential terms cancel.

B.5 Unconditional Dynamics

At this point, we have derived the conditional master equation (B.43) that will be the focus

of the rest of this appendix. We interpret it as an optimal filtering equation, always imag-

ining an experimentalist updating his description of the system ρ̂(t) as the measurement

results arrive. Before considering conditional situations, we first consider the case where

this observer’s detectors are all broken. Under these dire circumstances, the best the ob-

server can do is set all ηi = 0 in the filtering equation and update ρ̂(t) with the resulting

unconditional master equation.

B.5.1 Steady-States

Setting ηi = 0 for all output channels we get the deterministic unconditional master equa-

tion. We calculate the steady-states of the unconditional evolution by solving dρ̂ss = 0.

From ρ̂ss we can calculate the average steady-state expectation value of any operator re-

lated quantity. For example, we can look at the average expected photon counting rate for

the output channels in steady-state as a function of the detuning, ∆C . Figure B.2 displays
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this spectrum, where the reflected and transmitted powers are respectively

PR,ss = 〈Ω̂†
1Ω̂1〉ss = 〈(

√
κ1â+ β1)†(

√
κ1â+ β1)〉ss (B.45)

PT,ss = 〈Ω̂†
2Ω̂2〉ss = κ2〈â†â〉ss. (B.46)

The steady-state transmission is a Lorentzian function of the detuning, attaining unity on

resonance.

Now we can ask what happens when an atom is pinned within the cavity. Because the

uncoupled ground state does not interact with the system, we must first state what fraction

of population is in this state before calculating the steady-state. If the atom is completely

in the uncoupled ground state, then the spectrum is unchanged from the central peaks of

figure B.2. If the cavity contains an atom with initially all population in the coupled state,

the steady-state of the entire system splits the transmission peak by the amount g. To

conserve energy, we must also consider the power emitted from the atom via spontaneous

emission

PSE,ss(t) = 〈Ω̂†
SEΩ̂SE〉ss = γ〈σ̂†σ̂〉ss. (B.47)

If the atom is in either an initial coherent or incoherent superposition of ground states, then

the transmission/reflection spectrum is the obvious weighted superposition of the curves in

figure B.2.

B.5.2 Falling Atoms

In this section we consider the following unconditional, non-steady-state scenario. The

cavity is initially empty (in the vacuum state) and the atom is prepared in a superposition

of the coupled and uncoupled ground states far outside the cavity (hence g(0) ≈ 0). At

time zero, the input light is turned on (steplike) and after some time (t� 1/κ) the cavity

reaches steady-state. Some time later we let the atom fall through the cavity mode with a

Gaussian profile, which we model by simply letting g vary in time with a Gaussian profile.

Again, we assume the position of the atom is known by the observer in possession of the

SME.
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Figure B.2: Transmission and reflection spectra, with and without atom. When the cavity
is empty, the transmission (blue) at zero detuning is one and the reflectivity (red) is zero.
When the atom is added these peaks split and some power is lost to spontaneous emission
(green).
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Figure B.3: Power levels as an atom traverses the cavity mode with initial atomic state
|Ψ〉(0) = |2〉 (coupled ground state). After a small time the empty cavity achieves equi-
librium. Subsequently, the atomic g increases as the atom falls through the cavity mode
(dashed line). When the atom is in the cavity, the system switches from fully transmitting
to fully reflecting. Spontaneous emission (green) only occurs when g is in the weak coupling
regime; when the atom becomes strongly coupled all light is rejected from the cavity and no
excited state population is possible. Notice the time rate of change of the internal energy
is needed to conserve energy (cyan is atomic energy change dEA(t)/dt and magenta is light
energy change dEC(t)/dt).
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Figure B.4: With initial atomic state |Ψ〉(0) = (|2〉+ |3〉)/
√

2 or ρ̂(0) = (|2〉〈2|+ |3〉〈3|)/2.
The final atomic state will be ρ̂F = (|2〉〈2|+ |3〉〈3|)/2.

As the atom enters and leaves, the average energy must be conserved, so that

Pin(t) = PR(t) + PT (t) + PSE(t) + dEA(t)/dt+ dEC(t)/dt (B.48)

where

Pin(t) = |β1(t)|2 (B.49)

PR(t) = 〈Ω̂†
1Ω̂1〉(t) = 〈(

√
κ1â+ β1)†(

√
κ1â+ β1)〉(t) (B.50)

PT (t) = 〈Ω̂†
2Ω̂2〉(t) = κ2〈a†â〉(t) (B.51)

PSE(t) = 〈Ω̂†
SEΩ̂SE〉(t) = γ〈σ̂†σ̂〉(t) (B.52)

EA(t) = 〈σ̂†σ̂〉(t) (B.53)

EC(t) = 〈â†â〉(t). (B.54)

The latter two terms were needed to account for all energy sources and sinks during the tran-

sient times. In steady-state, of course, the above condition holds with dEA/dt = dEC/dt =

0. Figure B.3 displays the evolution of these energy rates as the atom falls through the

cavity initially in the coupled state. After the atom has left, it is again in the pure coupled

ground state.

If the atom is initially in a coherent superposition of the coupled and uncoupled ground
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states

|Ψ〉(0) = (|2〉+ |3〉)/
√

2 (B.55)

or in the incoherent completely mixed state

ρ̂(0) = (|2〉〈2|+ |3〉〈3|)/2 (B.56)

then we get figure B.4 and the final state is the completely mixed state

ρ̂F = (|2〉〈2|+ |3〉〈3|)/2. (B.57)

B.6 Conditional Dynamics

In the unconditional case, our ignorance during the measurement leads to a loss of informa-

tion. The experimentalist’s job is to fight this condition and gather as much information as

possible emanating from the system of interest. In the ideal case, all quantum efficiencies

are one, and a pure quantum state description is eventually attained. Before considering the

dynamics in this case, we notice a few simple properties of the conditional master equation

when certain output channels are ignored but others are not.

B.6.1 Partial Ignorance

Let us restrict ourselves to the case where direct photon detection is performed with de-

tectors 1 and 2 with only one side driven (β1 6= 0 and β2 = 0). Whether or not atoms

are inside the cavity is inconsequential in the following argument. The stochastic master



318

equation for this situation above can be rewritten in the form

dρ̂(t) = −i[Ĥ, ρ̂(t)]dt

−(1− η1)i
√
κ1[iβ∗1a− iβ1â

†, ρ̂(t)]dt

+(1− η1)D[
√
κ1â]ρ̂(t)dt

+(1− η2)D[
√
κ2â]ρ̂(t)dt

+η1H[κ1â
†â/2 +

√
κ1aβ1]ρ̂(t)dt

+η2H[κ2â
†â/2]ρ̂(t)dt

+G[
√
η1(
√
κ1â+ β1)]ρ̂(t)dN1

+G[
√
η2(
√
κ2â)]ρ̂(t)dN2 (B.58)

where dNi are as before and we have used the definitions

D[ĉ]ρ̂ ≡ ĉρ̂ĉ† − (ĉ†ĉρ̂+ ρ̂ĉ†ĉ)/2 (B.59)

H[ĉ]ρ̂ ≡ ĉρ̂+ ρ̂ĉ† − 〈ĉ+ ĉ†〉ρ̂ (B.60)

G[ĉ]ρ̂ ≡ ĉρ̂ĉ†

Tr[ĉρ̂ĉ†]
− ρ̂ (B.61)

〈ĉ〉 ≡ Tr[ĉρ̂]. (B.62)

Notice that, when written in this form, the β1 term in the Ω̂0 operator turns into a Hamilto-

nian driving term. Now if we ignore channel 1 and set η1 = 0, we can rewrite this equation

as

dρ̂(t) = −i[Ĥ, ρ̂(t)]dt

−i
√
κ1[iβ∗1 â− iβ1â

†, ρ̂(t)]dt

+(1− η′1)D[
√
κ′2â]ρ̂(t)dt

+G[
√
η′2(
√
κ′2â)]ρ̂(t)dN

′
2

+η′2H[κ′2â
†â/2]ρ̂(t)dt (B.63)

where we have used η′2 ≡ η2/(1 + κ1/κ2) and κ′2 ≡ κ2(1 + κ1/κ2) and dN ′
2 = dN2.

Notice that we would arrive at exactly the same equation if we had instead started with
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the full master equation and taken the limits

η1 → 0 (B.64)

κ1 → 0 (B.65)

β1 → β1/
√
κ1 (B.66)

η2 → η′2 (B.67)

κ2 → κ′2 (B.68)

where, to keep the driving term the same, we had to increase the input power as κ1 → 0.

Thus we have two equivalent situations, if we choose to ignore the one side in the original

configuration, it is as if we were monitoring one side of a completely asymmetric cavity with

a single mirror loss rate κ1 + κ2 and reduced efficiency η′2 < η2. This type of equivalence is

clearly invariant to the way in which we examine the output channel 2 (e.g., with homodyne

or heterodyne detection).

B.6.2 Welcher Weg!

Now we examine a particular application of our stochastic master equation. Consider the

“which way” configuration of figure B.1, which is discussed in [197] where the atom-cavity

system is proposed as a “quantum gate” for light. As in that paper, we consider a mode of

operation where the cavity is off resonance (reflective) and the atom brings it into resonance

(transmissive). If the corner mirrors are perfectly transmissive, then we detect only with

detectors 1 and 2. When the atom is initially in a coherent superposition of the coupled

and uncoupled ground states

|Ψ〉(0) = (|2〉+ |3〉)/
√

2 (B.69)

a burst of transmissive light on detector 2 will tend to project the atom into the coupled

state (see figure B.5), while the absence of light or too little light will tend to project the

atom into the uncoupled state (see figure B.6). This is intuitive as light in either channel

is directly correlated to one or the other ground state.

