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Abstract

Despite initial set backs in the 1980s, the prospect for large scale integration of optical

devices with high spatial-density and low energy consumption for information appli-

cations has grown steadily in the past decade. At the same time these advances have

been made towards classical information processing with integrated optics, largely

in an engineering context, a broad physics community has been pursuing quantum

information processing platforms, with a heavy emphasis on optics-based networks.

But despite these similarities, the two communities have exchanged models and tech-

niques to a very limited degree. The aim of this thesis is to provide examples of

the advantages of an engineering perspective to quantum information systems and

quantum models to systems of interest in optical engineering, in both theory and

experiment.

I present various observations of ultra-low energy optical switching in a cavity

quantum electrodynamical (cQED) system containing a single emitter. Although

such devices are of interest to the engineering community, the dominant, classical op-

tical models used in the field are incompatible with several photon, ultra-low energy

devices like these that evince a discrete Hilbert space and are perturbed by quantum

fluctuations. And in complement to this, I also propose a nanophotonic/cQED ap-

proach to building a self-correcting quantum memory, simply “powered” by cw laser

beams and motivated by the conviction that for quantum engineering to be a viable

paradigm, quantum devices will have to control themselves. Intuitive in its operation,

this network represents a coherent feedback network in which error correction occurs

entirely “on-chip,” without measurement, and is modeled using a flexible formalism

that suggests a quantum generalization of electrical circuit theory.
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Outline

On some days, my research has been motivated by the expectation that quantum

optics will be a future discipline of electrical engineering. On others, it’s been driven

by a notion that a generalized concept of the electrical circuit should guide a future

strain of quantum optics. Whichever way, both the experiments and theoretical work

described below have rested heavily on a unifying formalism of open quantum optical

systems that makes both perspectives natural, at the level of individual devices and

for large scale networks.

Part I introduces this formalism. While quantum stochastic differential equations

(QSDEs) have been developed by many authors over the past three decades, I have

increasingly recognized a need for an informal introduction to the formalism to com-

pliment the technical literature. Chapter 1 describes this approach to modeling open

quantum optical systems as noisy, Markovian dynamical processes. The interpreta-

tion of the QSDE model as describing input-output (I/O) devices for quantum fields

is emphasized, as well as a method for constructing composite network models built

from series and parallel interconnections of individual devices. Chapter 2 describes

how continuous optical measurement is naturally incorporated into the formalism and

gives it much of its utility, bringing together theories of weak measurement and real

time state estimation.

Part II centers on various observations of spontaneous optical switching of the field

transmitted by a Fabry-Perot cavity containing a single, strongly coupled Cs atom.

While confirming long-standing theoretical predictions, these observations also high-

light that binary optical signaling persists even into the ‘deep quantum’ regime of
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devices with countable photon numbers and single emitters. As nanophotonic re-

search pushes into the attojoule device regime, these observations underscore that

quantum optical models will soon be essential for understanding nonlinear optical

device physics, offering both technological problems and opportunities not captured

by commonly employed semiclassical models. Chapter 3 introduces models for single-

atom cavity quantum electrodynamics (cQED) in both a semiclassical approximation

and as a QSDE optical I/O device. Chapter 4 describes how both models predict

an I/O bistable response as the cQED device is driven at and into the atomic sat-

uration regime. The picture that emerges is subtle, however: the quantum optical

model (the more accurate model) both predicts disrupted signal stability (due to

fractionally large quantum fluctuations) and sometimes enhanced signal discretiza-

tion (due to a discrete Hilbert space). Two different I/O regimes are considered,

absorptive/amplitude bistability, which occurs at the cusp of atomic saturation, and

dispersive/phase bistability which appears well into the saturation regime. Chap-

ter 5 then introduces the experimental apparatus built to measure the optical field

transmitted by a high finesse Fabry-Perot cavity containing a single, strongly coupled

Cs atom with broadband optical homodyne detection, emphasizing the improvements

and continuing issues in the system since 2009. Finally, chapter 6 reports observations

of the predictions introduced in chapter 4.

Part III considers how nanophotonic network models could aid the development

of quantum memories. This work imports abstract concepts of quantum error correc-

tion (QEC) into a hardware-specific circuit formalism, yielding an approach to QEC

that is well-suited to developing robust quantum technologies. These technologically

homogenous nanophotonic networks are noteworthy in that the error suppression oc-

curs continuously and autonomously, that is with a minimal amount of oversight

and supporting hardware. Chapter 7 first introduces the specific QEC codes our

designs emulate. It also details a physical model for cQED devices and networks ap-

propriate to implement these codes and characterizes how their performance rapidly

improves in a nanophotonic context. Finally, chapter 8 describes two types of designs

for nanophotonic networks that emulate three different codes and characterizes their

performance.



Part I

Quantum Optics with Quantum

Stochastic Differential Equations
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Introduction

This first part introduces a formalism for modeling open quantum optical systems

that has been essential in both my experimental and theoretical work. While quan-

tum stochastic differential equations (QSDEs) represent a rigorous stochastic dyami-

cal modeling unfamiliar to most physicists, the approach becomes physically intuitive

once internalized. QSDEs take quantum field theory as the underlying physical model

[GPZ92, GZ04], but their manipulations appear as a quantum generalization of elec-

trical circuit theory and are able to adapt many powerful techniques from classical

control theory into the quantum regime, e.g. [NJD09, NJP09, JNP08, GJ09b]. Suf-

ficiently general to describe the dynamics of most systems foreseeable in quantum

optical systems, with or without measurement of optical fields, with or without stabi-

lizing (coherent optical or classical ‘electrical’) feedback, these models are attractive

due to their physically intuitive formulation [KNPM10] that admits both analytic

and numerical analysis through connections to theories of continuous measurement

[Bar90], state estimation [BvHJ07] and control [NJP09].

While the theory of QSDEs and QSDE networks has been developed by many

authors in the past three decades, the literature is fairly mathematical [HP84, Par92,

Fag90, GPZ92, Bar90, BvHJ07, BvHS08, GJ09b]. Over the past few years, many

students have asked me to explain how to use QSDEs in their own work, but I’ve

found that they usually get discouraged by the formal derivations and manipulations.

Somehow, I got through that initial hurdle and they have been essential in my work

ever since. As I feel there is a bright future for this formalism and that it has a

natural role to play in the emerging field of quantum optical engineering, this first

part introduces QSDEs and their manipulations that underlie most of the analysis

4
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in the subsequent experimental and theoretical chapters. As the formalism has been

incredibly useful to me as a tool, not an object of study in itself, the concepts are

presented in a non-formal manner, at a level appropriate for a reader with grounding

in more mainstream quantum optics. The ‘results’ in this part are pedagogical, if

that, aiming to present an intuitive explanation of QSDEs to complement the proper

formulation found in the literature.



Chapter 1

Quantum stochastic differential

equations

Loosely, quantum stochastic differential equation (QSDEs) are a method of modeling

open quantum optical systems that resembles a quantum version of electrical circuit

theory. Free, bosonic quantum fields play the role of electrical current-carrying wires,

while localized systems like atoms or optical resonators function as input-output (I/O)

devices that affect the fields, but are also affected by them.

QSDEs are a rigorous, self-consistent mathematical formalism, but they are useful

because they represent a good approximation of most systems foreseeable in quantum

optics [GZ04, GPZ92]. This chapter begins by motivating the reasonableness of using

this representation to describe physical quantum optic phenomena, but will gradually

drift into working just with the abstracted objects themselves.

This introduction is quick and is meant to give the reader a glimpse of all the

steps on the way to a complete theory of QSDEs and their physical justification. A

more complete picture (although much longer) may be constructed through references

cited along the way, especially [GZ04, GPZ92, BvHJ07, Bar90, GJ09b, BvHS08].

6



1.1. THE QUANTUM NOISE PROCESS 7

1.1 The quantum noise process

As is common when considering an open quantum system, the global system composed

of a system (i.e. a localized system like an atom or optical resonator) and bath (i.e.

free optical fields) is considered ‘closed’ and its dynamics may be described with the

Hamiltonian

H0 � Hs �Hb �Hi (1.1)

where the system and bath have their own, internal evolution govern by Hs and Hb,

respectively, and the two subsystems are also coupled via the interaction Hi. Hereon,

I will use “system” to refer to the localized system (with Hamiltonian Hs) and “global

system” to refer to the totality composed of isolated system(s) and bath(s). In the

quantum optics context, we assume that the bath is comprised of a dense spectrum

of bosonic fields, such that (~ � 1)

Hb � » 8
0

dωωb:pωqbpωq (1.2)

where bpωq are annihilation operator “densities,” : the Hermitian conjugate, andrbpωq, b:pω1qs � δpω � ω1q. We don’t need to specify anything about Hs yet, but the

coupling between the system and bath has to have a particular linear form

Hi � i

» 8
0

dω
a
κpωqpcb:pωq � c:bpωqq (1.3)

where c is some operator on the system and κpωq is a real-valued function describing

the strength of the interaction. Already, this interaction typically makes an approxi-

mation, commonly known as the rotating wave approximation, that coupling terms of

the form c:b:pωq and its hermitian conjugate (which exist in a complete description)

oscillate too quickly to influence the relatively slow dynamics we care about [GPZ92].

This approximation is itself only good when Hi is assumed to be weak compared to

the evolution of both c under Hs and bpωq under Hb. This is usually a very good ap-

proximation in quantum optics, as the coupling rates typically operate on GHz-MHz

frequency scales (call these κ̃ frequency scales), while the principle system and bath



8 CHAPTER 1. QUANTUM STOCHASTIC DIFFERENTIAL EQUATIONS

operators oscillate at frequencies of order 100s of THzs (i.e. optical frequencies).

It is convenient to go into an interaction frame such that the global system states

become |ψ1ty Ñ eipHs�Hbqt|ψ1ty � |ψty (1.4)

and the operators also gain some time-dependence, accordingly. In this picture, the

global state evolves according to the Schrödinger equation

d

dt
|ψty � » 8

0

dω
?
κpωqpcptqb:pω, tq � c:ptqbpω, tqq|ψty. (1.5)

Given Hb, we have bpω, tq � e�iωtbpω, 0q, and it is typical that in this picture cptq �
e�iω0tc, where ω0 is in the optical regime. In this case we can rewrite equation (1.5)

as
d

dt
|ψty �a2πκpω0qpcb:ptq � c:bptqq|ψty, (1.6)

where

bptq � 1a
2πκpω0q » 8

0

dω
a
κpωqbpω, 0qe�ipω�ω0qt. (1.7)

At this point, we make a Markov approximation that the coupling strength κpωq
varies slowly around ω0, slow compared to the inverse time scales κ̃ on which we expect

the interesting dynamics to occur. Also, we allow ourselves to extend the lower limit

on the definition of bptq to �8, justifiable as ω0 " κ̃. With these approximations in

hand, we can calculate the commutator of bptq [GPZ92]rbptq, b:pt1qs � » 8�8 dωe�ipω�ω0qpt�t1q κpωq
2πκpω0q � δpt� t1q. (1.8)

Thus, due to our approximations, bptq looks very much like a delta-correlated white

noise process. In fact, with our aim set on a QSDE formalism, it is better to think of

it as a sort of quantum noise process, rather than as its definition (1.7) as the integral

of Schrödinger-picture operator densities in an interaction frame. Each bptq exerts its
influence on the global system in Eq. (1.6) in chronological succession, independent

of all other bpt1q [GPZ92]. For this reason, bptq may be considered noise ‘inputs’ to

the system [GZ04], with the ‘time’ t indexing the time at which the operator bptq
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interacts with the system; call them binptq � bptq. Essentially a Fourier transform

of bpωq, bptq may also be thought of as a time-domain annihilation operator density,

acting on the infinitesimal segment of field that interacts with the system at time t.

Now, for t1 ¡ t, consider

boutptq � 1?
2π

» 8�8 dωe�ipω�ω0qpt�t1qbpω, t1q, (1.9)

which is almost the same as binptq, except that it is defined in terms of bpω, t1q in the

‘future.’ Comparing binptq and boutptq is more naturally done in the Heisenberg picture.

In this picture, given our interaction Hamiltonian, it may be straightforwardly shown

that for any choice of t1 in the definition of boutptq [GZ04]

boutptq � binptq �a2πκpω0qcptq. (1.10)

In other words, boutptq is a linear superposition of the ‘noise’ that interacts with the

system at time t, plus a contribution from the system at time t, proportional to cptq
(which is itself dependent on all previous input values of binpt1q, t1   t). For this

reason, boutptq may be considered the field ‘output’ of the system at time t.

1.2 Quantum stochastic calculus

Although it may appear we now have a very nice quantum optic I/O theory, our input

and output operators are highly singular. For example, we immediately run into a

problem if we try to calculate the expectation of bptqb:ptq on the vacuum field state

[GPZ92] xvac|bptqb:ptq|vacy � xvac|bptqb:ptq � b:ptqbptq|vacy � δp0q (1.11)

where we have used bptq|vacy � 0. Fortunately, a solution to problems of this nature

is well known for classical noisy systems. Roughly speaking, we consider bptq to be the
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L L
{

dB  T {

dj  (B   )τ τ

Hs

tT>t τ<t

Figure 1.1: A cartoon depiction of the QSDE I/O formulation. A single, free optical
mode couples via an operator L to a fixed Hamiltonian system (Hs), affecting it
and being affected by it. After interaction, the field continues to propagate, and is
possibly detected. The fundamental noise increment dBt may be thought of as the
annihilation operator on an infinitesimal segment of the field that interacts with the
system at time t. At time t, the segment indexed by T ¡ t has yet to interact with
the system (an ‘input’), but the segment indexed by τ   t already has (and is an
‘output’), transforming its noise increment as djτ pBτ q (Eq. (1.28)).
(ill-defined) derivative of some rapidly varying, noise integral [GPZ92, GZ04, Gar04]

Bt �Bt0 � » t
t0

dt1bpt1q � » t
t0

dBt1 ,
B
:
t �B

:
t0

� » t
t0

dt1b:pt1q � » t
t0

dB
:
t1. (1.12)

In a classical analogy, bptq is like the velocity of a particle undergoing Brownian

motion (i.e. diffusion), whereas Bt is its position. The usual terminology is to call

Bt the annihilation and B:
t the creation process. Later on we’ll also use another noise

process, called the gauge process [Bar90]

Λt � Λt0 � » t
t0

dt1b:pt1qbpt1q � » t
t0

dΛt1. (1.13)

Note that through these definition and the commutator of bptq, Bt, B
:
t and Λt act as

the identity on processes that don’t overlap with the time interval p0, ts, a property

called adapted [BvHJ07, Bar90]. With these definitions, our Schrödinger equation
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above (1.6) is more accurately considered an integral equation|ψ, ty � |ψ, t0y � » t
t0

pLdB:
t1 � L:dBt1q|ψ, t1y, (1.14)

where we have now defined the coupling operator L � a
2πκpω0qc. Replacing the

bptq and b:ptq with dBt and dB
:
t in (1.6) produces a quantum stochastic differential

equation (QSDE) representing the evolution of the global system in the Schrödinger

picture,

d|ψty � pLdB:
t � L:dBtq|ψty, (1.15)

but it is understood as merely a symbolic abbreviation of integral equation (1.14).

This brings us to the critical question of how do we calculate these integrals? It

can be shown that if we require the noises to obey ordinary calculus (e.g. that

dpB:
tBtq � dpB:

t qBt �B
:
tdpBtq), as would be expected of a physical system described

with “natural” processes and we’ve implicitly assumed so far, then these integrals

have to be understood as the limit (for example)» t
t0

fpt1qdBt1 � lim
nÑ8 1

2

ņ

i�0

pfpiq � fpi� 1qqpBi�1 �Biq (1.16)

where fptq is some adapted function, and is known as a Stratonovich integral [GPZ92,

GZ04, Gar04]. However, there is a problem here: fpi�1q does not commute with the

interval Bpi � 1q � Bpiq in general, which makes working with these equations very

awkward. This means that » t
t0

fpt1qdBt1 � » t
t0

dBt1fpt1q, (1.17)

causing a practical nightmare in any integral calculation (in a classical analogy, the

noise processes fptq and dBt are correlated and their product is difficult to integrate).

An alternative definition of the stochastic integral is» t
t0

fpt1qdBt � lim
nÑ8 ņ

i�0

fpiqpBi�1 �Biq (1.18)
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dX{dY dBk
t dB

k:
t dΛklt dt

dBi
t 0 δikdt δikdB

l
t 0

dB
i:
t 0 0 0 0

dΛijt 0 δjkdB
i:
t δjkdΛ

il
t 0

dt 0 0 0 0

Table 1.1: The quantum Ito table by which the noncommutative product of two
quantum noise increments dXdY is evaluated when the fields are in the vacuum
state. Latin superscripts index the free field modes the processes act on and all noise
products at dissimilar times vanish.

which is called an Ito integral [GPZ92, GZ04, Gar04]. Now, in symbolic form,rfptq, dBss � 0 �s ¥ t. Notice that the Stratonovich integral is defined by an av-

erage of fptq over an infinitesimal increment Bt�dt � Bt, while the Ito is defined by

the initial value of fptq. In a smooth function, there would be no difference between

the two definitions as the increment shrinks to the infinitesimal, but noise is decidedly

non-smooth!

Although we always work with Ito QSDEs, there is a price to be paid. As is the

case in classical Ito integrals, the normal rules of calculus no longer apply [Gar04].

With a classical noisy process we describe its infinitesimal increment by a straightfor-

ward Taylor expansion dfpXtq � f 1pXtqdXt� 1
2
f 2pdXtq2� ... However, when Xt is an

Ito noise process, pdXtq2 is of order dt (in the case of Brownian motion the position

variance increases linearly in time so that if Xt is the position at time t, pdXtq29dt).
A proper differential representation of the integral should carry all expansion terms¤ Opdtq, including these second order Taylor expansion terms � pdXtq2.

In order to define an equivalent calculus for the quantum Ito processes Bt and B
:
t ,

it turns out that we have to define the state of the bath. Although the formalism can

be applied to any Gaussian field state initially un-entangled with the fixed system

[GPZ92, HP84, Par92], we almost always assume that the field is in a vacuum state

(why this is reasonable, even when we probe systems with lasers will be discussed

later), which means that the entire system factorizes ρ � ρs b ρvac. Under this

assumption, quantum Ito calculus may be performed by expanding all differentials to

second order and evaluating the terms quadratic in the increments by the quantum
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Ito table 1.1. For example, for the adapted quantum stochastic processes X and Y ,

we calculate

dpXY q � pdXqY �XpdY q � dXdY, (1.19)

where the last term is evaluated according to the above table. Taken together, the

rule of differentiation and the table above are called the quantum Ito rule [HP84,

GPZ92, BvHJ07].

While the derivation of table 1.1 for general quantum noise processes is found in

[HP84, Par92], its construction is based on calculations similar to Eq. (1.11). For

example, note thatxvac|BtB
:
t |vacy � xvac| » t

0

dBt1 » t
0

dB:
t2 |vacy� xvac| » t

0

bpt1qdt1 » t
0

b:pt2qdt2|vacy� xvac| » t
0

dt1 » t
0

dt2rbpt1q, b:pt2qs|vacy� xvac| » t
0

dt1 » t
0

dt2δpt1 � t2q|vacy� xvac| » t
0

dt1|vacy� xvac|t|vacy, (1.20)

which suggest that dBtdB
:
t � dt when the field is in the vacuum state, as given by

the table 1.1.

We now have two definitions of quantum stochastic processes in quantum optics:

the Stratonovich and Ito. They each have their merits, namely that Stratonovich is

in some sense more “natural” (as ordinary calculus applies), while Ito is much easier

to manipulate. Fortunately, we can have our cake and eat it too: it is possible to

convert between the two descriptions for our dynamics whenever convenient. The

correspondence comes from noting that our global system’s equation of motion has

a straightforward solution. As Eq. 1.15 was derived assuming normal calculus, it

must be considered a Stratonovich integral. It then follows from (1.15) that the time
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evolution of any operator in the Heisenberg picture is fptq � U
:
t fp0qUt, where we use

ordinary calculus to calculate Ut as the unitary propagator

Ut � T exptL » t
0

dB
:
t1 � L: » t

0

dBt1u (1.21)

where T is the time-ordering operator. But, as Ut has no t1 dependence in the

integrals, it may be considered either a Stranonovich or Ito integral. If we interpret

the propagator as a Stratonovich integral, we re-apply our familiar rules of calculus

to arrive at a (symbolic) differential equation for our propagatorpSqdUt � pLdB:
t � L:dBtqUt, U0 � I, (1.22)

where I is the identity. However, as is more common, if we consider Ut an Ito integral,

its differential form is arrived at through a second-order expansion and application of

the quantum Ito rulepIqdUt � pLdB:
t � L:dBt � 1

2
L:LdtqUt, U0 � I. (1.23)

Thus, conversion between the two representation of the dynamics is done simply

thought the identification of these two differential equations for the propagator Ut

[GPZ92, GZ04].

The other important thing to note about the propagator is that all of the funda-

mental noise increments dBt, dB
:
t , dΛt commute with any propagator Urr,sq, r, s ¥ t,

which evolves the global system for the time interval from s to r [BvHJ07, Bar90].

This represents the intuitive property is that the field does not evolve after it has

interacted with the system, but simply propagates freely away, which will be of par-

ticular importance when we consider making measurements of the field. Moreover, Ut

is adapted, so it also commutes with the noise increments dBs s ¥ t. This represents

a convenient notion that the free field “noise” that drives the system at time t or

later is independent of any past, global dynamics.

It is often the case that in addition to the system-bath coupling, there are slow,

internal system dynamics that also perturb the otherwise fast � ω0 evolution in
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the lab frame. This common case is dealt with by carrying the perturbing system

Hamiltonian H , through all the above analysis such that, at the end, we are left with

an Ito QSDE for the propagator (dropping the pIq hereon)
dUt � pLdB:

t � L:dBt � piH � 1

2
L:LqdtqUt, U0 � I. (1.24)

Expressing the entire system dynamics, this equation of motion for the propagator is

the main object of analysis in most QSDE models [GZ04, BvHJ07, GJ09b].

You may have noticed that at no point have we “traced over the bath” in the

analysis, as is common to do in open quantum systems theory. This is because we

typically measure the bath to some extent. Before we get to the topic of measurement,

though, let’s consider what the above propagator tells us about the evolution of system

expectations when an experimenter makes no measurements.

1.3 The master equation

Say we have some system operator X and we want to calculate the evolution of its

expectation in time. The evolution of X in the Heisenberg picture is U :
tXUt � jtpXq.

A clearer picture of jtpXq comes from considering its differential form (using the

quantum Ito rule) [BvHJ07]. For this calculation, recall that as we are considering

Ito noise processes, the noise increments at time t are independent of the propagators

up to that point, or in other words rUt, dBts � rUt, dB:
t s � 0. Moreover, as we are

limiting ourselves to system operators, the noise increments also commute with X .

With these, we have

djtpXq � dpU :
t qXUt � U

:
tXdpUtq � dpU :

t qXdpUtq� jtpL:Xqdt� jtprL:, XsqdBt � jtprX,LsqdB:
t (1.25)

where the super-operator L:X � irH,Xs � L:XL � 1
2
pL:LX �XL:Lq is called the

Lindblad generator in this Heisenberg picture. The expectation of X as a function of

time is just xjtpXqy � TrrρjtpXqs, where ρ � ρsbρvac is the global system state. The
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differential form of this expectation is simply the expectation of the above QSDE.

However, this expression may be greatly simplified due to our assumption that the

bath is in the vacuum state. From our definition of the noise increments, dBt|vacy �xvac|dB:
t � 0. Thus, the expectation of any term in the above expression for jtpXq

that contains dBt or dB
:
t is zero and we are left with

dxjtpXqy � xjtpL:Xqydt (1.26)

which may be familiar as the master equation used in many other, non-QSDE contexts

for describing the unconditional evolution of an open quantum system [Car93a, GZ04,

Gar04].

From Eq. (1.26) and the definition of the expectation, we can also derive an

unconditional master equation for the system state in the Schrödinger picture, for use

in calculating expectations of arbitrary X :

dρuc � Lρucdt (1.27)

where Lρ � �irH, ρs � LρL: � 1
2
pL:Lρ� ρL:Lq.

1.4 The series product

You may have noticed that we dropped the “input” and “output” terminology when

we moved from the “bptq” to the QSDE description. In some sense, what’s been

developed here is more flexible, but still contains that I/O intuition. For example,

consider the evolution of the noise process (using the quantum Ito rule)

djtpBtq � jtpLqdt� dBt (1.28)

which is equivalent to the relationship between binptq and boutptq considered above

(1.10), and is depicted in Fig. 1.1. So, if jtpBtq is the field output after interaction

with a system, can it be “fed into” another quantum system, and can QSDEs describe

this quantum network? Yes and yes.
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G1

G2

BS

N

Figure 1.2: An example QSDE optical network N constructed from the series and
parallel connection of QSDE subsystems G1, G2, and BS: N � BS �G1 `G2.

Suppose the “first” system is characterized by a typical QSDE propagator, U
p1q
t

(Eq. (1.24)), specified by the set of coupling and Hamiltonian operators G1 �pL1, H1q. A “later” system, U
p2q
t , is specified by G2 � pL2, H2q. The process of

feeding the field, after its interaction with the first system immediately into a second

(assuming any propagation delay is much less than the dynamical timescales of the

system [GJ09a]) is modeled in the Heisenberg picture by infinitesimally propagating

any operator first by U
p2qrt�dt,tq and then by U

p1qrt�dt,tq in infinite sequence (the Heisen-

berg picture essentially operates in “backwards” time). If we look just at the first

infinitesimal propagator [GJ09b, SSM08, GZ04]

U
p2q
dt U

p1q
dt � pI � dU

p2q
0 qpI � dU

p1q
0 q (1.29)

we can apply the quantum Ito rule to find

U
p2q
dt U

p1q
dt � I � ppL1 � L2qdB:

0 � pL1 � L2q:dB0 �p1
2
pL:1L1 � L

:
2L2q � ipH1 �H2qqdt� L

:
2L1dtq� I � ppL1 � L2qdB:

0 � pL1 � L2q:dB0 �p1
2
pL1 � L2q:pL1 � L2q � ipH1 �H2 � 1

2i
pL:2L1 � L

:
1L2qqdtq(1.30)
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A recursive analysis along these lines suggests that we may describe the evolution of

this cascaded system with a single propagator U
p21q
t propagated by the infinitesimal

increment in Eq. 1.30. More abstractly, we define a series product [GJ09b]

G21 � G2 �G1 � �L1 � L2, H1 �H2 � 1

2i
pL:2L1 � L:1L2q
 (1.31)

with its own, effective, coupling and Hamiltonian operators derived from the G1 and

G2 subsystems. Note that the consequence of putting one system after another is

essentially to couple their Hamiltonian dynamics. The ordering of the systems in the

the series is subtly encoded in the sign of this coupling term.

With this approach in hand, we revisit the question of how to model the field

produced by a laser if we are required to keep the bath in a vacuum state. First,

recall from QED that a coherent state like the output of an ideal laser may be modeled

as a displaced vacuum [WM08]. Thus, we can model a bath state with a coherent

amplitude α at times rt, 0s as|α, ty � T exptα » t
0

dB
:
t1 � α: » t

0

dBt1u|vacy � W
pαq
t |vacy. (1.32)

From Eq. (1.32), we now have a new unitary operator called the Weyl operator that

has the differential form

dW
pαq
t � �

αdB
:
t � α:dBt � 1

2
|α|2dt
W pαq

t . (1.33)

If we want to analyze the dynamics of an open quantum system probed by a laser, we

can still use all our QSDE machinery by modeling the “laser” as a QSDE system that

takes the vacuum as input, displaces it by α using W
pαq
t , and then feeds its output

field into the system of interest. That is, in our QSDE formalism a quantum system

interacting with the vacuum, G0 � pL,Hq, is related to the same system probed by

a laser with amplitude α by [KNPM10]

Gα � G0 �W pαq � pL� α,H � i

2
pαL: � α:Lqq. (1.34)
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1.5 Multiple fields

In addition to connecting systems in series, it is possible to connect them in parallel,

as depicted in Fig. 1.2. In fact, this is a more straightforward concept. We simply

assume the existence of multiple input fields, each of which must also have an output.

Physically, these fields may be any other free optical mode somehow orthogonal to the

others due to polarization, frequency, spacial mode, etc. Individual systems may also

have multiple field inputs (and an equal number of outputs). In this generalization,

each process must carry an index specifying to which mode it is associated. However,

the gauge process becomes particularly interesting in this generalization. If both biptq
and bjptq are quantum noise processes, indexed to modes i and j, then we define

Λijt � » t
0

dΛijt � » t
0

dtb
:
i ptqbjptq. (1.35)

Because of this, gauge processes may now scatter field inputs between the outputs

(e.g. be used in the modeling of a beamsplitter). With multiple fields present, the

index of each field enters the quantum Ito table 1.1 in a straightforward manner.