Now consider the corner mirrors as being perfectly reflective, such that we detect only

with detectors 3 and 4 (at the output of the beamsplitter). If we set the phase shift on



320

0 2 4 6 8 10 12 14 16 18 20
0

20

40

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

0 2 4 6 8 10 12 14 16 18 20
0

1

2

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0.9

0.95

1

Figure B.5: The conditional dynamics of a superposition state that gets projected into the
coupled state. The first plot shows expected counts reflected (black) and transmitted (blue).
The second plot shows actual detection events reflected and transmitted. The third plot
shows the expected photon number inside the cavity, which is here large (since light is being
let through by the coupling atom). The fourth plot shows the populations in the coupled
ground state (blue), uncoupled (black) and excited state (red), as well as the coherence
between the two ground states (magenta). The final plot shows the entropy of the atom
subsystem (a low number represents entanglement between the cavity mode and atomic
state).

one arm appropriately (φ = 0), one output port of the final beam-splitter can be made

independent of the intracavity state (hence that mode only contains β not â). For certain

parameter regimes, the information gained from the remaining channel will not distinguish

between the different ground states and the final state of the atom will not be projected into

one or the other, but a superposition of the two (see figure B.7). Still, from the unconditional

dynamics we know that the average of all final states must be the completely mixed state,

so the final atomic state per trajectory must be projected randomly in some basis. In this

configuration, we have lost information on “which way” the light went, but of course this

is a meaningless question under the rules of our conditioning.
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Figure B.6: See figure B.5 for an explanation of the vertical axes. Here not enough clicks
were detected to project the atom into the coupled state so it gets projected into the
uncoupled state. The estimator “makes this decision” around time 9.
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Figure B.7: See figure B.5 for an explanation of the vertical axes. Here the corner mirrors
have been made reflective and the clicks on detectors 3 and 4 are shown. Notice that the
blue curve is flat in the first plot because that channel is independent of the state. The
second plot shows that each detector is getting an approximately equal number of clicks.
The fourth plot shows that the system is not projected into either one of the ground states
after the atom has passed through.
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Appendix C

Conditional Dynamics of an
Optical Parametric Oscillator

After the experiment of [12], we briefly considered performing a similar experiment but using

squeezed states of light as opposed to the more trivial coherent states. In this case, the

squeezed output of an Optical Parametric Oscillator (OPO) would be adaptively measured

in order to estimate a parameter describing the squeezed state. The following theoretical

notes were written in this context, expanding on the work of [199].

C.1 Introduction

Squeezed states of light are one of the foundational pillars of quantum optics research.

Experimental applications of squeezing have either operated in the pulsed or continuous

wave (cw) regime. In the cw case, the second-order moments of individual trajectories are

constant. When a decaying squeezed state is continuously measured though, the squeezed

state will evolve to the vacuum in a nontrivial manner. Much of the groundwork for this

situation with a homodyne measurement scheme has already been established in a slightly

different context [199]. Here we summarize and extend that work to consider situations

where the trajectory formalism is most appropriate. The compact and intuitive trajectory

description is shown to be efficient at calculating nonstationary correlations. We also discuss

the use of this formalism to derive optimal adaptive measurement schemes in single-shot

experiments.



323

C.2 Conditional Squeezed State Dynamics

The unconditional evolution of light leaking from a cavity is given by the master equation

˙̂ρ(t) = −i[Ĥ, ρ̂(t)] + âρ̂(t)â† − 1
2
(â†âρ̂(t) + ρ̂(t)â†â) (C.1)

where we have assumed the decay rate to be unity. In terms of a quantum trajectory, or

jump operator, formalism, the unconditional evolution can be written as

ρ̂(t+ dt) =
∑

r

Ω̂r(dt)ρ̂(t)Ω̂†
r(dt). (C.2)

One choice of measurement operators consistent with equation (C.1) is

Ω̂1(dt) = â
√
dt (C.3)

Ω̂0(dt) = 1− (iĤ +
1
2
â†â)dt (C.4)

where the form of Ω̂0(dt) comes from the normalization condition. This set of operators

can be physically derived if we consider projecting the output field of the cavity into the

number basis via photon counting.

A unitary rearrangement, or unravelling, of the unitary operators does not change the

unconditional evolution. One possible transformation physically corresponds to homodyne

detection where a large classical local oscillator γ = |γ| exp[iΦ] is added to the output light

of the cavity. This transformation is

â → â+ γ (C.5)

Ĥ → Ĥ − i
1
2
(γ∗â− γâ†). (C.6)

In the limit of large |γ| we have a Poisson distributed detection process.

To generate squeezed light, we impose the OPO Hamiltonian Ĥ = i
4χ(â2− (â†)2) where

0 < χ < 1 below threshold. Working in a rotating frame, the conditional stochastic master
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equation becomes:

dρ̂ =
(

1
4
χ[â2 − (â†)2, ρ̂]

)
dt

+
(
âρ̂â† − â†âρ̂/2− ρ̂â†â/2

)
dt

+
√
η
(
exp[−iΦ]âρ̂+ ρ̂â† exp[iΦ]− 〈â exp[−iΦ] + â† exp[iΦ]〉ρ̂

)
dW. (C.7)

Define the field quadratures x̂ = â+ â† and y = −i
(
â− â†

)
. If the initial density matrix

has a bivariate Gaussian form in these variables, then it can be shown that ρ̂ retains this

form under the evolution of equation (C.7). The evolution of this Gaussian state can be

written [199] in terms of the differential equations of the distribution parameters

d〈x̂〉 = −1
2
(1 + χ)〈x̂〉dt+

√
η (cos Φ(Vx − 1) + sin ΦVxy) dW (C.8)

d〈ŷ〉 = −1
2
(1− χ)〈ŷ〉dt+

√
η (cos ΦVxy + sinΦ(Vy − 1)) dW (C.9)

dVx

dt
= 1− (1 + χ)Vx − η (cos Φ(Vx − 1) + sin ΦVxy)

2 (C.10)

dVxy

dt
= −Vxy − η (cos Φ(Vx − 1) + sin ΦVxy) (cos ΦVxy + sinΦ(Vy − 1)) (C.11)

dVy

dt
= 1− (1− χ)Vy − η (cos ΦVxy + sinΦ(Vy − 1))2 (C.12)

where the variances are defined as

Vx = 〈(x̂− 〈x̂〉)2〉 (C.13)

Vy = 〈(ŷ − 〈ŷ〉)2〉 (C.14)

Vxy =
1
2
〈(x̂− 〈x̂〉)(ŷ − 〈ŷ〉) + (ŷ − 〈ŷ〉)(x̂− 〈x̂〉)〉. (C.15)

Notice that the variances evolve deterministically.

Let us assume η = 1, perfect measurement efficiency, for the remainder of the discussion.

The unconditional stationary solution to equation (C.1) (or the average of solutions to
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equation (C.7)) is given by

〈x̂〉 = 0 (C.16)

〈ŷ〉 = 0 (C.17)

Vx =
1

1 + χ
(C.18)

Vy =
1

1− χ
(C.19)

Vxy = 0. (C.20)

This is a mixed state. Notice that Vx >
1
2 , so that the unconditional state cannot become

infinitely squeezed.

The situation is qualitatively different for the conditional states. With Φ = 0, the

conditional solution to equation (C.7) is given by

〈x̂〉 6= 0 (C.21)

〈ŷ〉 = 0 (C.22)

Vx = 1− χ (C.23)

Vy =
1

1− χ
(C.24)

Vxy = 0. (C.25)

Here a particular pure state solution is an ideal squeezed state (Vx = 1/Vy). The displace-

ment 〈x̂〉 undergoes bound diffusion (projection jitter), which supplies a degree of noise

such that on average these pure states reproduce the unconditional solution. This is a

particularly intuitive way of thinking about the squeezing spectrum. For short times differ-

ences the conditional variance can be infinitely squeezed (Vx = 1−χ), while for larger time

differences the correlations wash out because of the projection jitter (〈x̂〉 6= 0).
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With Φ = π/2, the conditional solution to equation (C.7) is given by

〈x̂〉 = 0 (C.26)

〈ŷ〉 6= 0 (C.27)

Vx = 1 + χ (C.28)

Vy =
1

1 + χ
(C.29)

Vxy = 0. (C.30)

The discussion here is the same as above, but with less squeezing and a different axis of

projection noise.

Because we know that the conditional pure state is an ideal squeezed state, we will now

simplify our description. The definition of an ideal squeezed state [68] is

|αS
0 , z

S
0 〉 = D̂(αS

0 )Ŝ(zS
0 )|0〉 (C.31)

where Ŝ squeezes the vacuum with the complex number zS
0 and D̂ displaces the resulting

state in the direction of αS
0 . The 0 subscript indicates the starting values of the state, and

the S superscript labels a state variable. Another way to represent the squeezing parameter

is as BS
0 = exp[i(φS

0 + π)] tanh(rS
0 ) where zS

0 = rS
0 exp[iφS

0 ]. Notice that the limits of a

coherent state and infinite squeezing are represented by the |BS
0 | (rS

0 ) magnitudes of 0 (0)

and 1 (∞) respectively. For the situation where we pump up the cavity with Φ = 0 the

conditional amount of squeezing is |BS
0 | = tanh(−ln(1− χ)/2). Finally, we can relate all of

these descriptions to the usual specification of squeezing as

SdB = 10 log
(
〈∆x2〉

1

)
(C.32)

= 10 log(e±2rS
t ) (C.33)

= ±20 log(e)rS
t (C.34)

= ±8.7rS
t (C.35)

= ±8.7atanh(|BS
t |). (C.36)

In terms of this new set of parameters, consider what happens when we stop pumping the

OPO (χ = 0) and let the state decay to the vacuum. Initially, we can imagine determining



327

the initial state by using homodyne tomography for a sufficient length of time [200] before

turning off the pump. Again, assume the state is being measured with a standard homodyne

detection scheme with (at time t) difference photocurrent I(t) and local oscillator phase

Φ(t). In the limit where the local oscillator magnitude is large, the photocurrent evolution

is given by

I(t)dt = 2Re(αS
t e

−iΦ(t))dt+ dW (t) (C.37)

where αS
t is the conditional displacement at time t and dW (t) is a Wiener increment, which

encapsulates the intrinsic randomness of the measurement [11].

Remarkably, the conditional state is a function of only the initial state parameters and

two other complex measurement parameters:

Rt =
∫ t

0
I(s)e−s/2eiΦ(s)ds (C.38)

St = −
∫ t

0
e−se2iΦ(s)ds. (C.39)

In terms of these numbers, the conditional state at time t is given by

|αS
t , z

S
t 〉 = N exp[−1

2
â†ât] exp[

1
2
(S∗t â

2 +R∗
t â)]|αS

0 , z
S
0 〉 (C.40)

where N is a normalization factor [113]. In other words, with the perfect detection efficiency

we have assumed, a pure squeezed state remains a pure squeezed state under the conditional

evolution. Although we will use this set of variables to describe the evolution, we can easily

remove the decay envelope of the state with a change of the time variable v = 1− e−t. This

leads to redefined measurement results

Rt → Av =
∫ v

0
I(u)eiΦ(u)du (C.41)

St → Bv = −
∫ v

0
e2iΦ(u)du (C.42)

with which one can simulate the photocurrent evolution as

I(v)dv = 2Re(αS
v e

−iΦ(v))dv + dW (v). (C.43)

Using Equations (2.12) and (A8) from [201], we can manipulate equation (C.40) to find
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the new state parameters (αS
t , BS

t ) as a function of the initial values (αS
0 , BS

0 ) and the
measurement parameters (Rt, St). After rearranging terms, these turn out to be

αS
t = e−

t
2

“
αS

0 [1 + BS
0 (e−t − 1) − BS∗

0 St + |BS
0 |2(St − e−t)] + [BS

0 R∗
t + |BS

0 |2(e−tRt − StR
∗
t )]

”
×

“
1 − 2Re(BS

0 S∗
t ) + |BS

0 |2(|St|2 − e−2t)
”−1

(C.44)

BS
t = e−t

„
1

BS
0

− S∗
t

«−1

. (C.45)

There are a few important points to make about these equations. First, the magnitude

of BS
t decreases monotonically. If the state is not initially squeezed (BS

0 = 0), then the

measurement cannot induce squeezing. However, if the squeezing ellipse is not lined up with

the measurement axis (BS
t complex), the direction of squeezing will rotate (BS

t becomes

more real). Also note that αS
t only depends on the measurement results if there is a nonzero

degree of squeezing. In other words, the state must be quantum mechanical to experience

back-action. Otherwise, it decreases monotonically because of the cavity decay.

These points can also be seen by ignoring the measurement parameters and writing out

the stochastic differential equations (SDEs) for the state parameters.

dαS
t = −1

2
αS

t dt+
BS

t dW

1− |BS
t |2

[(BS
t )∗eiΦ(t) + e−iΦ(t)] (C.46)

dBS
t = −BS

t (1 + e−2iΦ(t)BS
t )dt. (C.47)

Again the dαS
t equation is stochastic only if there is nonzero squeezing. Notice that the dBS

t

equation is not stochastic and can be integrated easily to give equation (C.45). However,

the BS
t equation can become stochastic indirectly if we allow an adaptive measurement. In

this case, dBS
t may depend on the random dW if we allow Φ(t) to be a function of I(t).

To get a feel for the above equations, imagine performing the following experimental

procedure as depicted in figure C.1 and figure C.2. Set the local oscillator phase to zero

and measure the photocurrent for each of two squeezed vacuum states: amplitude squeezed

(BS
0 = −0.9, north-south) and phase squeezed (BS

0 = 0.9, east-west). In both cases αS
t stays

real due to equation (C.46), and the squeezing ellipse retains its direction due to equation

(C.47). For the phase squeezed state, the BS
t decay looks like an exponential. For the

amplitude squeezed state, the BS
t decay does not look like an exponential, but stays larger

for longer.

Qualitatively, the phase squeezed state is very quickly ‘projected’ into its wings, becom-



329

!5 0 5
!5

0

5
State

!5 0 5
!5

0

5
State

0 10 20 30 40
0

0.5

1

|B
tS |

3 dB
6 dB
12 dB
24 dB
48 dB
96 dB

0 10 20 30 40
0

0.5

1

0 10 20 30 40
0

50

100

dB

0 10 20 30 40
0

50

100

0 10 20 30 40
0

20

40

time

|!
tS |2

0 10 20 30 40
0

0.2

0.4

time

Figure C.1: Collapse of coherence depending on measurement quadrature. Notice that
the state collapses much more slowly when measuring the squeezed quadrature (right) as
opposed to the antisqueezed quadrature (left).
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Figure C.2: A realistic subsample of figure C.1.
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ing a coherent state with a large displacement limited only by the amount of squeezing.

This can be seen in the 〈|αS
t |2〉 plots of figure C.1. The amplitude squeezed state is able

to stay squeezed for longer because of its minimal projection onto the real axis. For large

squeezing, its mean displacement saturates to 〈|αS
t |2〉 = 0.25 within the (unity) timescale

of decay. Once the deterministic squeezing ellipse decays to near vacuum, this value also

decays back to zero. The time that the amplitude squeezed state stays in this 〈|αS
t |2〉

equilibrium is limited only by the amount of initial squeezing.

Of course, we could describe the two situations as the same state, but with different

constant local oscillator phases of 0 and π/2. Despite the large qualitative difference between

the two trajectory pictures, the unconditional density matrix ˜̂ρ(t) must be equal to the

average projector onto the conditional pure states of either case described above:

ρ̂(t) = |ψi(t)〉〈ψi(t)|Φ=0 = |ψi(t)〉〈ψi(t)|Φ=π
2
. (C.48)

Again, this requirement stems from the fact that changing the local oscillator phase is a

unitary reformatting of the measurement operators. Physically, this just means that the

unconditional description is independent of how we look at the system. One must change

the Hamiltonian of the system to alter ρ̂(t).

To reconcile equation (C.48) with the trajectory picture we note that at intermediate

times ρ̂(t) is a mixed state with an associated variance matrix. We assume it starts pure

and know it ends pure as the vacuum. At the point in time where one set of trajectories is

a coherent state and the other is still a squeezed state, the averaged variances of both are

still the same because there are two sources of noise: the uncertainty and the “projection

jitter.” The coherent states have unity uncertainty and no projection jitter, while the

squeezed states have small uncertainty but nonzero projection jitter (see equation (C.46)).

C.3 Potential Experiments

Our goal now is to design an experiment that demonstrates the trajectory equations above

are an essential description in single-shot measurements. First, we will outline experiments

that display characteristics of the above dynamics, given that we know the initial state of the

system, i.e., system verification. Subsequently, we will assume we do not know the initial
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state and discuss possible measurement and feedback strategies for performing squeezed

state tomography.

C.3.1 System Verification

First assume we know initial state of the system. As mentioned above, this can be achieved

in practice by pumping the OPO to equilibrium, measuring the output c-w state via tomog-

raphy techniques, then instantaneously turning off the pump to start the decay experiment.

C.3.1.1 Nonstationary Correlations

In squeezed state measurements one considers measuring correlations of the photocurrent.

Consider the quantity 〈∆I(t)∆I(t′)〉 with the definitions

∆I(t) = I(t)− 2Re(αC
t e

−iΦ(t)) (C.49)

αC
t = αS

0 e
− t

2 . (C.50)

Here αC
t is how the state would behave if there were no initial squeezing. After some

manipulation of SDE integrals, we arrive at:

〈∆I(t)∆I(t′)〉 = δ(t − t′) + 2et−t′Re[e−iΦ(t)f(t′)] + e−
t+t′

2

Z t′

0

e−s|f(s)e−iΦ(t) + f∗(s)eiΦ(t′)|2ds (C.51)

with t > t′ and f(t) = BS
t

1−|BS
t |2

[(BS
t )∗eiΦ(t) + e−iΦ(t)]. Unlike the case in cw squeezed

beams, the correlation function here is a nonstationary quantity. Without the use of the

trajectory formulation, its calculation would be considerably more difficult. One could

measure 〈∆I(t)∆I(t′)〉 to verify the dynamics described here, however its interpretation is

slightly subtle. For example, one might want to associate the power spectrum 〈∆I(t)2〉

directly with the uncertainty parameter BS
t , which is invalid because of the noise from

“projection jitter” mentioned above.

The nonstationary correlation function as a function of time is plotted in figure C.3.