We also define a more generalized propagator that evolves multiple fields, and may

describe a scattering among them [GJ09b, KNPM10]

dUt �
j̧,k

�pSjk � δjkqdΛjkt � LjdB
j:
t � L

:
jSjkdB

k
t � piH � 1

2
L
:
jLjqdt
Ut, U0 � I

(1.36)

where the scattering matrix S is necessarily unitary, and whose elements may be

system operator-valued. Thus, our set of characteristic operators for a system used

in the previous section must be expanded and generalized to be the set of operator

arrays G � p�ÑS , ~L,Hq. As an example, a beamsplitter (which only scatters fields and

has no internal dynamics) is modeled as

BS � ��
α �β:
β α: �

, 0, 0

�
(1.37)
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where |α|2 � |β|2 � 1. Given this, individual QSDE components may be placed in

parallel using the concatenation product

G1 `G2 � ��
S1 0

0 S2

�
,

�
L1

L2

�
, H1 �H2

�
(1.38)

The introduction of the scattering matrix also requires our definition of the series

product to be slightly modified to account for field scattering. Namely, we have

G2 �G1 � �
S2S1, L2 � S2L1, H1 �H2 � i

2
pL:1S:2L2 � L

:
2S2L1q
 (1.39)

1.6 Adiabatic elimination with QSDEs

Although the Markov approximation in section 1.1 yields a dramatically simpler (but

typically extremely accurate) description of the system-bath coupling dynamics, many

QSDE descriptions are still quite complex. In traditional quantum optics, it is some-

times appropriate to simplify open quantum systems by invoking a separation of

time-scales principle to adiabatically eliminate fast dynamical variables that do not

affect slower quantities of interest [Gar04, Sto06]. This technique has been adopted

into the QSDE literature with an algorithm that calculates an approximate propaga-

tor Ut that converges to the exact propagator U
pkq
t in a very strong sense [BvHS08]

lim
kÑ8 sup

0¥t¥T }pU pkq
t � Utq|ψy} � 0, (1.40)

for all |ψy in the domain of the ‘slow’ dynamical subspace, where k is a parameter

that scales with the fast dynamical rates. The theorem that guarantees this strong

convergence assumes that the operator coefficients that define a stochastic integral of

the form Eq. (1.36) for U
pkq
t scale with k in a particular way�piH pkq�1

2
ļ

L
pkq:
l L

pkq
l q: � k2Y�kA�B, L

pkq:
i � kFi�Gi, pSpkqji q: �Wij . (1.41)
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Define P0 as the projector onto the slow dynamical subspace, P1 the projector onto the

complement subspace, and assume that there exists a Ỹ such that Ỹ Y � Y Ỹ � P1.

Given this scaling, and some structural domain requirements, the limit theorem is

guaranteed for an approximate propagator Ut that is also a stochastic integral of the

form Eq. (1.36) with operator coefficients [BvHS08]� piH � 1

2
ļ

L
:
lLlq: � P0pB � AỸ AqP0, pSjiq: �

ļ

P0WilpF :
l Ỹ Fj � δljqP0

L
:
i � P0pGi � AỸ FiqP0, pL:jSjiq: �

j̧

P0WijpG:
j � F

:
j Ỹ AqP0(1.42)

Readers familiar with the adiabatic elimination procedure common in the quantum

optics literature should see a clear parallel between the form of the approximate

dynamics derived with that approach [Gar04, Sto06] and the approximate QSDE

defined by Eqs. (1.42). This adiabatic elimination theorem has been essential in

my quantum network projects [KNPM10, KPCM11], yielding excellent approximate

models that isolate the critical dynamics we are interested in and require a simulation

space orders of magnitude smaller than that of the full physical model.



Chapter 2

Optical measurements and state

estimation

Any physical system obeys continuous time laws. The optical measurements we

make in a quantum optics lab are also continuous. Thus we gain knowledge about

the system we are measuring as it is evolving. In turn, by the postulates of quantum

mechanics, the dynamics of the system we are observing must be perturbed by our

measurement record. The continuous interplay of Hamiltonian and measurement

dynamics is naturally described in a QSDE context and is what gives the approach

much of its utility.

2.1 Optical measurement

2.1.1 Photon counting

As we interpret the bptq quantum noise objects as time-domain annihilation operator

densities on a free field (Eq. (1.7)), it is reasonable to claim that the gauge process

operator Eq. (1.13)

Λt � » t
0

b:ptqbptqdt (2.1)

22
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is an observable that counts the number of photons in the field over the time intervalp0, ts [Bar90, Car93a, GZ04, BvHJ07]. We can measure this operator experimentally

by shining the field on a photodetector for this time interval and then reading off the

total number of photons it received over the interval (as in the depiction in Fig. 1.1);

that they were received within the interval is the only information we have about the

arrival times of the photons. This procedure is known as photon counting.

In the Heisenberg picture, the photon counting operator evolves in time according

to the global propagator Eq. (1.36)

U
:
t ΛtUt � jtpΛtq � Y Λ

t . (2.2)

The infinitesimal increment of Y Λ
t is obtained by the quantum Ito rule

dY Λ
t � dΛt � jtpLqdB:

t � jtpL:qdBt � jtpL:Lqdt, (2.3)

and reapplying the rule, it immediately follows that pdY Λ
t q2 � dY Λ

t [BvHJ07, GZ04].

This tells us that each infinitesimal increment is an observable with eigenvalues of

only 0 and 1, supporting the intuition that while Y Λ
t may count the number of photons

in an extended interval, dY Λ
t counts the number of photons incident on a detector

in a very small segment of time (i.e. so small that the probability of collecting¡1 photons is negligible). The expectation of this increment (in the vacuum field

state) is xdYty � xjtpL:Lqydt, indicating that photon counting is useful as an indirect

measurement of the system’s L:L operator.

From the definition of Λt (2.1) in terms of the noise processes bptq it may be easily

seen that rΛt,Λss � 0 for all t and s. More than this, though, due to the adaptedness

(section 1.2) of Λt, Y
Λ
t � U

:
t ΛtUt � U :

sΛtUs for all s ¥ t. Thus, rY Λ
t , Y

Λ
s s � 0 for all t

and s as well. This is the very important self-nondemolition property of photocount-

ing measurements of field outputs [BvHJ07]. This property is an expression of the

physically obvious notion that it is possible to build an experiment that counts the

photons up to time t and also counts them up to time s, and that we can speak of the

joint statistics of the results from both measurements. For example, if they didn’t

commute, a joint operator of these observables Y Λ
t Y

Λ
s wouldn’t even be an observable
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LO

signal

Figure 2.1: A depiction of optical homodyne detection. A signal mode is interfered
with a strong local oscillator (LO) beam on a 50/50 beamsplitter. The two out-
puts of the beamsplitters are monitored with photodetectors and their photocurrents
subtracted.

(e.g. pY Λ
t Y

Λ
s q: � Y Λ:

s Y
Λ:
t � Y Λ

s Y
Λ
t � Y Λ

t Y
Λ
s ), and clearly couldn’t have any mea-

surement statistics. Because Y Λ
t and Y Λ

s commute, we can talk of these observables

having joint statistics. Similarly, it is straightforward to show that rjtpXq, Y Λ
s s � 0 for

all s ¤ t, with X being any operator of the localized system (and thus commutes with

field observables like Λt). This is called the nondemolition property of photoncount-

ing. rjtpXq, Y Λ
s s � 0 is not generally true when s ¡ t. The nondemolition property

will allow us to speak of future system observables as also having joint statistics with

the measurements we have already made [BvHJ07].

2.1.2 Homodyne measurement

There is another common type of optical measurement that is also naturally modeled

in the QSDE formalism. Homodyne detection consists of interfering a field signal with

a strong, co-resonant, coherent ‘local oscillator’ (LO) field on a 50-50 beamsplitter,

as depicted in Fig. 2.1. Photodetectors then monitor the two beamsplitter outputs

and their photocurrents are subtracted [Bar90, Car93a, WM93, GZ04, BvHJ07]. This

type of measurement has the effective operator

Y W
t � U

:
t pe�iφBt � eiφB

:
t qUt, (2.4)
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for some relative optical phase φ between the local oscillator and signal fields, defining

the quadrature of the homodyne measuremet. We can use our series and concatenation

products (sections 1.4 and 1.5), and our definition of photodetection to see why this

is a physically reasonable measurement model. Notice that we can describe this

quantum network of fields, local oscillators and beamsplitters as

Ghomo � BS � pG`W pαqq � � 1?
2

�
1 1�1 1

�
,
1?
2

�
L� α

L� α

�
, H

�
(2.5)

where G � pI, L,Hq is the system we seek to measure. The measurement operator

associated with our homodyne detection is now Y Λ1
t �Y Λ2

t which subtracts the photon

counts measured in one beamsplitter output from the other. This operator has the

increment

dY Λ1
t � dY Λ2

t � dΛ11
t � dΛ22

t � 1?
2
jtpL� αqdB1:

t � 1?
2
jtpL� αqdB2:

t �
1?
2
jtpL� αq:dB1

t � 1?
2
jtpL� αq:dB2

t � jtpα:L� αL:qdt.(2.6)
In the limit that α � |α|eiφ is very large (compared to either the vacuum fluctuations

or L times them) this becomes

dY Λ1
t � dY Λ2

t � 1?
2
|α|eiφjt �dB1:

t � dB2:
t

	 � 1?
2
|α|e�iφjt �dB1

t � dB2
t

��|α|jtpe�iφL� eiφL:qdt, (2.7)

which, up to a multiplicative factor of |α| and “undoing” the beamsplitter’s coherent

scattering of the fields (i.e. a simple change of free field bases) is exactly what one

gets for

dY W
t � eiφdB

:
t � e�iφdBt � jtpe�iφL� eiφL:qdt; (2.8)

the two measurements are informationally equivalent.

Importantly, it can also be shown that homodyne detection satisfies the self-

nondemolition property and the nondemolition property. However, rY Λ
t , Y

W
s s � 0



26 CHAPTER 2. OPTICAL MEASUREMENTS AND STATE ESTIMATION�t, s, which means that the joint statistics of homodyne and photocounting measure-

ments are ill-defined on overlapping time intervals, or more concretely, in a single ex-

periment, we can only choose one type of measurement on a given free field over a given

time interval (again, a physically sensible notion). Nor do homodyne measurements

of a given φ-quadrature commute with any other homodyne measurement of a differ-

ent quadrature over the same time interval. Also, it is straightforward to show that

in the case of homodyne measurement pdYtq2 � dt and xY W
t y � xjtpe�iφL � eiφL:qy

[BvHJ07]. Together, these properties give Y W
t the appearance of Brownian motion

(section 1.2), plus a deterministic drift determined by the coupling operators L.

2.1.3 Calculating photocurrent statistics

While it is immediately clear how to calculate the expectation of an optical measure-

ment increment xdY pW,Λq
t y in the QSDE formalism, calculating the joint statistics of

measurements, e.g. xdY W
t dY W

s y, takes a bit more effort [WM93]. There are various

ways of calculating continuous measurement correlation functions, but QSDEs admit

an elegant approach based on characteristic functionals [Bar90, GZ04]. As the vast

majority of the experiments and theoretical work in this thesis utilize homodyne mea-

surements, this technique will be demonstrated for homodyne measurements alone,

and so I will drop the W superscript and write Yt as the optical measurement oper-

ator. This section is written more as an explanation of calculations presented later

in the thesis, and thus has a different motivation than the pedagogical explanation

of the QSDE formalism in the preceeding and succeeding sections. These technical

descriptions are a bit more involved.

Consider the functional [GZ04]

ΦT rks � xexpti » T
0

kpsqdYsuy � xU :
TVT rksUT y (2.9)

where kpsq is an arbitrary function of s, and dYs is the homodyne measurement

increment. Now note that for t1   ...   tn   T and using the functional derivative



2.1. OPTICAL MEASUREMENT 27

we get � i
BBkpt1qΦT rks���k�0

� xdYt1
dt

y � xIt1yp�iqn BnBkpt1q...BkptnqΦT rks���k�0
� xIt1 ...Itny, (2.10)

where It may be thought of as the photocurrent operator (i.e. the rate of change

in Yt). Thus, we can use the characteristic functional ΦT rks to find all moments of

the photocurrent correlations. We can propagate Φtrks in time by first defining the

reduced characteristic operator χtrks � TrbrVtrksUtρU :
t s, in which ρ � ρsb ρvac is the

global system state and the trace is over the bath subsystem only. It follows that

Φtrks � Trsrχtrkss and χtr0s � TrbrUtρU :
t s (i.e. χtr0s is the reduced density matrix

at time t of the system alone). Choosing for demonstration purposes the φ � 0 case

(i.e. amplitude quadrature measurement), the QSDE representation of Vtrks is then
dVtrks � #ikptqpdBt � dB

:
t q � 1

2
kptq2+Vtrks (2.11)

and it follows that

d

dt
χtrks � Lχtrks � 1

2
kptq2χtrks � ikptqpLχtrks � χtrksL:q, χ0rks � Trbrρs, (2.12)

where L is the Lindblad generator from the master equation Eq. (1.27). Moreover,

note that this is a completely deterministic, ‘master equation-like’ equation of motion

for the measurement characteristic operator. Now using Eq. (2.12), we can find the

expected photocurrent at time txIty � �i BBkptqΦT rks���k�0
� �iTrsr BBkptqχT rkss���k�0� �iTrs � BBkptq » T0 �pL� 1

2
kpsq2qχsrks � ikpsqpLχsrks � χsrksL:q
 ds� ���

k�0� TrsrpL� L:qχtr0ss, (2.13)
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as well as the photocurrent correlation function (let t   t1   T )xIt1Ity � � B2Bkpt1qBkptqΦT rks���k�0� � B2Bkpt1qBkptqTrs �T exp

"» T
0

�
L� 1

2
kpsq2 � ikpsqJ
 ds*χ0rks� ���

k�0� � BBkpt1qTrs�T exp

"» T
0

�
L� 1

2
kpsq2 � ikpsqJ
 ds*�p�kptq � iJ qχtrks����

k�0� Trsrδpt1 � tq exptLT uχ0r0s � exptLpT � t1quJ exptLpt1 � tquJ χtr0ss� δpt1 � tq � TrsrJ exptLpt1 � tquJ χtr0ss (2.14)

where J ρ � Lρ � ρL:, T is the time-ordering operator and we have used the fact

that the Lindblad operator is trace-preserving. With Eq. (2.12), all higher order pho-

tocurrent correlations are similarly calculable. Although the calculations themselves

may be a bit opaque on a first read, note that the photocurrent expectation and

correlation functions have an intuitive final form. The expectation of the amplitude

quadrature photocurrent is simply the expectation of the “amplitude quadrature” of

the system, L � L:, at time t. The two-time autocorrelation function is produced

by a combination of optical ‘shot noise’ (δpt1 � tq) and another term that applies the

measurement jump super-operator J at time t, evolves the system unconditionally

until t1 (via exptLpt1 � tqu), and then applies the measurement operator again before

finally taking the expectation. Eq. (2.14) was the basis for the theoretically predicted

photocurrent statistics used in Fig. 6.5.