Clearly, the most interesting correlation function comes from the scenario where the squeezed

quadrature is measured and the squeezing persists for a larger amount of time as seen in

figure C.1.
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Figure C.3: Nonstationary correlations of a decaying squeezed mode. The first column
represents the squeezing direction with respect to the measurement direction, the second
column is 〈∆I(t)∆I(t′)〉, the third column is a cut of the two-dimensional correlation func-
tion along the side axis (red) and along the diagonal (blue). Unity shotnoise has been
removed from the diagonal for clarity. The most interesting nontrivial feature is in the
shape of the diagonal correlation function when the squeezed quadrature is measured.
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C.3.1.2 Rotate

Other games are available to verify the above dynamics. One possibility is to always keep

the squeezed state diagonal with respect to the local oscillator axis such that the squeezing

ellipse in the nonrotating frame is continuously rotating. This is achieved with a local

oscillator value of Φ(t) = arg(BS
t )

2 − π
4 .

C.3.1.3 Maximize Current

Feedback schemes are particularly adept at displaying the trajectory dynamics. Let us still

assume we know the initial state (squeezed vacuum), but are given the task of maximizing

the current. Looking at figure C.1, we should line up the squeezing ellipse with the local

oscillator such that a large displacement is created. Then, since the displacement is now

necessarily along only this axis, we only have to toggle Φ between 0 and π to keep the current

large and positive. In the case that there is some initial displacement, the algorithm grows

more complex and the change in Φ would also depend on our knowledge of αS
t and the

magnitude of BS
t .

C.3.1.4 Minimize Current

Minimizing the current with feedback is a little tricky in realistic situations. Imagine we

started with the ellipse lined up with the local oscillator, then the state would project into

a coherent state with large displacement, and we would have to set Φ = arg(αS
t ) + π

2 .

However, with a delay in the feedback loop this may result in a temporary undesirable peak

in the photocurrent. A better (trivial) approach would be to keep the squeezing ellipse

perpendicular to the local oscillator axis such that it stays squeezed for longer. While there

is some small displacement during this time, it is acceptable compared to the large jump

that would occur if the local oscillator was rotated.

C.3.2 Squeezed State Tomography

Let us now assume we have limited knowledge of the initial state of the system. There are 4

parameters to monitor (2 complex numbers) and, depending on the game we want to play,

we may allow ourselves knowledge of some with the goal of measuring the others. Each

measurement is assumed to consist of only a single shot, not an ensemble where standard
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tomography techniques could be used to reproduce the state in full.

C.3.2.1 Displacement Phase Measurement

We first discuss the adaptive measurement of the phase of a single light pulse. Algorithms

to do this have been studied extensively [11], but mainly with reference to coherent states

where no back-action occurs. Similar approaches have been described with squeezed states

where the direction of the squeezing is chosen along axis of the displacement to facilitate

a low-noise measurement of the displacement phase [199]. In the case that the squeezed

beam is continuous, there is no rotation of the squeezing ellipse thus it does not have to be

accounted for in the feedback algorithm. However, when measuring the phase of a decaying

squeezed state cavity, the direction of squeezing may rotate, complicating the feedback

scheme. But if the algorithm is able to quickly set Φ ≈ arg(αS
t ) + π

2 then the squeezing

ellipse will not significantly rotate and the algorithm can proceed as before.

C.3.2.2 Squeezing Phase Measurement

Now we discuss measuring the squeezing parameters, particularly the phase, in a single-

shot measurement. Because these parameters manifest themselves as fluctuations the task

is inherently more complicated. Still, the intuition of the above description is useful in

designing heuristic algorithms.

First assume that the initial state is squeezed vacuum. Unless the state is very close

to the amplitude-squeezed position (north-south), the squeezed state will quickly project

into a coherent state with finite displacement along a direction depending on the squeezing

parameter (BS
t ). One procedure that demonstrates the usefulness of feedback during single-

shot measurements is to give the state some time to project into a coherent state, which

is subsequently measured using standard procedures [11]. This phase will then be related

to the desired squeezing parameter through equation (C.46). Information about both the

magnitude and phase of BS
t can be extracted from this relation. Also, if the state is initially

near amplitude squeezed, a heterodyne type measurement can be made early on to get the

state to project into a coherent state.
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C.4 Measurement Formalisms

It is extremely important to realize that we do not always have to use the trajectory for-

malism to calculate experimental results, e.g., the correlation function. Experimentally

convincing data consist of ensemble averages, not single traces that may be stochastically

anomalous. If we continue to describe the bath quantum mechanically, the ensemble aver-

age of the measured current correlation functions can be expressed as the expectation value

of an operator acting on both the bath and the system (i.e., the Heisenberg picture).

For the case of open-loop measurements, there may not be much difference between the

two methods. However, if we perform an experiment to measure the correlation function of

the system with feedback, the trajectory picture becomes a practical necessity.

Let us describe a very simplified feedback experiment for demonstration purposes. Sup-

pose we prepare the cavity in a coherent state, which subsequently decays exponentially.

Since there is no squeezing, the state will experience no nontrivial back-action. Further

assume we are interested in the measurement of the ensemble averaged current, where we

have linear “Markovian” feedback from the current to the homodyne phase. In practice

there will be some delay in the feedback loop, but we assume that the delay is close to zero.

C.4.1 Trajectory Formalism

The conditional current for a single trajectory is given by

IC(t) = 2Re(αS
0 e

−te−iφ(t)) + ξ(t) (C.52)

where ξ(t) = dW (t)/dt is thought of as the shotnoise from the Poisson detection process of

detecting the large local oscillator.

Let us suppose the feedback demands φ(t) = gIC(t) with g � 1. If we replace the phase

with this expression, we have an intractable equation for IC(t). However, if we assume g to

be small we can expand the exponentials and rearrange [57] to get

IC(t) = (1 + 2ge−tIm(αS
0 ))(2e−tRe(αS

0 ) + ξ(t)) (C.53)

〈I(t)〉 = 2e−tRe(αS
0 ) + 4ge−2tIm(αS

0 )Re(αS
0 ). (C.54)
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C.4.2 Operator Formalism

Here we include the bath in our description and represent the current as an operator equal

to the quadrature of the output field

Î = (â+ ν̂)e−iφ̂ + (â† + ν̂†)eiφ̂ (C.55)

where ν̂ is the annihilation operator on the input field of the cavity (considered to be

vacuum). Most importantly, we have changed the local oscillator phase from a parameter

into an operator.

Now we make the feedback into an operator equation: φ̂ = gÎ. Again, this leaves us

with an intractable equation for Î, which we can solve if we let g be small. Here we must

also symmetrize the resulting expression, as is normal when converting parameters into

operators. The final form of the feedback current operator is then

Î = â+ ν̂ + â† + ν̂† + ig((â†)2 − â2 + (ν̂†)2 − ν̂2). (C.56)

Now for coherent state we find the average current to be

〈I(t)〉 = TrS,E(|αS
0 e

−t〉〈αS
0 e

−t|S ⊗ |0〉〈0|E Î) (C.57)

= 2e−tRe(αS
0 ) + 4ge−2tIm(αS

0 )Re(αS
0 ) (C.58)

as we also found for the measurement scenario. In general, one would perform this trace

with respect to the unconditional density matrix, but in this special case the conditional

and unconditional state are the same. By the form of the above equation, it can be seen

that using feedback rearranges the information content of the correlation functions, placing

higher-order moments in functions that would normally have only lower-order moments of

the field operators.

C.4.3 Discussion

Under these special circumstances the two approaches were similarly easy to work with.

Instead of making φ a function of I let us now assume that φ is a function of the state

variables at any point in time. In this case, we no longer have an intractable equation for I
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and we do not have to make any small parameter approximations. This state-variable feed-

back can be implemented if we have perfect detection of the conditional pure state. Using

the Heisenberg form of the operators in the no-measurement picture, we could now include

delays in the feedback loop. Thus we could write down the analytic form of any correla-

tion function as a trace of a complicated function of field operators over the unconditional

density matrix.

To analytically simplify the resulting equation may be quite difficult. There may be

multiple time arguments in each of a large number of operator averages. Of course, the

same problem exists in the trajectory calculation, only with stochastically integrated scalars

replacing the operators and white noise replacing the input field annihilation operators. For

most calculations, it is useful to have both approaches available.

Practically, the trajectory picture is indispensable in adaptive scenarios. Trajectories

are the classical way of thinking about the controlled object, thus it is only natural to extend

the notion to quantum mechanical systems. Although feedback experiments need not rely

on measurement, they often will, making a physically derived trajectory model the realistic

description. Given the task of any of the control games mentioned above, it is generally

easier to design a controller with the pure state conditional dynamics in mind than to think

of the trace of a complicated operator expression over the unconditional density matrix.
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Appendix D

Spin Magnetic Resonance Analysis

Much of this thesis has described the evolution of a collective spin-state due to a simple

perpendicular constant field, resulting in Larmor precession. In our experiment, we pos-

sess the capability of modulating Gauss-sized fields at close to MHz frequencies, enabling

an investigation of the spin evolution due to time varying fields. We have several motiva-

tions for investigating such dynamics including the possibility of eliminating technical noise

with a frequency modulated spin-squeezing scheme and performing magnetometry at high

frequencies. One such scheme is discussed in chapter 14 in the context of our experiment.

In this appendix, we go into more theoretical detail on the measurement of a collective

spin-state evolving under time varying fields. This work is motivated primarily by the stro-

boscopic scheme presented in section 14.5. First, we describe the classical spin dynamics for

the typical “magnetic resonance” configuration, with a large magnetic field in one direction

and a small, time varying field along a perpendicular direction. Then we describe the ex-

pected noise characteristics for the sine and cosine quadratures of the measurement record

under stroboscopic and constant measurement conditions. All of the intuition associated

with the quantum dynamics and parameter estimation remains essentially the same as in

earlier chapters, but many of the technical details are evaluated here.

D.1 Spin Magnetic Resonance

Now we calculate the evolution of an individual spin vector under the usual conditions

of magnetic resonance, with a large holding field in one direction and a small oscillating

field in a perpendicular direction. This problem is standard in many introductory quantum

mechanics textbooks. Here we are mostly concerned with only the spin moments, e.g., 〈f̂z 〉,
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Figure D.1: Dynamics of the spin-vector initially aligned in the x-direction due to a large
field B0 in the x-direction and an oscillating field B1 cos(ωt). Here we plot the resonant
solution with ω = ω0 = −γfB0.

thus the problem amounts to nothing more than solving the classical equation

df
dt

= γf f × b (D.1)

for a particular time dependent field. (The γf = −gfµB/~ used in this appendix is in units

of rad/s/G and differs by a factor of 2π from the γBf = gfµB/h used in earlier chapters

which is in units of Hz/G.) The results of the solution are presented here in the context of

measuring the amplitude of the unknown perpendicular field, i.e., extending the quantum

magnetometry scenario into the regime of measuring alternating (AC), rather than constant

(DC), fields.

In solving the problem, we follow the treatment of reference [66], section 1.2.3, although

we change coordinates and quantize along x (i.e., z → x, x → −z). Although the problem

is specifically for a spin-1/2 particle, the spin moment solutions, 〈f̂i〉, are valid for any spin

value, as the solution to the above equation is unique. The magnetic resonance Hamiltonian

of interest is given by

Ĥ = gfµB(B0f̂x +B1 cos(ωt)f̂y) (D.2)
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where B0 � B1. The evolution from this Hamiltonian is graphically depicted in figure D.1

and we now go about solving the equations of motion. From the Hamiltonian, we define

the following frequencies whose meaning will become apparent

γf = −gfµB/~ (D.3)

ω0 = −γfB0 (D.4)

ω1 = −γfB1/2 (D.5)

Ω0 = ω − ω0 (D.6)

Ω =
(
Ω2

0 + ω2
1

)1/2
. (D.7)

If we denote the quantum state as

|Ψ〉 = c1|1〉+ c2|2〉 (D.8)

(in the x-basis) and assume initial conditions c1 = 0 and c2 = 1, then one can go into the

rotating frame of ω0 about x and make the RWA (rotating wave approximation) ignoring

ω + ω1 frequencies to get the solution [66]

c1 = −iω1

Ω
sin
(

Ωt
2

)
exp(−iΩ0t/2) (D.9)

c2 =
(

cos
(

Ωt
2

)
− i

Ω0

Ω
sin
(

Ωt
2

))
exp(+iΩ0t/2). (D.10)

This time dependent state has the following values for the spin components in the rotating

frame:

〈f̂x〉 =
1
2
(|c1|2 − |c2|2)

=
1
2

(
2ω2

1

Ω2
sin2

(
Ωt
2

)
− 1
)

(D.11)

〈f̂y〉 =
1
2
(ic∗1c2 − ic∗2c1)

=
1
2
−2ω1

Ω

(
Ω0

Ω
sin2

(
Ωt
2

)
sin (Ω0t) + sin

(
Ωt
2

)
cos
(

Ωt
2

)
cos (Ω0t)

)
(D.12)

〈f̂z 〉 = −1
2
(c∗1c2 + c∗2c1)

= −1
2

2ω1

Ω

(
Ω0

Ω
sin2

(
Ωt
2

)
cos (Ω0t)− sin

(
Ωt
2

)
cos
(

Ωt
2

)
sin (Ω0t)

)
. (D.13)
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Again, the 1/2 prefactor can be replaced with the full spin value f = 4 to get the solution

for the larger spin. For the special on-resonance case of ω = ω0 we have

〈f̂x〉 = −1
2

cos (ω1t) (D.14)

〈f̂y〉 = −1
2

sin (ω1t) (D.15)

〈f̂z 〉 = 0. (D.16)

Thus, substituting f for 1/2 to generalize, we have the behavior of the perpendicular spin

〈f̂z 〉 in the nonrotating frame as

〈f̂z 〉 = −f sin (ω1t) sin (ω0t)

≈ −fω1t sin (ω0t)

=
fγfB1

2
t sin (ω0t) (D.17)

where we have used the fact that ω1 � ω0 and approximated the solution for small times.

The photocurrent (measuring F̂z as usual) will then be

y =
√
S〈F̂z〉+

√
ζdW

=
√
S
〈F̂x〉γfb

2
t sin (ω1t) +

√
ζdW. (D.18)

The evolution from the above equations leading to this photocurrent is graphically depicted

in figure D.1.

Now consider estimating the perpendicular field value from this photocurrent. A näıve

estimate of the field will involve the average of the appropriate quadrature of the photocur-

rent

ȳs(t) =

∫ t
0 y(t

′) sin(ω0t
′)dt′

t
(D.19)

=
√
S
〈F̂x〉γfb

2t

∫ t

0
sin2(ω0t

′)t′dt′. (D.20)

Using the integral

∫ t

0
sin2(ω0t

′)t′dt′ =
t2

4
− t sin (2ω0t)

4ω0
− cos (2ω0t)

8ω2
0

+
1

8ω2
0

(D.21)
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and solving for the field for times t� 2π/ω0, we get the näıve estimator as

b̃ ≈ 8√
S〈F̂x〉γf

ȳs(t)
t

. (D.22)

This is a simple and intuitive estimate of the perpendicular field magnitude that is nonop-

timal for several reasons. First, even with this classical model of the dynamics, an optimal

estimator would essentially “fit” the expected sinusoid with linearly increasing amplitude,

which is not what we have done. Second, the quantum noise of the measurement has been

completely neglected. The optimal estimator would surely account for the possibility of a

nonzero, and random, initial amplitude (equivalent to the projection noise offset in the DC

scenario). In the next section, we analyze the noise characteristics of the measurement with

a simple model of the quantum noise, while neglecting the magnetometry considerations.

This analysis includes the possibility of stroboscopic measurement, which convolves another

sinusoid into the analysis.

D.2 AC Noise Analysis

The photocurrent of the measurement can be abstractly represented as

I(t)dt =
√
SdFP (t)dt+

√
N
√
P (t)dW (t)

= ISdt+ INdt (D.23)

where dF is the expected signal from the spins (random on every trial), IS represents the

signal part of the photocurrent, and IN represents the shotnoise part of the photocurrent.

Now define the quantities below with j being either S for signal component, or N for noise

component:

mj(t) =

∫ t
0 Ij(t

′)dt′

t
(D.24)

sj(t) =

∫ t
0 Ij(t

′) sin(ωt′)dt′

t
(D.25)

cj(t) =

∫ t
0 Ij(t

′) cos(ωt′)dt′

t
. (D.26)
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Here mj(t) is the mean estimate of the photocurrent, sj(t) is the sine quadrature, and cj(t)

is the cosine quadrature. Now we evaluate these quantities for the case of unmodulated and

modulated (or sinusoidally strobed) probe power.

D.2.1 Unmodulated Power

For an unmodulated measurement with P (t) = P0 we have

〈m2
S〉0 = SP 2

0 〈dF 2〉 (D.27)

〈s2S〉0 = 〈m2
S〉0
(

1− cos(ωt)
ωt

)2

(D.28)

〈c2S〉0 = 〈m2
S〉0
(

sin(ωt)
ωt

)2

(D.29)

〈m2
N 〉0 =

NP0

t
(D.30)

〈s2N 〉0 = 〈m2
N 〉0

(
2ωt− sin(2ωt)

4ωt

)
(D.31)

〈c2N 〉0 = 〈m2
N 〉0

(
2ωt+ sin(2ωt)

4ωt

)
(D.32)

where the zero subscript indicates the absence of modulation. In calculating the noise

expressions, Itô’s rule has been used to simplify the expressions. There should be no corre-

lation between the signal components and the noise components. Now we use these values

for reference in evaluating the stroboscopic measurement.

D.2.2 Modulated Beam and Spins

Suppose the power of the probe beam is sinusoidally modulated according to

P (t) = P0(1− cos(2ωt))/2 (D.33)

and, furthermore, suppose the spins are moving such that on any on trial

dF (t) = dF sin(ωt) (D.34)

where 〈dF 〉 = 0 and 〈dF 2〉 6= 0. This simple model of the quantum spin noise should be

approximately valid given an x-field that causes the time evolution and a measurement

that is sufficiently stroboscopic. Here we have assumed prior knowledge of the phase of the
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spin-noise such that the sine-quadrature contains the spin-noise information. This is the

case in the experiment because the modulated probe initiates the spin-projection, so the

phase is always the same.

With these assumptions, we have the signal variances

〈s2S〉 = 〈m2
S〉0
(

12ωt− 8 sin(2ωt) + sin(4ωt)
32ωt

)2

(D.35)

→ 〈m2
S〉0
(

3
8

)2

(D.36)

〈c2S〉 = 〈m2
S〉0
(

cos(4ωt)− 4 cos(2ωt) + 3
32ωt

)2

(D.37)

→ 0 (D.38)

and the uncorrelated shotnoise variances

〈s2N 〉 = 〈m2
N 〉0

(
12ωt− 8 sin(2ωt) + sin(4ωt)

32ωt

)
(D.39)

→ 〈m2
N 〉0

(
3
8

)
(D.40)

〈c2N 〉 = 〈m2
N 〉0

(
4ωt− sin(4ωt)

32ωt

)
(D.41)

→ 〈m2
N 〉0

(
1
8

)
. (D.42)

The right arrow indicates either long times or at the specific “canceling times” of tn = nπ/ω

for n integer.