Rather than consider the autocorrelation of instantaneous photocurrents, it is

more practically useful to consider the small, but not infinitesimal changes to the

measurement record over small, but not infinitesimal time intervals. This models a

realistic experimental situation where photocurrents are measured with a finite band-

width, or in our approximation, simply integrated over small time intervals p0, τ s. The
approach adapts the above characteristic functional approach to give a 2D represen-

tation of the finite bandwidth photocurrents expected from homodyne measurements

of an arbitrary quadrature [Bar90], essentially producing a Wigner quasi-probability
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representation [WM08] of realistic photocurrent observables. This representation is

given by the function

W pβq � 1

π2

»
d2αeβα

:�β:αΦτ pαq; Φτ pαq � xU :
τVτ pαqUτy;

Vτ pαq � T exptαB:
τ � α:Bτu (2.15)

where α and β are c-numbers. Going beyond the suggestive looking construction of

W pαq, to demonstrate why this is like a W-function for homodyne measurements, we

can integrate the function over its imaginary axis:»
dβiW pβq � 1

π

»
dαixT e2iαip 12Yτ�βrqy � xδp1

2
Yτ � βrqy (2.16)

(where βi and βr are the real and imaginary components of β, etc.), which gives

the expectation of the observable that indicates whether amplitude quadrature mea-

surement yields a 2βr measurement result, in complete analogy to a Wigner func-

tion [WM08]. In much the same way, we calculate W pβq by defining a χτ pαq �
TrbrVτ pαqUtρU :

t s and finding its equation of motion

d

dt
χτ pαq � pL� 1

2
|α|2 � J pαqqχτ pαq; J pαqχ � αχL: � α:Lχ. (2.17)

This means we can write

χτ pαq � eτpL� 1

2
|α|2�J pαqqχ0 � eτpL� 1

2
|α|2�2iαrJi�2iαiJrqχ0

Jrχ � 1

2
pχL: � Lχq; Jiχ � i

2
pχL: � Lχq; rJi,Jrs � 0 (2.18)

where χ0 � TrrUtρU :
t s. Although everything thus far has been exact, and representa-

tions for time intervals p0, τ s of arbitrary length are valid, calculation of W pβq at this
stage would be highly numerical in most cases. However, if our detection bandwidth� τ�1 is fast enough, we should be able to ignore the internal, unconditional evolution

of the system over the sampling time of the detector and approximate Lτ � 0. With
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this restriction in hand, we can use familiar non-commutative calculus to find

W pβq � 2

πτ
Trsre� 2

τ
|τL�β|2χ0s (2.19)

which is very satisfying!

Why is this satisfying? It has an intuitive connection to the Wigner function for

infinitely strong measurements of the system operators L we are indirectly probing

with our homodyne field measurements. First, for simplicity assume we work with a

scaling such that L and τ are unitless. It can be shown that this strong measurement

Wigner function is [WM08]

Ws,strongpβsq � 2

π
Trre�2|L�βs|2χ0s (2.20)

where the subscript s indicates units of the system “amplitude” (i.e. the range of L-

quadrature measurements). Through a simple change of variables, we can translate

Eq. (2.19) into these units:

W pβq ÑWspβsq � 2

π
Trre�2|?τL�βs|2χ0s (2.21)

which is equivalent to the strong measurement, but with ‘collection efficiency’
?
τ .

This can be seen by considering extending the system to include some other vacuum

mode χ0 Ñ χ0 b |vacyxvac| and taking L Ñ ?
τL � ?

1� τavac which also acts like

an annihilation operator on the vacuum mode. With this extension Ws,strongpβsq is
modified into Wspβq. Moreover, as we are assuming high bandwidth detection (so

that the collection efficiency τ   1), we can calculate the photocurrent’s Wigner

function representation Wspβsq directly from Ws,strongpβsq by noting that

Wspβsq � 1?
τ
Ws,strongp βs?

τ
q � 1?

1� τ
Wvp βs?

1� τ
q; Wvpβsq � 2

π
e�2|βs|2 , (2.22)

that is, the photocurrent Wigner function is simply the convolution of the strong

one with the Wigner function of a vacuum. This approach was the basis for the 2D

photocurrent representations and marginal quadrature distributions shown in Figs.
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4.5 and 6.3.

2.2 Quantum trajectories

Photocurrent correlation functions may contain a complete description of I/O dynam-

ics, but they don’t give a visceral sense of what these optical measurements look like

on an oscilloscope. How can we construct typical measurement trajectories? At any

given time, we already know that the expectation of the next photocurrent increment

is xdYty � xL � L:ytdt (Eq. (2.13)) where the expectation is taken according to the

state at time t, and that pdYtq2 � dt (apply the quantum Ito rule to Eq. (2.8)). With

these two facts, the spectral theorem and Levy’s theorem together tell us that the

quantity » t
0

dMs � » t
0

xL� L:ysds, (2.23)

where dMt{dt is some photocurrent measurement sequence, is simple Brownian mo-

tion [BvHJ07], or in other words, that

dMt � xL� L:ytdt� dWt (2.24)

where dWt is the increment of the Brownian motion process (a Gaussian-distributed

random variable). So far these arguments are very loose. For instance, we can’t

yet say what the state is at time t. If we have been making continuous homodyne

measurements up to t, the state is conditioned on the entire measurement sequence

up to time t, according to the postulates of quantum mechanics. The derivation of

the conditional expectation xL � L:yc has been described by many other authors in

more rigorous contexts [Car93a, GZ04, GPZ92, SD81, WM93], most elegantly as a

continuous-time conditioning procedure derived from Bayes rule known as quantum

filtering [BvHJ07, vH07]. Again, a proper derivation is quite mathematical and is

framed in terms of probability rather than physical theories. Rather than simply

reiterate these derivations (which would take a long time), I feel it is more valuable

to try to offer a heuristic explanation for interested physicists.
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2.2.1 The stochastic Schrödinger equation

If we have a global system state that is initially |Ψ0y � |ψs, vacby – the system is in

some state |ψsy and the free field that interrogates it is in the vacuum state – the

Schrödinger equation tells us that (using Eq. 1.24)

d|Ψty � ��piH � 1

2
L:Lqdt� LdB

:
t � L:dBt


 |Ψty. (2.25)

Recall that from our definition of the noise increments, dBt|Ψty � 0 for all t, that is,

dBt annihilates the state as it acts on the ‘incoming’ segment of the vacuum field at

time t. This means we can change the coefficient in front of dBt in (2.25) almost freely

without affecting the global dynamics. For example, it is also true that [BvHJ07]

d|Ψty � ��piH � 1

2
L:Lqdt� LpdB:

t � dBtq
 |Ψty� ��piH � 1

2
L:Lqdt� LdY S

t


 |Ψty (2.26)

where Y S
t � B

:
t � Bt is the amplitude quadrature homodyne observable in this

Schrödinger picture. As every dY S
s commutes with every dY S

t (the self-nondemolition

property in section 2.1.2), these operators may be simultaneously diagonalized. The

diagonal elements of dY S
t are simply the possible photocurrent increments dMt at

time t. In principle any measurement increment from p�8,8q is possible, but only
a narrow range of increments are reasonably probable, with a probability function

set by |Ψty. The diagonal elements are indexed by every possible entire measurement

sequence tdM0, ...dMtu.
By the projection postulate, if we observe a particular measurement sequencetdM0, ...dMtu, then the state |Ψty is projected onto the subspace corresponding to

that particular sequence (generally decreasing the norm, if not re-normalized). Cor-

respondingly, for a particular measurement sequence, we may recursively construct
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the unnormalized state of the system for all times r0, ts, conditioned on these mea-

surements, using the stochastic Schrödinger equation [Car93a, GZ04, WM93]

d|Ψtyc � ��piH � 1

2
L:Lqdt � LdMt


 |Ψtyc, (2.27)

where the conditional state |Ψtyc is a state on the system only; we can think of the

field state as being “projected away” by the measurements. This equation of motion

may also be modified so that the conditional state maintains its normalization:

d|Ψtyc � �p�iH � 1

2
L:L� xL:ycL� 1

2
|xLyc|2qdt�pL� xLycqpdMt � xL: � Lycdtq	|Ψtyc (2.28)

where xXyc � xΨt|X|Ψtyc is the conditional expectation. Although Eq. (2.28) prop-

agates a proper quantum state, its nonlinearity in |Ψtyc makes it very awkward to

work with. In practice, Eq. (2.27) is more often used in simulations, with the state

forcibly renormalized when necessary. While (2.28) is valid for initially pure states

and perfectly efficient photodetection, if either of these conditions are not met, the

conditional state must be described as a mixed state density matrix. The equation

of motion for a conditional, normalized density matrix may be derived from (2.28)

dρt,c � Lρt,cdt� �pL� xLycqρt,c � ρt,cpL� xLycq:� pdMt � xL: � Lycdtq (2.29)

where, again L is the unconditional generator from Eq. (1.27). Note, though, that

according to Eq. (2.24), the final terms in Eqs. (2.28) and (2.29) are equal to

dMt � xL: � Lycdt � dWt (2.30)

where Wt is a Brownian motion process. In a sense, Eq. (2.30) expresses that xL: �
Lyc is an optimal, unbiased estimate of the next measurement increment [BvHJ07].

Moreover, it is the dWt deviation of the actual increment, dMt, from the expected,xL:�Lycdt, that drives the stochastic aspect of these evolutions. dWt is often referred

to as the innovation, quantifying the ‘surprise’ in our measurement result. It is this
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‘surprise’ that drives the stochastic evolution in Eq. (2.29); averaging over all possible

innovation trajectories Wt, we simply acquire the unconditional, master equation

dynamics for ρuc, as in Eq. (1.27).

Now we have a method for constructing photocurrent trajectories that we might

actual see on the oscilloscope of a quantum optics experiment, sampled from the

space of all possible measurement trajectories with the proper likelihoods. In each

time step, we first calculate the next dMt using the current ρt,c and a randomly sam-

pled value for dWt (a Weiner increment, which has a Gaussian probability density

function and generates the Brownian motion process Wt), according to (2.30). With

this same value for dWt, the conditional state ρt�dt,c is updated according to (2.29).

The next photocurrent increment is then constructed in the same way, using the lat-

est conditioned state, and so on. Generalizations to imperfect detection efficiency

are straightforward (section 5.2.4 in [vH07]). Quantum trajectory simulations are

used throughout the following chapters (often using the quantum optics toolbox for

MATLAB [Tan99]), but Figs. 4.5, 6.3, and 6.5 are particularly notable for compar-

ing experimental and trajectory-simulated photocurrents with expected measurement

ensembles derived from the methods in section 2.1.3.

Any powerful set of equations has multiple interpretations, and Eqs. (2.29) and

(2.30) are powerful equations. If we have an experiment that produces a photocur-

rent trajectory tdM0, ...dMtu{dt, this sequence may serve as an input to Eq. (2.29),

generating a sequence of conditional states ρt,c that track the evolution of the isolated

system. This conditional state may be used to track the expectations of operators

that act on this system TrrXρt,cs � πtpXq, conditioned on our measurement sequence

[BvHJ07, vH07]. This quantum filter function πtp�q is optimal in the sense that, for

example, it may be used as an unbiased estimator of the next dMt{dt increment, us-

ing πtpL�L:q according to (2.30): πtpL�L:q filters the photocurrent sequence down

to Gaussian (dWt) residuals. Quantum filtering using (simulated) photocurrents as

inputs is most directly employed in section 7.2.2.
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Introduction

A two-level system (TLS) interacting with an optical resonator mode via an electric

dipole interaction has become one of the best studied quantum optical systems in the

past two decades [MD02, Car93a, TRK92, MTCK96, BMB�04, EFZ�07, FSS�10,
SBF�10]. For this simple system, the sum is far richer than its parts. On its own,

an optical resonator is essentially a “classical” device: quantum mechanics may ad-

equately describe the system, but classical models also suffice unless the cavity is

driven by a non-classical field. A two-level atom is perhaps the canonical quantum

system, but in isolation, the system was completely described in the earliest decades

of quantum theory. Modern engineering has already provided us with a number of

critical technologies based on (approximate) two-level atomic spins, notably NMR

and atomic clocks. Many nonlinear optical systems may also be modeled as the inter-

action of light with atom ensembles. However, such well-known applications still rely

on ensembles of quantum mechanical spins and typically admit semi-classical models

for their interaction with electromagnetic radiation. When a single TLS couples to

an optical cavity mode with a very small mode volume, and both sub-systems each

couple weakly to all other free field modes, a fully quantum model is generally re-

quired to describe the dynamics of both the fixed (i.e. TLS and resonator) and free

field degrees of freedom, even for completely classicals input fields.
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Chapter 3

The cQED model

This chapter introduces a standard model for cavity quantum eletrodynamics (cQED)

[MD02, Car93a] utilized in much of the remaining two parts. A single emitter with

a transition coupled to and nearly degenerate with a micron-scale optical resonator

properly requires a fully quantum I/O model to predict the evolution of its internal

states and its effect on optical probe fields. This quantum model is described, but I

also present a standard semiclassical approximation to the equations of motion. This

approximation corresponds to an analogous cQED system with many atoms coupling

strongly to the resonator in aggregate only. While the approximation fails in many

respects to describe our experimental system [KAPM11, KAM10], it is not irrelevant

and highlights the subtle dynamical transformations that occur as photonic devices

approach microscopic scales.

3.1 The cQED master equation

The Hamiltonian

We adopt the Jaynes-Cummings model [Car93a, AM06] to describe the internal,

Hamiltonian dynamics of our cQED system. Despite it’s dramatic simplifications

of any experimentally realistic system, the model captures much of what’s essential

and interesting in atom-photon interactions, and experimental realizations that best

37
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κ
γ⊥

g

Figure 3.1: A depiction of the cavity quantum electrodynamical (cQED) I/O system.
A single, two level atom couples with rate g (per

?
photon) to a single optical mode of

a resonator, here shown as a Fabry-Perot cavity. Optical free fields may drive one side
of the resonator and be transmitted through the other side via the highly reflective
mirrors. The cQED system is thus coupled to various free optical fields: the cavity
mode and the input-output (I/O) free fields with cavity field decay rate κ, and the
atom and transverse free fields with the atom’s electronic dipole decaying at rate γK.
approximate this simplicity are often considered the most fruitful to study.

The “atom” (be it a real atom, like Cs [Ste], or a solid-state charge impurity, like

a nitrogen vacancy center [BFSB09] or quantum dot [EFZ�07]) is a two-level system

(TLS), with the natural basis states ground |gy and excited |ey, so-named to reflect

their association with the atom’s electronic ground state and a single excited state.

The lab-frame energy associated with the two atomic states are 0 for the ground state

and a fraction of an aJ for the excited (corresponding to the optical range of the EM

spectrum, or several hundred THz). The single, optical cavity mode is modeled as

a quantum simple harmonic oscillator (SHO), with a harmonic spectrum that also

bestows single excitations (that is, photons) with optical energies. These models may

be derived from fundamental QED, but doing so is beyond the scope of the chapter

and is well-covered in many text books [CTDRG89, CTDRG92].

The Hamiltonians that describe the internal dynamics of the atom and cavity in

isolation are thus Ha � ωaσ
:σ and Hc � ωca

:a, respectively, where σ � |gyxe| is
the atomic lowering operator, a is the cavity annihilation operator, : the hermitian

conjugate, and ωa and ωc are the energies of the atom and cavity excitations, re-

spectively (~ � 1 will be assumed throughout – except when experimental values

are needed). In addition to this, the dynamics associated with a coherent free field



3.1. THE CQED MASTER EQUATION 39

(i.e. a laser) driving the cavity may be modeled with an added Hamiltonian term

[Car93a, CTDRG92] Hd � ipEa:e�iω0t � E�aeiω0tq, where E is a c-number with |E |2
and argpEq proportional to the photon flux and phase of the laser drive, respectively,

and ω0 is the optical frequency of the drive.