Now because the spin noise 〈s2S〉 goes down by a factor of (3/8)2, the optical noise floor

〈s2N 〉 goes down by a factor of (3/8), and the spin decay time gets extended by a factor of 2

(average of power), the expected reduction in spin-squeezing (over the ideal DC case) will

be (3/8)2/((3/8)(1/2)) = 3/4. This is a näıve analysis but it indicates the expected result

that a sacrifice is made in the ultimate level of achievable spin-squeezing when using the

technically convenient modulation scheme.
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D.2.3 Technical Offset Noise

This modulation technique is clearly useful for removing the effects of shot-to-shot DC

fluctuations in the polarimeter. Assume that the polarimeter has DC noise

I(t)dt = dIdt (D.43)

where 〈dI〉 = 0, and 〈dI2〉 6= 0. Then without the canceling we have

〈m2〉0 = 〈dI2〉. (D.44)

In contrast, for the sinusoid quadrature we have

〈s2〉0 = 〈dI2〉
(

1− cos(ωt)
ωt

)2

(D.45)

and adding in the stroboscopic measurement we have

〈s2〉 = 〈dI2〉
(

cos(3ωt)− 9 cos(ωt) + 8
6ωt

)2

. (D.46)

Both of these latter quantities are clearly zero for the canceling times tn = nπ/ω with n

integer. Thus, this technique completely ignores any truly constant offset that is random

between trials. If the offset moves during the course of the measurement, however, the

canceling is degraded, thus the measurement time is constrained by the spectrum of the

polarimeter fluctuations.
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Appendix E

Suboptimal Averaging Filter with
Decay

In chapter 5, we derived the state-dependent expressions for the decay due to spontaneous

emission in a single, many level alkali atom. However, our treatment of the effect of spon-

taneous emission on the generation of collective spin-squeezing has been crude. Typically,

we have simply imposed a “cutoff time” beyond which our model without spontaneous

emission is no longer used. Modeling the effect of the spontaneous emission at a collec-

tive level is a difficult task as we discuss more in chapter 15. In particular, the optimal

filter used to update our knowledge of the spin-squeezed state will become nontrivial once

many spontaneous emission events have occurred. In the following notes, we consider the

simplified two-level atom model of [177], and analyze just how poorly the nonoptimal, but

easy, averaging filter performs in the presence of decay. Although these results are not

exactly appropriate for our experimental situation, the end result that the averaging filter

can perform almost as well as the optimal filter is encouraging.

E.1 Introduction

Spontaneous emission inherently limits the degree of spin-squeezing that can be generated

in an atomic ensemble via continuous measurement. In reference [177], Madsen and Mølmer

quantify the degree at which the squeezing saturates for Faraday measurement of simple

atoms with two ground state levels coupled to two excited state levels. Unlike the case

without spontaneous emission, the resulting optimal filter mapping the photocurrent to the

state estimate is not equivalent to a simpler average of the photocurrent. Here we expand
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on the results of [177] to characterize how well the averaging filter performs compared to

the optimal filter.

E.2 Averaging Filter

Here the same results and notation as [177] are adopted, with the additional associations

〈p̂〉(t) = 〈p̂at〉(t) (E.1)

v(t) = 〈∆p̂2
at〉(t) = Var[p̂at] (E.2)

v0 = Var[p̂at,0] = 1/2 (E.3)

κ′(t) = κ
√

2(1− ε) exp[−ηt] (E.4)

M = κ2(1− ε)/N = Φ
( χ

∆

)2
(1− ε) (E.5)

µ =
η

2κ2(1− ε)
. (E.6)

The photocurrent (left implicit in [177]) can be represented as

I(t)dt = κ′(t)〈p̂〉(t)dt+ dW (t) (E.7)

=
√

4M
〈Ĵz〉(t)

~
dt+ dW (t) (E.8)

where dW (t) is a normally distributed random variable with variance dt. It should be

emphasized that the experimentalist only has access to I(t). If, for example, the exper-

imentalist is too lazy or ignorant to use the optimal filter and keep track of the optimal

estimate 〈p̂〉(t), he cannot determine the innovation dW (t) at every timestep.

We can summarize the optimal filter from [177] as

d〈p̂〉(t) = −η
2
〈p̂〉(t)dt+ κ′(t)v(t)dW (t) (E.9)

= −η
2
〈p̂〉(t)dt+ v(t)κ′(t)(I(t)− κ′(t)〈p̂〉(t))dt (E.10)

dv(t) = −κ′(t)2v(t)2dt− ηv(t)dt+ η exp[−ηt]dt. (E.11)
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The equation for the variance is deterministic and has solution

v(t) =
β

2

(
v0 + µ+ β/2 + exp[−2βηt/µ](v0 + µ− β/2)
v0 + µ+ β/2− exp[−2βηt/µ](v0 + µ− β/2)

)
exp[ηt]

−µ exp[ηt]. (E.12)

What we actually care about though is not v(t), but the squeezing parameter. When this

optimal filter is used the squeezing parameter is

ξ(t)2 =
N〈∆Ĵ2

z 〉(t)
〈Ĵx〉(t)2

(E.13)

=
~Nv(t)
〈Ĵx〉(t)

(E.14)

with 〈Ĵx〉(t) = N exp[−ηt]/2.

In principle, the above expression tells us what to expect of the squeezing when using the

optimal filter. Now we calculate some other quantities in order to predict the performance

of a suboptimal filter. Using the solution for a standard Ornstein-Uhlenbeck process (see

page 115 of [52]), we can solve the stochastic differential equation (SDE) for the mean

〈p̂〉(t) = exp
[
−
∫ t

0

η

2
dt

]
〈p̂〉(0) +

∫ t

0
exp

[
−
∫ t

t′

η

2
dt

]
κ′(t′)v(t′)dW (t′) (E.15)

= κ′(t)
∫ t

0
v(t′)dW (t′) (E.16)

where we have used the zero initial condition and the definition of κ′(t). Notice that the

solution of this SDE depends on the inherently random history of the measurement record.

Using equation (E.16) and E[dW (t)dW (t′)] = δ(t− t′)dt (or page 116 of [52]), it is easy to

show that

E[〈p̂〉(t)2] = κ′(t)2
∫ t

0
v(t′)2dt′. (E.17)

With some help from Mathematica, we can then plug in v(t) and show

E[〈p̂2〉(t)] = E[〈p̂〉(t)2] + v(t) (E.18)

= exp[−ηt]v0 + sinh[ηt]. (E.19)
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Notice that this quantity remains constant for all time (and thus 〈p̂2〉(t) is a martingale) iff

η = 0. This result turns out to be useful in evaluating integrals below.

We can also simply solve equation (E.10) using the standard integrating factor ODE

technique to get the moment as an explicit function of the photocurrent

〈p̂〉(t) =

∫ t
0 exp

[∫ t′

0 (η/2 + κ′(t′′)2v(t′′))dt′′
]
κ′(t′)v(t′)I(t′)dt′

exp
[∫ t

0 (η/2 + κ′(t′)2v(t′))dt′
] . (E.20)

Notice that this filter is somewhat complicated as it depends on weighting the photocurrent

with nontrivial time dependent functions.

In practice, one may be interested in obtaining the state estimate from the measurement

record in real time. (This is especially relevant if feedback is being used, but here we do not

consider additional control dynamics.) In principle one could use an FPGA [10] to do real

time complicated state estimation (using, for example, equation (E.20)), however one may

not have the resources to evolve the optimal filter in real time. For this and other reasons,

it is of interest to ask how well a nonoptimal, but functionally simple filter works. Here we

consider a filter that estimates the displacement of the optimal state via the average of the

photocurrent. This particular filter can be implemented with analog circuitry with minimal

delay and complexity. From the form of the photocurrent

I(t)dt =
√

4M
〈Ĵz〉(t)

~
dt+ dW (t) (E.21)

we choose the intuitive estimate of the quantity 〈Ĵz〉(t) to be defined as

z̃(t) =
~√
4M

∫ t
0 I(s)ds

t
. (E.22)

Because the nonoptimal z̃(t) estimate does not track the displacement 〈Ĵz〉(t) perfectly, the

effective variance for the spin-squeezing parameter is greater than 〈∆Ĵ2
z 〉(t) by the additive

factor E[(z̃(t)−〈Ĵz〉(t))2]. In other words, the imperfect spin-squeezing parameter is defined

as

ξa(t)2 =
N(〈∆Ĵ2

z 〉(t) + E[(z̃(t)− 〈Ĵz〉(t))2])
〈Ĵx〉(t)2

. (E.23)
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By using the definition of the averaging filter, E[dW (t)dW (t′)] = δ(t− t′)dt, and the result

from equation (E.19), after some work we can show that

ξa(t)2 =
exp[ηt]
η2t2

(2 + 2ηt+ exp[ηt](ηt(2µ+ ηt)− 2)) . (E.24)

Notice that the N dependence comes through µ here.