The interaction between the cavity mode and atom is modeled as an electric

dipole interaction, or Hed � gd̂ � Ê, where d̂ is the atomic dipole operator (i.e. a

vector of Pauli-X and Pauli-Y operators in the t|gy, |eyu basis), Ê is electric field

operator for the cavity field, and g quantifies the rate of energy exchange between the

atom and field. However, it is common to invoke the rotating wave approximation

for cQED systems (dropping terms that produce interaction dynamics at twice the

excited state/photon energies), such that the interaction Hamiltonian simply becomes

Hi � igpa:σ� aσ:q, where the ‘phase’ of the interaction here is a convention and sets

a reference phase for the system [Car93a, AM06].

Putting all the terms together, the Hamiltonian that describes the internal dy-

namics of the cQED system in the lab frame is

Hlab � Ha �Hc �Hi �Hd� ωaσ
:σ � ωca

:a� igpa:σ � aσ:q � ipEa:e�iω0t � E�aeiω0tq. (3.1)

Dissipation dynamics

All experimental systems are open quantum systems [Car93a], meaning that at some

point they must interact with the many-body, “classical” systems which may (e.g.

photodetectors) or may not (e.g. brick walls) provide us with measurement results.

Measurements always perturb quantum systems, but when measurements are made

continuously, their effects become a critical aspect of the dynamical evolution. Even

if an experimenter is not dutifully measuring every free field that interacts with the

system with perfect efficiency (a practical impossibility), open system dynamics are

fundamentally perturbed from a Hamiltonian evolution.

Under fairly general conditions of a weak and Markovian interaction with a zero

temperature bath (like a freely-propagating optical field in a coherent state), the

equation of motion for a quantum system’s density matrix ρ, unconditioned on any
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measurement result, is described by the master equation (see section 1.3 and [Car93a,

GZ04])
d

dt
ρ � �irH, ρs � 2κ̃DrÔsρ, (3.2)

where H is the system Hamiltonian,

DrÔsρ � ÔρÔ: � 1

2
Ô:Ôρ� 1

2
ρÔ:Ô (3.3)

is a superoperator describing the system’s coupling to the bath via operator Ô and

strength κ̃. Often, master equations like 3.2 are symbolically represented as9ρ � Lρ (3.4)

where the Lindblad superoperator L generates the entire unconditional evolution.

In our cQED system, two different bath couplings are significant: transverse radi-

ation modes coupling to the atom (inducing spontaneous emission, for example), and

two single free field modes coupling to the cavity mode via the two high reflectivity

cavity mirrors (providing optical input and transmission channels). For interactions

with uncorrelated baths like these, the unconditional dynamics may be simply aggre-

gated, and the overall unconditional evolution in the lab frame becomes

d

dt
ρlab � �irHlab, ρs � 2κDrasρlab � 2γKDrσsρlab, (3.5)

where κ is the cavity field decay rate (such that each photon in the cavity leaks out

at mean rate 2κ) and γK is the atomic dipole decay rate (such that an excited atom

decays at mean rate 2γK).
More convenient reference frames

The explicit time-dependence in Hlab is awkward to deal with. Consequently, it is

typical to boost our model into an interaction frame that removes these terms from

the Hamiltonian [CTDRG89, Arm09]. This is done by modeling the dynamics on the
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state

ρlab Ñ T :ρlabT � ρ (3.6)

where

T � e�iω0pσ:σ�a:aqt. (3.7)

It follows from Eqs. (3.5), (3.6), and (3.7) that the unconditional dynamics in our

new frame is
d

dt
ρ � �irH, ρs � 2κDrasρ� 2γKDrσsρ, (3.8)

where

H � T :HlabT � i
BT :Bt T � ∆σ:σ �Θa:a� igpa:σ � aσ:q � ipEa: � E�aq (3.9)

where ∆ � ωa � ω0 and Θ � ωc � ω0 describe the laser drive’s detuning from the

atomic transition and cavity resonance frequencies, respectively.

While most analyses may be conveniently done in the frame of Eq. (3.8), for

computations it is often advantageous to apply yet another frame boost. Physically,

this transformation corresponds to “displacing” the cavity field by some complex am-

plitude α such that a cavity coherent state with amplitude β becomes β � α. This

can be very convenient for canceling out large, DC cavity field amplitudes in simula-

tions if we are only interested in relatively small fluctuations in these amplitudes, for

example. The aptly named displacement operator [WM08, Arm09]

Dpαq � eαa
:�α�a (3.10)

induces this transformation of the frame: ρ Ñ Dpαq:ρDpαq � ρα as well as a corre-

sponding transformation for the master equation.

3.2 The QSDE representation

While the master equation of Eq. (3.8) is extremely useful, it only tells part of the

story. While it represents the “average” effect of a bath on the cQED system (under
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appropriate approximations) [Car93a, GZ04], it doesn’t speak to the effect of the

quantum system on the bath fields that interact with it. If we are concerned with

the I/O dynamics of the free fields interacting with cQED devices, this is a critical

oversight!

A quantum stochastic differential equation (QSDE) representation of the the

cQED system is convenient for rolling both internal and free-field aspects of the

global system into a single, unified model. Given an initial state, the dynamics on

this global system is described by the QSDE for the propagator (see chapter 1)

dUt � !?
2κadA:

t �?
2κa:dAt �a2γKσdB:

t �a2γKσ:dBt ��
iH � κa:a� γKσ:σ� dt)Ut, U0 � I (3.11)

where dAt and dBt are QSDE annihilation processes (‘quantum noise’) on orthogonal

free field modes. As described in more detail in Part I, in the QSDE representation,

the internal cQED and external fields are on equal footing, so to speak. For example,

one may analyze the dynamics of internal variables jtpXq � U :
tXUt (in the Heisenberg

picture; X some cQED operator)

djtpXq � jtpL:Xqdt�?
2κ
�
jtpra:, XsqdAt � jtprX, asqdA:

t

	 �a
2γK �jtprσ:, XsqdBt � jtprX, σsqdB:

t

	
, (3.12)

where L: is the superoperator adjoint of the (Schrödinger-picture) unconditional gen-
erator in equation (3.4), analogous to that in Eq. (1.26), and the dynamics of external

field outputs, e.g. jtpAtq
djtpAtq � ?

2κjtpaqdt� dAt, (3.13)

revealing intricate interrelations. Note that, in this system, the output field jtpAtq
looks an awful lot like a copy of the intracavity field, with added noise.

Similarly, dynamics conditioned on measurements of the free field outputs are also

naturally derived with the QSDE representation, as in section 2.2.1. For example,
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we may wish to infer the internal state of the cQED system, ρc, based on amplitude

quadrature homodyne measurement of the optical field transmitted by a cQED device.

Given a photocurrent record from time 0 to t, with integralMt, the equation of motion

for the conditional state can be shown to be (section 2.2.1)

dρc � Lρcdt�?η?2κ
�
aρc � ρca

: � xa� a:ycρc� �dMt �?
η
?
2κxa� a:ycdt	 (3.14)

where η is the quantum efficiency of the detection, and x�yc is the conditional expec-

tation at time t. Note that when η � 0, Eq. (3.14) is equivalent to the unconditional

evolution Eq. (3.8). Moreover, it can be shown that

dWt � dMt �?
η
?
2κxa� a:ycdt (3.15)

is a Wiener increment (section 2.2.1), and thereby the statistics of Mt are also com-

pletely determined by the model. Thus, a QSDE approach, through Eqs. (3.14) and

(3.15) – and through the more elegant techniques of section 2.1.3 – is also naturally

suited to analyzing optical measurements.

3.3 The Maxwell-Bloch equations

As noted in section 3.2, the output fields we are interested in are roughly noisy versions

of the intracavity field. Thus, much intuition about the input-output dynamics of

cQED devices may gained by considering the equations of motion for expectations of

internal cQED operators. For example, from the master equation (3.8), we find thatx 9ay � �pκ� iΘqxay � gxσy � Ex 9σy � �pγK � i∆qxσy � gxaσzyx 9σzy � �2γKpxσzy � 1q � 2gpxσa:y � xσ:ayq. (3.16)

where σz is the atomic Pauli-Z operator. Already, we see some important characteris-

tic dynamics. For example, with g Ñ 0, the intracavity field amplitude xay will decay
to E{pκ� iΘq and the atom will decay to its ground state, xσzy Ñ �1. The coupling
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between the cavity and the atom introduces more complicated dynamics: the cavity

field drives the atom (through terms like gxaσzy) and the atomic dipole radiates its

own field back into the cavity through the gxσy term. However, it is impossible to say

much more than this from Eqs. (3.16) alone, as they are not a closed set of equations

for the operator expectations.

If we simply factorize compound expectations such as xaσzy Ñ xayxσzy, we arrive

at a closed set of non-linear, determinsitic dynamical equations known as theMaxwell-

Bloch equations (MBE) [Lug84]x 9ay � �pκ� iΘqxay � gxσy � Ex 9σy � �pγK � i∆qxσy � gxayxσzyx 9σzy � �2γKpxσzy � 1q � 2gpxσyxa:y � xσ:yxayq. (3.17)

But can we do this? Not really. Factorization of cavity and atomic operator expec-

tations returns the same expectation value only if there is no correlation between the

states of the two subsystems. In a sense, the MBE represent a semiclassical approx-

imation to the internal dynamics of a cQED system. More precisely, they model an

atomic TLS, and also a classical cavity field characterized by a single, complex ampli-

tude xay. It is difficult to specify exactly when the MBE are inaccurate at explaining

cQED phenomena, but for a single atom cQED system with strong coupling between

the cavity and atom – such as the experimental system described in this thesis – it is

generally understood that the MBE provide accurate predictions in the “bad cavity

limit” (κ " g " γK) and weak atomic excitation [Lug84, Car93b, ROKD91, RC88]–

which does not correspond with the experimental system described in this thesis. In

the bad cavity limit and weak excitation, the atom and cavity field remain largely

uncorrelated, per photon, and the semiclassical MBE largely suffice.

The MBE also arise from semiclassical approximations of the collective spin dy-

namics in a multi-atom cQED system. In the multi-atom MBE, σ Ñ °N

i σ
piq and

σz Ñ °N
i σ

piq
z , with all atoms coupling to the same optical mode [AM06]. Thus,

the multi-atom MBE are equivalent to the single atom MBE up to scaling factors.
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Even if the entire atomic ensemble couples strongly to the cavity mode, it is gener-

ally accepted that the MBE accurately describe the system if each atom contributes

only weakly to the overall coupling [SC88, RTB�89, RTB�91]. In such cases, again,

each atom and photon are only weakly correlated and the mean-field, semiclassical

description is sufficient.

However, surprisingly, the MBE are not inconsequential when considering the

strongly coupled, strongly driven, single-atom cQED experimental system at hand.

While the MBE cannot account for much that is observed experimentally or in simula-

tions of the full quantum model, the the complete system often qualitatively appears

to be guided by a competing influence of mean-field and quantum noise dynamics

[SC88, AM06, KAM10]. Moreover, the application of dynamical systems analysis to

the semiclassical MBE has proven successful at identifying parameters under which

the quantum dynamics exhibit bifurcation-like behavior [AM06, GNH90a, GNH90b].

It has also been shown [Mab08b] that the MBE are also derivable from a method less

ad hoc than expectation factorization through the orthogonal projection [vHM05]

of the quantum master equation dynamics (3.8) onto the ‘semiclassical’ manifold of

states

ρatom b |αyxα| (3.18)

where |αy is a coherent field state, up to a multiplicative factor in the gxσy term in

Eq. (3.17) of order unity representing the atomic purity; for pure atomic states, the

MBE are recovered exactly.

As it facilitates analysis and provides some physical insight as well, I also provide

a dimensionless version of the MBE [AM06, GNH90a, GNH90b]:9x � �k pp1� iθqx� 2Cp� yq9p � �p1� iδqp� xD9D � �2 pD � 1� px�p� xp�q{2q . (3.19)
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In these equations, we have made the following dimensionless scalings

tÑ t{γK, g2

2κγK � C,
γ2K
2g2

� n0 κ{γK � k, Θ{κ � θ, ∆{γK � δ, y � E

κ
?
n0xay?

n0
� x, � 1?

2
xσy � p, �xσzy � D. (3.20)

Dimensionless representations not only de-clutter equations, but they aid comparisons

of dissimilar quantities. For example, we see in Eqs. (3.19) that the cavity field x is

only strongly affected by the atomic dipole p when the cooperativity C is greater than

1, that the atom is only strongly affected by the cavity field when the intracavity

photon number is at least the saturation photon number n0, i.e. |x|2 Á 1, and that

the system may only reach this level of high excitation when E{κ Á ?
n0. Finally, we

may calculate the steady state solutions to Eqs. (3.19)

y � |xss|��1� 2C

1� δ2 � |xss|2
2 � �θ � 2Cδ

1� δ2 � |xss|2
2
�1{2

argrxsss � arctan

�
2Cδ

1�δ2�|xss|2 � θ

1� 2C
1�δ2�|xss|2 �

pss � p1� iδqxss
1� δ2 � |xss|2

Dss � 1� δ2

1� δ2 � |xss|2 . (3.21)

These steady state solutions are often a convenient starting point in dynamical anal-

ysis of the MBE [AM06, GNH90a, GNH90b].



Chapter 4

Single atom ‘bistability’

The Maxwell-Bloch equations (MBE, Eq. 3.17) introduced in the previous chapter

represent a semiclassical description of cQED systems containing a single atom or an

ensemble of any number of atoms. Up to scaling factors, MBE describing the two

cases are equivalent. Although it’s impossible to draw a hard line between the param-

eter regimes the MBE adequately describe and those they don’t, the rule of thumb is

that they fail to capture the complete picture when individual atoms and photons are

highly correlated through strong coupling and strong driving. In these ‘deep quan-

tum’ systems, proper modeling requires a fully quantum mechanical representation.

Unfortunately, there is not yet a set of theoretical tools that generalize dynamical

systems theory to open quantum systems and one typically resorts to brute force

simulation for analysis. In other words, we don’t really understand or know what

to expect from strongly coupled, dynamical quantum systems. In particular, the a

priori relevance of semiclassical MBE dynamics to strongly-coupled cQED systems

is unclear. This thesis doesn’t resolve this uncertainty, but it demonstrates, with

experimental data, that any resolution is subtle.

This issue is not purely academic. Optical device engineering is beginning to

push into attojoule energy regime [ASO�08, YHW�07, LKH�10, NTS�10]. In the

visible to near-infrared regime, attojoule energies correspond to a countable number

of photons; e.g. one photon with an 852nm wavelength carries an energy of .23aJ.

Scientific, economic and environmental pressures are pushing information devices

47
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smaller, faster and lower in energy [Mil09], and the logical consequence of this trend

is unavoidably quantum technologies. Indeed, for future optics-based processing to

be feasible, �10aJ scale devices are necessary [Mil10a], and quantum effects must

be significant if not dominant when the operating photons number in the hundreds

or less. Experimental and theoretical research has barely begun to systematically

explore this emerging engineering paradigm.