The equations for the time at which ξa(t)2 reaches a minimum cannot be solved alge-

braically. Nevertheless, the performance of this function can be seen as the upper (blue)

curve in figure E.1. The middle (red) curve displays the performance of the optimal filter

ξ(t)2 (from [177]), which reaches a significantly flat minimum. The lower (green) curve is

the expected squeezing without decay, η = 0. The first feature to notice is that at small

times t� 1/MN , the squeezing performance of ξa(t)2 is nonoptimal because it incorporates

an effectively infinite prior for the variance. Define tmin as the time at which the averaging

filter squeezing parameter achieves its minimal value. At times 1/MN < t < tmin, the

performance of the averaging filter is essentially optimal and ξa(t)2 ≈ ξ(t)2. However, once

ξ(t)2 begins to flatten, the nonoptimal squeezing ξa(t)2 begins to increase rapidly. Although

the difference between minimal value of ξ(t)2 and ξa(t)2 is small, for the suboptimal filter

the minimum time region is translated to somewhat lower times and is much less flat, there-

fore the squeezing from averaging is less robust to differences in stopping time. Therefore, if

using the averaging filter, one should not stop at the minimum time for the optimal ξ(t)2 or

else the squeezing will be significantly degraded. From time tmin to time 1/M the Gaussian

approximation remains valid, but the squeezing gets much worse.
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Figure E.1: Plot of squeezing parameters versus time. The top curve is the nonoptimal
averaging filter spin-squeezing parameter. The middle curve is the optimal spin-squeezing
parameter with decay. The bottom curve is the optimal spin-squeezing parameter without
decay. The numerical parameters used are N = 1011, P = 100µW, ∆ = 1GHz, A = 2mm2 .
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Appendix F

On the Bound States of a Magnetic
Quadrupole Waveguide

When I first arrived at Caltech, I began to work on a problem concerning a paper by Hinds

and Eberlein on the propagation of spins in a magnetic quadrupole waveguide [202]. We,

including most notably Clifford Hicks, found an error in this paper and wrote the following

comment, which was not accepted. They ultimately wrote an erratum that addressed the

issue and was accepted. During this research I learned how to simulate the motion of spins

in magnetic traps. Tricky parts of the evolution include using the so-called “split operator”

(between position and momentum) method for computational efficiency and accounting

for spins that get antitrapped and lost out the side of the simulation volume. For more on

magnetic trapping of atoms, see [142]. The following comment regarding [202] was originally

written by me, Clifford Hicks, and Hideo Mabuchi.

F.1 Abstract

In a recent paper [202], Hinds and Eberlein discussed the quantized motion of neutral

atoms in a two-dimensional quadrupole magnetic field. We argue that the bound states

they propose for a spin-1/2 particle in this field cannot exist because the associated spinor

wavefunction is not single-valued.

F.2 Comment

Laser cooling and high-resolution lithography have jointly enabled substantial progress to-

wards the important goal of localizing atoms with position uncertainty much less than an
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optical wavelength. Microfabricated wire patterns can produce magnetic fields with very

high curvature, which may serve as extremely steep (but shallow) magnetostatic traps for

neutral atoms [203, 204, 205].

Quadrupole traps are of particular interest in this context, as they are easy to produce

with planar wire geometries. In practice, one will likely add a bias field to the quadrupole

in order to suppress spin-flip transitions near the origin [206], but it remains a fundamental

question whether bound states exist for spin-1/2 particles in a quadrupolar trap without

bias. Here we will show that there are no bound states, in contradiction to Ref. [202] where

a discontinuous, low angular momentum stable ground state is proposed.

The problem of a neutral spin-1/2 particle in a quadrupole magnetic field is defined by

the Hamiltonian

H =
p2

2m
+ gµBS ·B(r) =

 p2

2m Gρeiφ

Gρe−iφ p2

2m

 , (F.1)

where B = (λx,−λy, 0) in Cartesian coordinates, (ρ, φ, z) are corresponding cylindrical

coordinates, and G ≡ gµB~λ
2 . The matrix form of H is written in the eigenbasis of Sz. In

what follows we will assume plane-wave dependence of the stationary states on z, and focus

on spinor solutions in (ρ, φ).

Note that [H,Lz − Sz] = 0 follows from the quadrupole symmetry of the field. The

general form for a simultaneous eigenstate of the two operators is then

ψq(ρ, φ) =
1√
2π
eiqφ

 F+(ρ)e
iφ
2

F−(ρ)e−
iφ
2

 , (F.2)

where q is the eigenvalue of Lz − Sz, and the spinor is in the Sz basis. Hinds and Eberlein

arrive at an equivalent expression for the general form of the solutions, although they label

the discrete quantum number as l and refer to it as the angular momentum. In contrast,

we label this quantum number as q to stress that it is neither an eigenvalue of Lz nor of

Jz ≡ Lz + Sz. After arriving at equation (F.2), Hinds and Eberlein choose q to be an

integer, despite the fact that only half-integer values can ensure single-valuedness over the

entire coordinate space—any integer value of q yields ψq (ρ, φ) with a phase discontinuity

as φ→ 0+ or φ→ 2π−. They proceed to solve the corresponding family of radial equations

and find bound states for q = 0 and unbound states of finite lifetime for nonzero integer
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q. In a similar analysis, we find that there are no bound states for any half-integral value

of q, implying that the Hamiltonian of equation (F.1) has no single-valued bound states.

So the choice of q as an integer or half-integer quantum number has significant physical

consequences.

Historically, the single-valuedness requirement on wavefunctions has not always been

obvious [207, 208], but multiple compelling arguments can be made without reference to

experiment [209]. The problem with non-single-valuedness here is the singular nature (along

the ray φ = 0) of the angular derivative Lz, which appears implicitly in the Hamiltonian of

equation (F.1). An equivalent irregularity with half-integral spherical harmonics is generally

used as justification to exclude them from being admissible solutions in central-potential

problems.

In the present case, it is important not to confuse the dependence on φ of an energy

eigenspinor with the sign change obtained when the Bloch vector of a spin-1/2 particle is

physically rotated through an angle of 2π. It is true that if a pointlike spin-1/2 particle

adiabatically circles the origin of a quadrupole field, the spin must rotate by 2π in order to

follow the local magnetic field lines. As a result, the spinor should obtain a well-known minus

sign, i.e., a geometrical phase of π. One could presumably show this in a real or numerical

experiment by sending a sufficiently localized (in φ) wavepacket on a circular trajectory

around the quadrupole origin. But the stationary eigenstates of this system are completely

delocalized in φ, and correlation between position and field orientation manifests itself in the

fact that half-integer q in the spatial component of the spinor is required to obtain overall

single-valuedness. Unusual quantum numbers are generically found in the quantization of

systems that exhibit interesting geometrical phase properties semi-classically. For example,

our situation recalls the dynamical Jahn-Teller effect in certain electron-lattice systems,

where the quantum number must be half-integer because of the peculiar rotational symmetry

of the problem [87].

Another particularly relevant example is the problem of a spin-1/2 particle in the cir-

cumferential field of a thin current filament [210, 211]. In this case, the total angular

momentum Jz does commute with H due to rotational symmetry, thus its eigenvalues jz

are good quantum numbers. Yet the same logic applies and jz is similarly quantized in half-

integer units. In contrast to the quadrupole problem, this problem is exactly solvable and

high angular momentum (high field seeking) bound states for spin-1/2 particles do exist.
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Finally, we should point out possible spinor representations that make explicit the in-

herent coupling between spin and space variables, but also potentially obscure requisite

boundary conditions. For example, we could choose to write equation (F.2) in a spatially

dependent spinor basis that diagonalizes the potential terms. One option is

ψq(ρ, φ) =
1√
2π
eiqφ(F↑(ρ)| ↑ 〉+ F↓(ρ)| ↓ 〉) (F.3)

where | ↑ 〉 = 1√
2

 e iφ
2

e−
iφ
2

 and | ↓ 〉 = 1√
2

−e iφ
2

e−
iφ
2

 are respectively parallel and antiparallel

to the field at every point in space. Another option is

ψq(ρ, φ) =
1√
2π
ei(q−

1
2
)φ(F↑(ρ)| ↑sv〉+ F↓(ρ)| ↓sv〉) (F.4)

where | ↑sv〉 = 1√
2

eiφ
1

 and | ↓sv〉 = 1√
2

−eiφ
1

 are also along the field, but are single-

valued. The choice between the two options (which differ by a spatially varying phase

factor) is a choice of the so-called spin-gauge freedom. Regardless of the representation

that is used, each spinor component of the wavefunction must be single-valued in the global

Sz basis, thus q is always half-integer. Unlike the q = 0 case, the radial equations always

couple the stable F↑(ρ) into the unstable F↓(ρ) when q is half-integer, and all states are

subject to decay.
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[210] R. Blümel and K. Dietrich. Quantum states of neutrons bound in the magnetic field

of a rectilinear current. Phys. Rev. A, 43:22, 1991.

[211] L. V. Hau, J. A. Golovchenko, and M. M. Burns. Supersymmetry and the Binding of

a Magnetic Atom to a Filamentary Current. Phys. Rev. Lett., 75:1426, 1995.

http://dx.doi.org/10.1103/PhysRevA.63.013813
http://dx.doi.org/10.1080/095003497152456
http://dx.doi.org/10.1080/095003497152456
http://dx.doi.org/10.1103/PhysRevA.38.2233
http://dx.doi.org/10.1103/PhysRevA.61.033614
http://dx.doi.org/10.1103/PhysRevA.61.033614
http://dx.doi.org/10.1088/0022-3727/32/18/201
http://dx.doi.org/10.1088/0022-3727/32/18/201
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1103/PhysRevLett.82.2014
http://dx.doi.org/10.1103/PhysRevLett.82.2014
http://dx.doi.org/10.1103/PhysRevA.56.2451
http://www3.interscience.wiley.com/cgi-bin/abstract/112508516/ABSTRACT
http://dx.doi.org/10.1119/1.1941984 
http://dx.doi.org/10.1103/PhysRevA.43.22
http://dx.doi.org/10.1103/PhysRevA.43.22
http://dx.doi.org/10.1103/PhysRevLett.75.1426
http://dx.doi.org/10.1103/PhysRevLett.75.1426

	Acknowledgements
	Abstract
	Introduction
	Getting to the Point
	Personal Lab History
	Initial Projects
	MOT Building
	Theoretical Offshoots
	Experimental Continuous Measurement
	Qwiki

	Chronological History of Concepts
	Thesis Organization

	General Quantum Measurement
	Introduction
	Review of Literature
	Measurement Operator Formalism
	Indirect Measurement
	Dynamics of Continuous Measurement
	Conditional Evolution
	Unconditional Evolution

	Transforming the Measurement

	The Continuous Limit
	Modeling the Interaction
	QND Measurement
	Quantum Parameter Estimation
	Quantum Feedback Control

	Optical and Atomic States
	Experimental Scenario
	Optical States
	Electric Field Representations
	Polarization Basis
	Spherical Basis and Tensors
	Stokes Representation
	Arbitrary Vector Operator Rotations
	Fock States and Coherent States
	Polarimetry

	Atomic Spin-States
	Cesium
	Ground State Spin Operators
	Spin Uncertainty Relations
	Symmetric States and Moments
	Dicke States
	Gaussian States

	Spin-Squeezed States
	Spin-Squeezing Implies Entanglement (Spin-1/2)
	Heisenberg Limit of Spin-Squeezing
	Spin-Squeezing Under Particle Loss
	Squeezing Generation

	Cat States


	Entanglement of Collective Spin-States
	Introduction
	Computing Entanglement
	Computing Entanglement in the Symmetric Subspace
	Entanglement of Reference States
	Spin-Squeezing and the Dynamics of Entanglement

	The Polarizability Hamiltonian and Spontaneous Emission from Adiabatic Elimination
	Master Equation Derivation
	Hamiltonians
	Full Master Equation
	Rotating Frame
	Adiabatic Elimination of Excited Levels

	Applications of the Master Equation
	Decay with Larmor Precession
	Decay without Larmor Precession


	The Irreducible Representation of the Polarizability Hamiltonian
	Deriving the Irreducible Representation
	Hamiltonian Approximation
	Matrix Element Decomposition
	Tensor Decomposition
	The Irreducible Hamiltonian

	Interpreting the Irreducible Hamiltonian
	The Scalar Hamiltonian
	The Vector Hamiltonian
	The Tensor Hamiltonian

	Coefficient Spectra
	D2: f=4 Zeros
	D2: f=3 Zeros

	Semiclassical Evolution of the Probe State
	Tensor Suppression at the Magic Angle
	Tensor Suppression with Parallel Polarizations
	Tensor-Driven Oscillations
	Tensor Pumping Tomography

	The Unconditional Collective Master Equation
	Collective Master Equation Derivation
	Moment Evolution
	Case 1: Near Resonance, Perpendicular Polarizations
	Case 2: Near Resonance, Parallel Polarizations
	Case 3: Far-Off Resonance, Polarization Independent

	Unconditional Squeezing via Collective Tensor Terms

	Polarimetry and Quantum Measurement
	Polarimetry
	Optical Shotnoise
	Polarimeter Unravellings
	SNR Comparisons
	Balanced Polarimetry
	Double Homodyne
	Polarimetry versus Double Homodyne

	Polarimeter ``Amplification''

	Conditional Dynamics
	The SME with Homodyne Detection
	Deriving the Measurement Strength from the Polarimeter SNR
	Squeezing by Averaging
	Squeezing versus Decay Timescales


	Eigenstate Preparation with Measurement and Control
	Abstract
	Introduction
	Representations of the Conditional Evolution
	Hilbert Space, Coherent Spin-States, and Dicke States
	Short-Time Limit
	Long-Time Limit

	Measurement of Evolution without Feedback
	Steady-States of the SME and Martingale Properties
	Zero Measurement Efficiency
	Nonzero Measurement Efficiency
	Performance of Suboptimal Estimators

	Closed-Loop Evolution
	Defining a Cost Function
	Control Law 1
	Control Law 2

	Solution of the SME without a Field
	Moment Evolution via Cumulants
	Few Level Dynamics
	Conclusion

	Magnetometry Theory
	Abstract
	Introduction
	Quantum Parameter Estimation
	General Problem
	Continuously Measured Spin System

	Optimal Estimation and Control
	Optimal Performance: F Known
	Steady-State Performance
	Transient Performance
	Dynamic Estimation and Control
	Transfer Function Estimation and Control


	Robust Performance: F Unknown
	Uncontrolled Ignorance
	Controlled Ignorance: Steady-State Performance
	Controlled Ignorance: Transient Performance

	Riccati Equation Solution Method
	Robust Control in Frequency Space
	Conclusion

	Experimental Apparatus
	Vacuum Chamber
	Field Control
	Lasers and Optics
	Magneto-Optic Trap (MOT)
	Fluorimeter and Camera
	Probe Laser and Polarimeter
	Computer Control

	Preparing and Characterizing Cold, Optically Thick Atomic Clouds
	Overview
	Experimental Goals
	Basic MOT Regimes
	Temperature Limited
	Multiple Scattering
	Two Component
	Optically Thick
	Ring MOT

	Review of Achieved Cold Atom Traps
	MOT Physics
	Cooling Benchmarks
	MOT Loading
	Pressure Analysis
	Temperature Analysis
	Stern-Gerlach Analysis
	Fluorescence Analysis
	Measuring OD with Absorption Spectroscopy
	Measuring OD with Faraday Rotation
	Optical Pumping Simulations

	Motional Effects
	Motion Out of the Probe Beam
	Pump Beam Forces
	Probe Beam Forces


	Semiclassical Data
	Basic Experimental Procedures
	Aligning the Experiment
	Absorptive Measurements: Optical Depth Optimization
	Dispersive Transient Measurements: Faraday Rotation

	Faraday Rotation and the Magic Angle
	Decay Data
	Dragging Data
	Dispersion Spectrum
	Pumping Measurement
	Magnetic Resonance Data

	Quantum Data
	Ideal Shot Noise and Averaging (DC)
	Status of Experimental Atomic Squeezing
	Technical Issues (DC and AC)
	Polarimeter Noise
	Magnetic Field Noise
	Tensor Dynamics
	Atomic Calibration and Optimization
	Trade-offs and Choosing Probe Parameters

	Low-Frequency Measurement (DC)
	High-Frequency Measurement and Oscillator Dynamics (AC)
	High-Frequency Advantages and Disadvantages
	Tensor Oscillation
	High-Frequency Nonstroboscopic Measurements
	High-Frequency Stroboscopic Measurements


	Future Directions
	Theory
	Polarimetry Conditional Master Equation
	Three-Dimensional Scattering Physics
	Nonsymmetric States for Metrology
	Non-QND Collective Physics
	Stroboscopic Modeling

	Experiment
	Free-Space Continued
	Free-Space Alternatives
	Next Generation


	Magnetic Field Management
	Introduction
	Field Requirements
	Magnetic Field Sensors
	Gaussmeters
	Hall Effect

	Magnetometers
	Magnetoresistive
	Induction (Search) Coils
	Fluxgates
	SQUIDs
	Optically Pumped

	Current Measuring Devices

	Stray Fields
	Measured Total Stray Fields
	Low-Frequency Sources
	Natural
	Experimental System
	Peripheral
	Neighbors

	High-Frequency Field Sources
	Fundamental Limits of Field Noise

	Applied Field Sources: Coils
	Coil Physics and Modeling
	Biot-Savart
	Coil Fields
	Inductance
	Modeling

	Coil Construction
	Lab Coil Specifications
	MOT Coils: Anti-Helmholtz
	Bias Coils: Small Helmholtz
	Trim Coils: Large Helmholtz

	Current Drivers
	MOT Coils: Anti-Helmholtz
	Bias Coils: Small Helmholtz
	Trim Coils: Large Helmholtz

	Field Calibration

	Nulling Stray Fields
	Passive
	Nonmagnetic Mounts
	Shielding
	Shields in Lab
	Passive Coils

	Active
	Line Lock



	Conditional Dynamics of an Atom in a Two-Sided Cavity
	Abstract
	Introduction
	System
	Cavity
	Rotating Frame

	Atom
	Environment Coupling
	Detection Scheme

	Constructing the Conditional Quantum Filter
	Detectors 1 and 2
	Formatting the Measurement: Output Channel Division and Mixing
	Formatting the Measurement: Adding a Local Oscillator
	Imperfect Efficiencies
	Stochastic Master Equation

	Unconditional Dynamics
	Steady-States
	Falling Atoms

	Conditional Dynamics
	Partial Ignorance
	Welcher Weg!


	Conditional Dynamics of an Optical Parametric Oscillator
	Introduction
	Conditional Squeezed State Dynamics
	Potential Experiments
	System Verification
	Nonstationary Correlations
	Rotate
	Maximize Current
	Minimize Current

	Squeezed State Tomography
	Displacement Phase Measurement
	Squeezing Phase Measurement


	Measurement Formalisms
	Trajectory Formalism
	Operator Formalism
	Discussion


	Spin Magnetic Resonance Analysis
	Spin Magnetic Resonance
	AC Noise Analysis
	Unmodulated Power
	Modulated Beam and Spins
	Technical Offset Noise


	Suboptimal Averaging Filter with Decay
	Introduction
	Averaging Filter

	On the Bound States of a Magnetic Quadrupole Waveguide
	Abstract
	Comment

	Bibliography