With this motivation, this chapter introduces a case study of optical I/O nonlin-

ear devices operating in the �10 photon regime that naturally arise in single atom,

strongly-coupled cQED systems. This theoretical background sets the stage for the

experiments presented in the following chapters.

4.1 Absorptive ‘bistability’

The saturable absorber is a canonical optical nonlinear I/O device. At low optical

drive powers, a medium may absorb a given fraction of incident photons, but at high

drive powers, the total power absorbed by the medium saturates. The input-output

power relationship is therefore nonlinear. Moreover, when the medium is contained

in a two-sided optical resonator and if the absorption coefficient is strong enough,

positive optical feedback from the resonator can even cause the I/O relationship to

be bistable, with either a low- or high-power transmission state possible with any

input power in a certain range [SDGK69].

This behavior can be inferred from the steady state solutions to the MBE (3.21),

with the cQED atoms in the role of the saturable medium [RTB�91, AM06]. As

they become excited, the atoms scatter photons into radiation modes, dissipating the

drive power. The partially excited atoms also re-radiate their own intracavity field,

largely 180� out of phase with the optical drive, which coherently interferes with the

drive, preventing it from exciting the cavity. At high drive powers, however, the

two-level atoms become fully saturated, and the amplitude of the re-radiated field

and the rate of scattered photons no longer increase with increasing drive power. For

example, for MBE parameters (Eq. (3.20)) achievable in our single atom experiment

[KAM10], tC, n0,∆,Θu � t67, .001, .7κ,�1.1κu, I plot the steady-state solutions for
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Figure 4.1: Steady state solutions to the MBE given the parameters tC, n0,∆,Θu �t67, .001, .7κ,�1.1κu. (a), Steady state intracavity field magnitude,
?
n0|xss|, as a

function of drive amplitude E . Dynamically stable solutions are in blue, unstable
solutions in red. (b), Steady state atomic excited population, p1�Dssq{2, and dipole
moment, |pss|, for the same parameters. Dynamical stability again shown in blue and
red.

the intracavity amplitude
?
n0|xss| as a function of the optical drive amplitude E{κ

in Fig. 4.1 using Eqs. (3.21). At low drive amplitudes, |E |   1.5κ, the intracavity

amplitude hardly increases with increasing drive. With increasing steady-state dipole

moment and excited state population in response to an increasing drive ampliutude,

the atoms in the MBE coherently and incoherently work to prevent field build up.

For a two-sided resonator, such as a Fabry-Perot cavity, the transmitted field is sim-

ply proportional to the intracavity amplitude and this low-|xss| state corresponds to

low optical power transmission. At high drive amplitudes, E ¡ 2.4κ, there is almost

a 1:1 correspondence between increasing drive and increasing intracavity amplitude;

consequently, nearly all the power incident on a symmetric, two-sided cavity is trans-

mitted. In this regime, atom has become completely saturated, and has no mean

dipole orientation (pss Ñ 0). The atom no longer responds to an increasing drive

amplitude, but simply scatters photons at the maximal rate of γK.
Between 1.5   E{κ   2.4, however, there are three steady state solutions for any

given drive strength. The low- and high-|xss| states can be shown to be dynamically

stable, while the mid-level one is unstable [AM06]. Thus, the unstable solution serves

as a separatrix: if the system is initialized on the high- or low-side of the middle
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Figure 4.2: Steady state intracavity field amplitude solutions according to the MBE
and full quantum models using the same parameters in Fig. 4.1.

solution, the system will respectively relax to the high- or low-|xss| steady state. The

MBE thus predict an amplitude bistable system for this parameter set. One dramatic

consequence is that it should be possible to adiabatically sweep the drive amplitude

from below 1.5κ to above 2.4κ and back again, and trace out a hysteretic I/O curve.

The potential use for a hysteretic input-output device like this as a robust digital

switch or for threshold signaling, has long been recognized [SDGK69, Mil10b].

But do the MBE apply in this single atom system [SC88]? To begin to answer this

question, we go back to the complete quantum mechanical master equation (3.8) from

which the MBE were derived and solve for the steady state density matrix for a cQED

system with the same parameters, over the same range of external drive amplitudes.

With these steady states, we can plot the expected magnitude of the intracavity field,axa:ayss, as in Fig. 4.2. In Fig. 4.2, rather than the same bistable response, we

see that the expected intracavity field in the full quantum model roughly “averages”

the semiclassical response, smoothly connecting the low- and high-drive regimes. In

fact, the lack of a truly bistable response is clear simply upon solving for ρss: for any

given external drive there is a unique ρss. Early single-atom cQED studies confirmed

this failure of the MBE to describe experimental single atom systems in the strong
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Figure 4.3: (a), Steady state intracavity field W-functions for the same cQED pa-
rameters as 4.1 and various drive amplitudes. The white cross marks the amplitude
origin, the green circle the centroid of the W-function when the cavity is empty. (b),
Excited state population correlated with the steady state low- and high-field states
for the same parameters.

coupling regime by measuring the long-time averaged field transmitted by a Fabry-

Perot cavity containing a Cs atom [HCLK98]. But is that all there is to say about

the quantum-semiclassical correspondence?

The expected magnitude of the transmitted field is only one characteristic of

ρss. A more complete picture of the intracavity field comes when we look at the

Wigner quasi-probability functions [WM08] of each ρss after tracing over the atomic

degrees of freedom, Fig. 4.3a. As the drive amplitude is increased, in Fig. 4.3a

the intracavity field transitions from a near-vacuum state to a bimodal distribution

for 2.4   E{κ   4.2. Further inspection of ρss reveals that these lobes represent an

incoherent superposition of field states, each roughly coherent with amplitudes α� � 0

and α� � E{κ. Moreover, by projecting each ρss onto coherent field states centered

at the low- and high-lobes, we can find the excited state population associated with

each field state. To this end, in Fig. 4.3b, I plotx|α�, eyxα�, e|yssx|α�, eyxα�, e| � |α�, gyxα�, g|yss � P�,e (4.1)

for each value of E in Fig. 4.3a. In Fig. 4.3b, for 2.4   E{κ   4.2, we see that

the atom in the low-field state is less than completely saturated, while the high-field
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Figure 4.4: (a), Quantum trajectory simulations of the conditional expectation of the
intracavity amplitude field quadrature 1

2
xa: � ayc � xXyc for the same parameters as

Figs. 4.1. (b), Simulated, 20MHz bandwidth amplitude quadrature homodyne pho-
tocurrent data from the same trajectories in (a), assuming unit detection efficiency.

state is correlated with a fully-saturated atom. In contrast, the reemerging bimodality

for E ¡ 5.9κ associates a fully saturated atom with both field states, and thus has

more in common with the dispersive ‘bistability’ [AC91, AMM09, Arm09] described

in section 4.2.2. From Figs. 4.3a and 4.3b we see why the MBE fails to capture the

complete dynamics of the system (e.g. Fig. 4.2): in this near-saturation regime the

atom and cavity relax toward a superposition of highly correlated states, such that,

for example, xaσzyss � xayssxσzyss. However, although the MBE steady state analysis

cannot be simply mapped onto the more accurate quantum mechanical model in this

case, the two descriptions are not completely foreign to each other. In particular, it

appears that evocative ‘remnants’ of semiclassical bistability are still retained in this

near-saturation regime: low- and high-excitation states exist in superposition in the

steady state.

But what does it mean for the steady state intracavity field to be bimodal? The

cavity can’t output a high and low amplitude field simultaneously. On a somewhat

related note, why does the long-time averaged transmitted field produce an I/O pic-

ture equivalent to
axa:ayss? These questions can be naturally addressed from the

QSDE representation of the system, as in section 3.2. For instance, from a QSDE

description, straightforward application of quantum trajectory techniques (section

2.2.1) allow us to simulate probable broadband homodyne measurements of the field
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Figure 4.5: Top) Histogram of simulated amplitude quadrature photocurrents, as in
Fig. 4.4b, for an experimentally-inspired cQED parameter set (that produces am-
plitude bistability) with 100MHz (Left) and 400MHz (Right) detection bandwidth.
Overlaying the histograms are the marginal distributions expected for amplitude
quadrature measurements with the system in its steady state. Bottom) Steady state
photocurrent Wigner functions (section 2.1.3) from which these marginal distributions
were calculated.

transmitted by a single-atom/Fabry-Perot cQED system. In Figs. 4.4a and 4.4b,

I plot representative trajectory simulations of the absorptive bistability system for

parameters corresponding to the steady state simulations of Fig. 4.3. In Fig. 4.4b,

simulated photocurrents from the measured amplitude quadrature of the transmitted

field are shown for different values of a cw drive amplitude. At low drive amplitude,

E � 2.4κ, the output field amplitude is essentially localized around 0, with shot noise

variance. As the drive amplitude is increased, the measured field begins to switch

stochastically between a low- and high-output state, with each signal state persisting

for a short, characteristic time. Likewise, the conditional expected amplitude quadra-

ture of the intracavity field associated with each simulated measurement trajectory,

Fig. 4.4a, appears as a “noiseless” version of the amplitude quadrature homodyne

measurement, a direct consequence of Eq. (3.15).

Recall that the distribution of high-bandwidth homodyne photocurrents may be
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associated with a convolution of the cavity field and vacuum field distributions, as in

section 2.1.3. If broadband photocurrents produced by an experiment or simulation

with a cw drive are accumulated for time intervals much longer than their mean corre-

lation time (see Fig. 4.3, section 2.1.3 and figure 6.4) they may be accumulated into a

histogram that matches the distribution of photocurrents expected from ρss, as in Fig.

4.5 (suggesting that the system is in a sense Ergodic). Moreover, the expected inte-

gral of these measurements approaches xYtyss � t
?
2κxa:� ayss (section 2.1.3). Thus,

if an experiment only has access to long time-averaged (low-bandwidth) records, the

inferred homodyne photocurrents of the field transmitted by a cavity simply reflect

the steady state expectation of the corresponding intracavity field quadrature, i.e.?
2κxa: � ayss, and may be used to directly compare the steady state semiclassical

and quantum mechanical predictions for the intracavity field, in a manner similar

to Fig. 4.2 or [HCLK98]. At the other extreme, very large bandwidth photocur-

rents correspond to very weak measurements of the instantaneous intracavity field,

and thus appear to be mainly shot noise. However, if full bandwidth measurements

are resampled at intermediate rates, only slightly faster than the bandwidth of the

photocurrent autocorrelation function, a sort of quasi-‘bistability’ response to the cw

drive is apparent in the transmitted field, randomly switching between low and high

states that correspond to the low- and high-amplitude states of the steady state intra-

cavity field, as in Figs. 4.4b, and accumulation of these photocurrents reveal bimodal

distributions as in 4.5. This insight begs the question then, if quasi-‘bistability’ is

apparent on these intermediate time scales, are other signatures of true bistability,

like hysteresis, apparent on these time scales? We will take up this question again in

chapter 6.

A loose explanation for the spontaneous switching dynamics visible in the quantum

trajectories Figs. 4.4 is that the semiclassical steady states apparent in Fig 4.1a are

‘destabilized’ by quantum fluctuations [SC88, RTB�91, HCLK98]. As the low- and

high- field states are essentially coherent states in Fig. 4.3, separated by only �10
photons, the quantum uncertainty in the field amplitude in either state is fractionally

large. For example, if the cQED system is in the saturated, high-field state, it doesn’t

take that long (the apparent state correlation time in Fig. 4.4b) for the statistical
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fluctuations in the intracavity field and atomic dipole to ‘kick’ the system into the

unsaturated, low-field state: if, by chance, a low intracavity photon number happens

to coincide with the atom being the ground state, the atom can efficiently work to

reinforce the low-field state. The MBE, however, accurately predict a truly bistable

system when the saturable medium is a strongly coupled atomic ensemble, rather

than a single atom [RTB�91]. This is because although the single- and multi-atom

MBE are equivalent up to scaling factors, the photon-number separation of the low-

and high-field states scales as the number of atoms in the ensemble, greatly increasing

the fluctuation-limited correlation times of the two states [SC88]. Ensemble cQED

devices operate on much higher energy scales than single-atom devices with the same

dimensionless MBE parameters (3.20) [RTB�91, SC88], in a regime where quantum

fluctuations are dynamically negligible.

4.2 Dispersive ‘bistability’

As a highly nonlinear system with many tunable parameters, it should not be sur-

prising that single atom cQED offers a wide range of interesting (and potentially

useful) I/O regimes. While the absorptive ‘bistability’ described in the preceeding

section occurs right at the cusp of atomic saturation, many nonlinear I/O systems

exist completely into the high drive regime. This perhaps runs contrary to a popular

conception that in the high-excitation regime, single-atom cQED becomes increas-

ingly ‘classical’ [HCLK98, EFF�07, FSS�10]. In a sense, this section complements

the previous one and illustrates that even into this ‘classical’ regime of strongly cou-

pled, but fully saturated single atom cQED, quantum dynamics are clearly apparent,

if you know how to look for them [AC91, AMM09, Arm09, KAPM11]!

4.2.1 The Jaynes-Cumming ladder

The argument for recovered classical behavior in the high-drive limit comes from

analysis of the Jaynes-Cummings Hamiltonian Eq. (3.1). Minus the external drive

term, the spectrum of energies associated with the lab-frame Eq. (3.1) for a resonant
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Figure 4.6: a), Lowest energy eigenlevels of the Jaynes-Cummings Hamiltonian (with-
out the cavity drive term) in the lab frame with Θ � ∆ � 0. (b), Jaynes-Cummings
spectrum for high excitations n " 1. In this fully saturated regime, |�, ny Ø |�, n�1y
transitions are nearly ω0-separated in energy.

system (ωa � ωc � ω0) are portrayed in Fig. 4.6. Without atom-cavity coupling (g �
0), the spectrum of energies is as on the left. In this resonant case, the atomic excited

state has the same energy as a single photon in the cavity. Thus, the spectrum forms a

harmonic ladder of states, with each ‘rung’ a degenerate doublet of t|e, n�1y, |g, nyu,
except for the bottommost state, with energy eigenvalue nω0. When g � 0, these

degenerate states split into symmetric and anti-symmetric energy eigenstates|�, ny � 1?
2
p|e, n� 1y � i|g, nyq (4.2)
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Figure 4.7: The fractional optical power transmitted by a Fabry-Perot cavity con-
taining a resonant strongly coupled TLS at various drive powers. The n drive power
index refers to the number of photons that would be in an empty cavity on resonance.
Taken from [Arm09].

with energy eigenvales E�,n � nω � ?
ng. Thus, for n ¥ 1, the energy eigenstates

are associated with a fully saturated atom (xσzy � 0). However, an additional atom-

and-cavity “saturation regime” exists very high up, when n " 1. At these levels in

the energy spectrum, see Fig. 4.6b, the energy separation between eigenstates with

the same � orientation approaches

E�,n�1 � E�,n � ω0 � g
�?

n� 1�?
n
� � ω0 � g

2
?
n
. (4.3)

As n Ñ 8, the spectrum of energies approaches that of a pair of harmonic ladders,

with raising/lowering energy � ω0.

Adding drive dynamics to this picture provides the necessary energy to access

these high energy states, and dissipation dynamics cause the system to stabilize in

some energy regime. Moreover, the spontaneous decay of photons out of the cavity,

through the mirrors, and atomic spontaneous emission into radiation modes, broadens

the energy eigenstates of the Hamiltonian model such that each has an intrinsic
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linewidth Γ � maxtκ?n, γKu. When an external laser also at frequency ω0 is used to

drive the cavity when g " Γ, the cQED system cannot easily absorb the energy quanta

necessary to work its way up the first few rungs of the Jaynes-Cumming spectrum;

photons from the laser drive are not resonant with any allowed energy transitions

(to within their linewidth). However, a laser tuned to ω0 � g will resonantly excite a

ground state system to |�, 1y, but again cannot easily drive the transition to |�, 2y.
But once an ω0 laser does manage to off-resonantly excite the cQED system to the|�, 2y state, all subsequent transitions to higher energy states become increasingly

resonant with the drive. If the cQED dissipation rates are slow, such that for a

g � 0 system, a strong, on-resonant drive yields the steady state expected intracavity

photon number xa:ayss � |E{κ|2 " 1, then even with a strongly coupled, g " Γ

single atom in the cavity, the steady state xa:ayss Æ |E{κ|2. Consequently, if the

optical drive strength is weak, the steady state power transmitted by a Fabry-Perot

cavity reveals a bimodal spectrum, with peaks at ω0 � g, but if the drive is strong, a

single transmission peak is observed at ω0, as in Fig. 4.7. This ‘recovered’ harmonic

spectrum at high drive strengths would seem to suggest that highly excited single-

atom cQED systems are essentially classical objects, like any SHO [FSS�10].
4.2.2 Phase ‘bistability’ in highly-excitated cQED

However, even in the on-resonant, fully saturated regime of cQED with a cw laser

drive, the I/O field relationship carries clear signatures of the quantum mechanical

nature of the atom-cavity system [AC91, Arm09]. A heuristic, but remarkably accu-

rate [AC91, Arm09], explanation for this phenomenon comes from first noting that in

steady state with strong drives, the intracavity field is in some coherent state (this is

also suggested by the harmonic spectrum). Although the steady state system is not

in a photon number eigenstate, or even an energy eigenstate, the intracavity energy

distribution is centered at some ω0n̄, with width � ω0

?
n̄. This corresponds to a

population distribution amongst the |�, n̄�?n̄y energy eigenstates. The separation

in energy between ‘+’-oriented eigenstates is then � ω0 � g

2
?
n̄�?n̄ � ω0 � g

2
?
n̄
and

the ‘-’-oriented eignenstates are split by � ω0 � g

2
?
n̄
.
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We can then approximate this cQED system about the steady state as two, offset

SHOs with resonant energies ω0 � g

2
?
n̄
. As our optical drive is tuned to ω0, and is

thus slightly off-resonant with either SHO system, the intracavity optical dynamics

largely satisfy x 9ay� � ��κ� ig

2|xay�|
 xay� � E (4.4)

where xay� is the intracavity field expectation associated with each, independent SHO

sub-system (compare with the MBE (3.17)). The steady state solutions to Eq. (4.4)

are

α�ss � xay�,ss � E

κ

�
1� � g

2E

	2

	 ig

2κ


1� � g

2E

	2

, (4.5)

and as g

2E
Ñ 0, xay�,ss � E

κ
	 ig

2κ
. Thus the intracavity field will have a slight phase

shift dependent on which SHO ladder the system is localized on, the ‘+’ one or the ‘-’

one. Note that the existence of only two SHO systems can ultimately be traced to the

binary states of the atom. If the atom had more states, or if there was more than one

atom, there would be several or many more available levels in the energy spectrum,

which would eventually ‘wash out’ the digitization of the steady states xay�,ss. The

intracavity 	 ig

2κ
phase shift consequently results in a potentially observable positive

or negative phase shift in the field transmitted by a Fabry-Perot cavity.

So which phase state will the cQED system be in? As the system is completely

symmetric, the answer is, again, ‘both.’ But again, the cavity can’t simultaneously

transmit both types of fields. The open dynamics efficiently decoheres any quantum

superposition between the two intracavity coherent states. As in the case of single

atom absorptive ‘bistability,’ we can plot Wigner functions of the steady state intra-

cavity field for an on-resonant cQED system with increasing optical drive, see Fig.

4.8. As expected from the heuristic, semiclassical model Eq. (4.5), these fully quan-

tum mechanical simulations show a bimodal field distribution emerging in the phase

quadrature of the intracavity field as E{g increases beyond .5, with the separation

saturating at i g
κ
. Again, it can be shown that the steady state in the full saturation

regime is an incoherent mixture of the � SHO steady states,

ρss � 1

2

�|�, α�ssyx�, α�ss| � |�, α�ssyx�, α�ss|� . (4.6)
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Figure 4.8: Steady-state intracavity field Wigner functions for tg, κ, γK,Θ,∆u �
2π � t56.8, 9.3, 2.6, 0, 0uMHz and variable cavity drives E . The green circle denotes
the W-function centroid for an empty cavity for each drive case. Note that the real
axis changes for each plot.

As photon counting destroys any optical phase information, if one simply measures

the transmitted power in such a cQED system, as in Fig. 4.7, the cavity appears to

simply transmit a coherent field with amplitude|αss| � E

κ


1� � g

2E

	2

, (4.7)

which approximates the empty cavity transmission in the high-drive limit.

Phase quadrature optical homodyne measurements reveal far more interesting dy-

namics, however [AC91]. As with the absorptive ‘bistability’ dynamics, the answer to

the question “which phase state will the cQED system be in” is essentially “sometimes

one, sometimes the other.” The rate at which these transitions happen on average

is γK{2, which can be traced to the following physical picture. We have not yet ad-

dressed the role of atomic spontaneous emission in these phase ‘bistable’ systems.

As the atom is fully saturated in the strong driving regime, it will spontaneously

emit photons with an average rate of γK. With each emission event, the atom falls

into the ground state and one excitation (out of many) is lost from the system. The

still-strong field inside the cavity will again work to saturate the atom, but with a
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random polarization-orientation; half of the time the atom will reorient itself in the

‘�’ state, half of the time in the ‘�’ state. Thus the intracavity field, and the field

transmitted by the cavity will switch randomly between the two possible phase states

with mean rate γK{2. Although the random, digital switching between two coherent

states in these phase ‘bistable’ systems (e.g. Fig. 4.9) may appear equivalent to the

behavior of the amplitude ‘bistability’ system (e.g. Fig. 4.4b) at first glance, it should

be emphasized that the system parameters, the underlying physical mechanisms, and

the energies associated with both flavors of ‘bistability’ are quite distinct.

4.3 Toward optical control

The existence of a ‘bistable’ response to an optical input is necessary to motivate single

atom cQED systems as a potential paradigm for ultra-low energy optical signaling

devices. That these systems switch between the two possible states spontaneously due

to quantum fluctuations in the cavity and atomic dipole is convenient for experimental

demonstration that both states exist and is a fundamental issue for low-energy devices,

but uncontrollable dynamics are usually useless. Some external, preferably optical,

control of the signaling state would be critical in any engineering application.

To this end, we have made some initial attempts to control the switching dynam-

ics of the phase ‘bistability’ system, as described in [KAPM11] and section 6.2. The

origin of the phase bistable phenomenon depicted in Fig. 4.6b suggests an intuitive

strategy for external control of the system’s phase state. By driving the cavity with

an additional laser beam tuned resonant with the |�, n̄y Ø |�, n̄� 1y transition, one
should be able to externally drive transitions between the two phase states. Such a

strategy is attractive in its simplicity, but there are several problems with it. For

instance, applying a full ‘bit-flip’ to the I/O state would depend on a carefully timed

optical pulse, with the required pulse length fairly sensitive to drifts in the system

parameters. Moreover, driving transitions between the two dispersive states coher-

ently (i.e. with the additional laser) works in direct competition with the dissipative

dynamics that enforce the digitization of the I/O response. On both counts, a more

elegant approach would be to incoherently “draw out” photons that would induce
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the desired transition. An additional optical cavity tuned to ω � 2
?
n̄g surrounding

the atom would do precisely that: a system in the |�, α�ssy state would tend to emit

photons into the additional cavity mode, relaxing the system into the |�, α�ssy state,
where it would stabilize. Unfortunately, building a second cavity is not a realistic

experimental option (yet). Whereas adding another laser drive is a relative piece of

experimental cake.

In the next subsections, I lay out a partial theoretical analysis for the dynamics

associated with simply adding an additional ω�2
?
n̄g tuned control beam to a phase

‘bistability’ system. Not only does this analysis introduce an alternative approach to

analyzing single atom cQED quantum dynamics using hybrid-Wigner functions, it is

hoped the analysis will aid future efforts to find more sophisticated optical control

techniques.

4.3.1 Driven transition dynamics

We model our controlled phase bistability system by adding a second cavity driving

term to the Hamiltonian, representing a second, control laser at a distinct optical

frequency:

H2 � ωca
:a� ωaσ�σ� � igpa:σ� � aσ�q � iεpe�iωpta: � eiωptaq �

ipεce�iωmta: � ε�ceiωmtaq (4.8)

where ωp is the frequency of the ‘probe’ laser, ε is its amplitude (chosen to be real, by

convention), ωm is the frequency of the ‘control’ laser with amplitude εc. As usual,

we transform the reference frame to remove the time dependence in the probe driving

term of the Hamiltonian using the transformation operator

Tt � e�iωpta
:ae�iωptσ�σ�, (4.9)

which transforms the Hamiltonian as T :HT � i BBt pT :qT to give

H 1 � Θa:a�∆σ�σ� � igpa:σ� � aσ�q � ipε� εce
�iΦtqa: � ipε� ε�ceiΦtqa (4.10)
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where Φ � ωm � ωp is the residual rotation frequency of the control drive. The

dissipative cavity decay and spontaneous emission dynamics are not affected by this

transformation and are represented in a master equation by

DrCsP � C:PC � 1

2
C:CP � 1

2
PC:C (4.11)

using Cc � ?
2κa and Ca � ?

2γKσ� terms. We will assume Θ � ∆ � 0 for the

remainder of this section. We will further displace the expected system mean field

α � ε{κ with

Dpαq � eαa
:�α�a (4.12)

so that we again have a new, effective Hamiltonian

H � igpa:σ� � aσ�q � ipεce�iΦta: � ε�ceiΦtaq � iΩpσ� � σ�q (4.13)

where Ω � gε{κ. We transform the dynamics yet again into a iΩpσ��σ�q interaction
picture,

TΩ � eΩpσ��σ�qt � e�iΩσyt, (4.14)

such that

T
:
Ωσ�TΩ � � i

2
pµ�e�2iΩt � µz � µ�e2iΩtq (4.15)

where the µ’s are essentially the raising and lowering operators in the Pauli-y basis:

σy|�y � �|�y, µ� � |�yx�|, µz � σy. With this final transformation, the Hamilto-

nian becomes

HPB � gXµz � igY pµ�e�2iΩt � µ�e2iΩtq � iεcpe�iΦta: � eiΦtaq (4.16)

where X � 1
2
pa� a:q, Y � i

2
pa: � aq. Normally, when εc is not present, the rotating

wave approximation is invoked at this point to omit the time dependent Hamiltonian

terms. The dissipative dynamics are unaffected by this final transformation, and after

the rotating wave approximation we are left with 2κDrasρ, γK{2pDrµ�s � Drµzs �
Drµ�sqρ decay processes. For much of the rest of this analysis we will set γK Ñ 0

to simplify the generally much faster dynamics we are concerned with. It’s hard
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to pinpoint the effect of εc on the familiar phase ‘bistability’ dynamics. However,

a number of clues about its significant effect when Φ � 2Ω can be found through

analysis and supported by simulation. Roughly, when this resonance condition is met,

the modulation of Y at frequency Φ by the final term in Eq. 4.16 results in ‘slow’

dynamics in the atomic dipole due to the ‘2Ω’ coupling term in the Hamiltonian

that is usually ignored. Intuitively, this ‘control’ drive is tuned to excite coherent

population transfer between the |�, n̄y Ø |�, n̄� 1y states of the system. How well it

can achieve this, though, is limited both by the ‘measurement’ of the |�, ny ‘dressed
state observable’ through cavity decay and the distribution of system population at

any given time over various ‘rungs’ in the phase bistability eigenenergy ‘ladder.’ I

attempt to understand these effects through divide and conquer: first tackling the

‘measurement’ of the system state through cavity decay without any control drive,

and then isolating just the control dynamics to gain some intuition of how well they

perform even without this decoherence process.

4.3.2 Dynamics without control

We will now shift to a Wigner function representation of the cavity state with the

hope that it will lead to a more physical picture of the dynamics (e.g. something that

appears like a Fokker-Planck equation). Thus, the system state will now be described

as a hybrid object:

ρpαq � 1

π2

»
d2βeβ

�α�βα�TrcrρDpβqs (4.17)

where ρpαq is a density matrix of the atom only, Trcr�s is a partial trace over the

cavity field and Dpβq is the displacement operator of coherent amplitude β, and

d2β � dpℜtβuqdpℑtβuq. By writing the evolution of ρpαq due to the cavity operators

as partial differential operators on Dpβq (e.g. a:Dpβq � � BBβ � β�
2

	
Dpβq) the cavity

master equation dynamics may be turned into a differential equation for the Wigner

representation [WM08]BBtρpαq � � BBαpκα� εce
�iΦtq � BBα� pκα� � ε�ceiΦtq � κ

B2BαBα�
 ρpαq. (4.18)
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Similarly, if we look at the dynamics that couple the field to the atomic dipole in Eq.

4.16 we get (ignoring terms that oscillate at 2Ω)BBtρpαq � i

4
g

� BBα � BBα�
 tµz, ρpαqu � i

2
gpα� α�q rµz, ρpαqs (4.19)

where t�, �u is the anticommutator and r�, �s is the commutator. So that if we ignore

spontaneous emission and the control beam, we have the master equation dynamics

on this representationBBtρpαq � BBαi pκαiρpαq � g

4
tρpαq, µzuq � BBαrκαrρpαq � igαrrρpαq, µzs �

κ

4

� B2Bα2
r

� B2Bα2
i



ρpαq (4.20)

From Eq. 4.20, note thatBBtxµ�e�2i
g

κ
αry � �g2

κ
xµ�e�2i

g

κ
αry

(4.21)

That is, the expectation of µ�e�2i
g

κ
αr decays exponentially at the rate g2

κ
. It can be

shown that this operator is simply µ�Dp�i gκq in the usual representation (and it’s

operator evolution is of course the same), but it was easier to identify this observable in

Wigner representation. When the system (in this displaced frame) is in the subspace

spanned by the states |�,	ig{κy, the expectation of this operator and its Hermitian

conjugate are the off-diagonal matrix elements of the density matrix. If we are to use

these off-diagonals to coherently rotate the system between |�y, then we expect to

want κ ¡ g so that these state coherences are long-lived. Note, too, that in the κ " g

limit, µ�Dp�i gκq � µ�, clarifying the dynamics we’re interested in yet further.



66 CHAPTER 4. SINGLE ATOM ‘BISTABILITY’

4.3.3 Control dynamics

The ‘control’ aspects of the Hamiltonian consist of those terms rotating at 2Ω in our

frame:

Hc � �igY pµ�eiΦt � µ�e�iΦtq � ipεce�iΦta: � ε�ceiΦtaq (4.22)

where we have set 2ΩÑ Φ. To analyze these control dynamics, we rotate the system

into the control beam frame with T � expp�iΦa:atq so that

H 1
c � �Φa:a� g

2
paµ� � a:µ�q � ipεca: � ε�caq (4.23)

after we ignore all terms rotating at �Φ. It is still convenient to analyze the dynamics

in this frame as the atomic operators remain unaffected by the transformation. Note

that that we have recovered a familiar cQED Hamiltonian with atom-field coupling

Eq. (3.9). The cavity is effectively off resonant with the drive, though, by Φ. The

equations of motion for the principle cQED operators are9a � iΦa� i
g

2
µ� � εc � κa9µ� � �ig

2
aµz9µz � igpaµ� � a:µ�q (4.24)

We apply the familiar semiclassical approximation (section 3.3), and replace a Ñ
z, 2µ� Ñ v, µz Ñ m to represent the (factorized) operator expectations in the equa-

tions above. Solving for steady state, we get

z � 0

v � 4i
εc

g

m � �1� |4εc
g
|2 (4.25)

when |εc|   g{4. The limit for large control amplitude may be solved in this semiclas-

sical approximation, but other than the solution m � 0, the steady state expectations

are quite messy and probably not very useful as the semiclassical approximation is
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not appropriate in this limit. Although it doesn’t really apply in the simulations I’ve

tried, however, the perturbative control amplitude limit is useful as it suggests that

the phase of the control amplitude is unimportant and that the control should be able

to drive complete inversions of the atomic dipole as long as it is faster than g (in the

limit of very slow spontaneous emission). The suggestion of this analysis is also that

a large
?
κ{g is preferred (so that a larger inversion per external control wattage is

achieved), which is consistent with the conclusions of the no-control dynamics section

4.3.2.

4.3.4 Simulation of a controlled quantum dot system

The principle insight from the immediately preceeding sections is that the additional

ω � 2
?
n̄g laser only efficiently transfers population between the two phase states if

g{κ is small. At first glance, this may seem completely contrary to the regime of

‘good’ phase bistability. For example, if g{κ   1, the bimodality in Fig. 4.8 would

be impossible to see. However, these figures aren’t very relevant in this context. For

example, any coherent state is perfectly distinguishable, given an infinite integration

time. What ultimately limits the visibility of a phase bistability system is the cor-

relation time of the phase states, i.e. 2{γK, recall Eq. (2.14) and Fig. 4.4b. Thus,

simple arguments suggest that the visibility of a phase bistability system essentially

scales as g{?κγK9?C; two cQED systems with different tg, κ, γKu parameters, but

similar cooperativities C should yield phase bistability systems with similar visibility.

In this light, the world of nanophotonics looks particularly appealing. Solid state

cQED systems typically feature extremely small mode volumes and broad cavity

linewidths, relative to what’s achievable in gas-phase cQED systems. For instance, a

photonic crystal cavity containing a single quantum dot demonstrated in the Vuckovic

group [FMK�10] features a parameter set of tg, κ, γKu � 2π� t20, 40, .1uGHz, which

has a comparable cooperativity as our Cs/Fabry-Perot system, but with g � κ.

In quantum trajectory simulation we can straightfowardly try the intuitive optical

control strategy of adding a ω� 2
?
n̄g cw laser that should simply increase the mean

rate at which transitions between the two phase states occur.
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Figure 4.9: (from [KAPM11]) (a) Simulated photocurrent segment assuming cQED
parameters demonstrated by [FMK�10], a 11µW probe with perfect detection ef-
ficiency with a 10GHz detection bandwidth. (b) Simulated photocurrent segment
assuming the same system, plus a .27µW cw ‘control’ beam detuned by a the mag-
nitude of the quantum dot-mode coupling Hamiltonian, i.e. by -400GHz relative to
the probe beam.

The results of this simulation are seen in Fig. 4.9 [KAPM11]. With no control

beam present, simulated phase-quadrature homodyne measurements portray a normal

phase bistable system with switching at rate � γK{2. Although g{κ   1 in this

system, the relatively slow atomic decay allows the photocurrent to be aggressively

low-passed (here at 10GHz) such that the difference in phase mean of the two states

is clearly visible. When a cw control beam with less than 2.5% of the optical power of

the signal probe beam is added, the spontaneous switching rate clearly increases by

roughly an order of magnitude. Although neither phase state is actually stabilized, if

the signaling state is instead defined as the rate of spontaneous phase switching, we

can define-our-way-to-success by this simulated demonstration of a controlled ultra-

low energy optical device that exploits a single two-level atom to produce a digital

I/O response.

To give a sense of the energy scales involved here, an 11µW probe corresponds

to roughly 100 intracavity photons, or a 20aJ intrinsic energy scale. More simple

calculations show that the energy dissipated in the control beam (out of every control
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photon incident on the cavity) per induced switching event falls in the 100aJ/edge

regime, right at the current state of the art for controlled nanophotonic switching

devices [ASO�08, YHW�07, LKH�10, NTS�10]. However low, 100aJ is still almost

three orders of magnitude above the apparent, single-photon (sub-aJ) energy differ-

ence between the phase states. The experimentally difficult (but conceptually elegant)

detuned-cavity approach to “drawing-out” single photons to stabilize desired phase

states confirms that much more energy efficient approaches to controlled and quan-

tum nanophotonic devices exist in principle. It is hoped and expected that more

sophisticated techniques such as pulse-shaping could help bring all-optical control to

cQED devices like these down to this “natural,” single-photon limit.



Chapter 5

The broadband cavity QED

apparatus

An experiment was built to realize a strongly-coupled single-atom cQED system that

could be driven at and beyond the point of atomic saturation and the field transmitted

by the cavity monitored with broadband homodyne detection. The vast majority

of the apparatus was inherited from Michael Armen’s thesis work [Arm09], himself

building upon a less specialized laser-cooling setup built by Anthony Miller.

In the experiment, a cloud of laser-cooled (but still thermal) Cs atoms are dropped

onto a high-finesse Fabry-Perot cavity that is actively stabilized to be resonant to

optical drives close in frequency to the D2 line in Cs [Ste]. The Cs cloud is diffuse

enough, and the fundamental cavity mode a small enough target that as the cloud

free-falls past the cavity only single atoms interact with the mode. Weak, off-resonant

optical probing and optical heterodyne detection of the transmitted field is used to

detect when an atom is near-maximally coupled to the cavity mode. Upon detection,

the optical probe is immediately shifted to a frequency and amplitude appropriate

to drive the system into its saturation regime and observe the dynamical response of

the transmitted field.

70
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5.1 The atom

There’s no such thing as a two-level atom, but we have a nice little alkali that can

approximate one pretty well: 133Cs, the only stable isotope of cesium. With a nuclear

spin of 7/2 and a single valence electron, the lowest hyperfine electronic states have

the valence electron in an S orbital, with total angular momentum quantum numbers

F � 3 and F � 4. Our experiment attempts to target a single optical transition

from one Zeeman magnetic sub-level in this ground state manifold to another single

Zeeman sub-level of a low-lying electronic excited state. Specifically, we attempt to

isolate the p6S1{2, F � 4, mF � �4q Ø p6P3{2, F 1 � 5, mF � �5q transition using a

near-resonant, circularly polarized optical probe with a wavelength of roughly 852nm.

This transition is an atomic cycling transition, meaning that a properly tuned and

polarized cw probe will rapidly drive an atom initialized anywhere in the F � 4

hyperfine ground state manifold to themF � �4 state, where it will then continuously

cycle between the p6S1{2, F � 4, mF � �4q Ø p6P3{2, F 1 � 5, mF � �5q ground and

excited states. Imperfect optical polarization and (to a lesser degree) fluctuating

magnentic fields can cause the atom to explore different states within the F � 4 and

F 1 � 5 manifolds. For our purposes here, this is problematic as each ground and

excited state has a different coupling strength to a given optical drive, and can even

cause the atom to be optically pumped into the ‘dark’ F � 3 ground states, where

it is effectively lost to the experiment. Thus, maintaining full control of the optical

polarization inside our cavity was a high priority in the experimental construction.

A nice thing about working with real atoms is that they are all the same. This is

not the case with any solid-state ‘atom’ in a photonic or superconducting microwave

system. The solid state atoms can be fairly tunable and stay put, but are also frus-

tratingly inconstant and are only partially understood [TMH�08, PLZY08, HKD�09].
You know what you get with Cs. Gas phase atoms are also attractive in quantum op-

tics for their spectrally narrow near-IR transitions; the lines are narrow in large part

because these gas-phase neutral atoms interact only weakly with their environment.

The transition utilized here has an excited state lifetime of 30.4ns, or, equivalently,

a mean excited state decay rate of 2γK � 2π � 5.2MHz. The main trade-off with
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(a) (b)

Figure 5.1: (a) Schematic of the Fabry-Perot cavity assembly, down to the first level
of the vibration isolation stack. The shear mode piezo plates between the Al mounts
and Al block are not shown and the separation between the high reflecting mirror
surfaces (HR) is greatly exaggerated. (b) Photo of the experimental cavity in the
UHV chamber, on the multi-level (and gold-plated) vibration isolation stack.

working with an atomic system with such nice coherence properties is that Cs (and

any neutral atom) requires bulky, complicated, and fussy vacuum and laser cooling

systems just to put the atoms where we want them. For additional spectroscopic

information of the relevant states of Cs, I refer the reader to Dan Steck’s excellent

notes [Ste].

5.2 The cavity

Although we are pretty much stuck with Cs’s spectral and coherence properties (nice

as they are), our optical cavity has a flexible design. The resonator is formed by two

identical, slightly curved, ultra-high reflecting dielectric mirrors facing each other,

forming a Fabry-Perot cavity [Sie86]. Cavities very much like these have been used

in single atom, strong coupling cQED experiments from the beginning [ORX�87,
RTB�91, TRK92, MTCK96, HCLK98].
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The primary design consideration in single-atom cQED experiments is to construct

a cavity that gives the desired atom-coupling and cavity field decay rates, g and κ

(section 3.1). The coupling rate for a given resonator can be calculated from [Car93a]

g � d

~

�
~ωa

2ǫ0V


1{2
(5.1)

where ωa is the angular frequency of the atomic transition, d is the transition’s dipole

moment [Ste], and V is the ‘mode volume’ of the cavity, essentially the volume the

intracavity photons occupy. For our near-planar, Fabry-Perot cavity, the fundamen-

tal TEM00 mode has roughly the volume of a cylinder with the length of the cavity

and radius of half the mode waist [Sie86]. Thus, single-atom cQED systems tend to

be made with as small a cavity as possible, to minimize V . Small cavities also tend

to have fast field decay rates (the smaller the cavity, the more frequently photons

reflect off the cavity boundaries), and so high construction quality to minimize intra-

cavity optical loss is also essential. Our cQED system is about at the state-of-the-art

in its single atom cooperativity [BMB�04, PSK08], and it’s not far from the best

achieveable with comparable technologies [HKY01].

The mirrors are a λ{4 dielectric stack (of about 40 layers) on a 10cm radius of

curvature super-polished glass surface (5mm dia. x 4mm cylindrical substrate) special

ordered from A(dvanced) T(hin) F(ilms). As the diameter of ATF’s substrate and

curvature of the mirror surfaces limit the minimum cavity length achievable, the

mirrored end of the substrate is coned down by ATF to 2mm dia, see Fig. 5.1. These

mirrors were designed for 8ppm transmission at 852nm at normal incidence, with

a measured absorption/scattering loss of 2ppm. The cavity eventually constructed

(more on that shortly) had a length of 27µm corresponding to a free spectral range

(FSR) of 5521GHz, a finesse F � 300, 000�5%, and minimum TEM00 waist of 18µm

– I refer the reader unfamiliar with Fabry-Perot characterization to Michael Armen’s

thesis [Arm09] and [Sie86]. Given this cavity length, the curvature of the mirrors,

the cavity finesse, and the targeted atomic transition, the cQED parameters achieved

by the fundamental TEM00 optical mode in the this system are calculated to be

κ � 2π � 9.3MHz and a maximal coupling rate of g � 2π � 56.8MHz with the atom



74 CHAPTER 5. THE BROADBAND CAVITY QED APPARATUS

positioned at a cavity mode anti-node.

The mirrors themselves were each mounted in slightly oversized aluminum rings

and held in the rings by three, 15mil thick strips of RTV655 symmetrically placed in

the small gap between the mirror substrate and ring. The rings were then each placed

in the half-pipe slots of two � 1cm3 Al mounts. Each mirror-mount was then glued

(with Torr Seal) to the top of a double stack of shear-mode piezoelectric plates, the

stacks themselves glued (with conductive epoxy) to the top of a cracker-sized Al block,

see Fig. 5.1. The stacks were placed within 1mm of each other with the mirror surfaces

nearly touching, and oriented such that they shear either towards or away from each

other, for the same applied bias voltage (externally supplied from UHV-compatible

electrical leads). The cavity was then aligned by hand, optically characterized, and

finally each ring was glued with Torr Seal to their Al mounts. Again, I am deeply in

Mike’s debt here as he made the cavity used in these experiments. Once prepared,

the Al-block carrying the cavity was placed inside the UHV chamber on a multi-stage

vibration isolation stack, the piezo leads stripped down to single strands (to minimize

mechanical coupling to the cavity through the wires) and connected to electrical UHV

feedthroughs, and the vacuum chamber resealed.

Ultra-high finesse cavities are extremely sensitive to minute intracavity optical

phase shifts. If we require the cavity resonance frequency to be stabilized to a small

fraction of the cavity linewidth, κ, then we have to control the optical phase inside

the cavity to within much less than π{F [Arm09, Sie86]. First, this means that our

cavity length must be stabilized to within ! λ{2F �1pm! Second, ultra-high finesse

cavities can easily exhibit strong optical birefringence, with the resonance frequencies

of orthogonal linear polarized cavity modes separated by Á κ. The origin of this

birefringence is usually minute stresses in the dielectric mirror stack applied by the

mirror mounting that give different polarizations a slightly different phase shift upon

reflection. As the atomic transition we attempt to drive is circularly polarized, this

linear birefringence is problematic for several reasons [Arm09]. Some groups solve

this issue by using mirrors formed on very long cylindrical substrates, and glue the

mirror as far away from the dielectric stack as possible to minimize the stresses on

the mirrors [Moo05]. In this experiment we attempted the symmetric and relatively
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Figure 5.2: Using only a 300V battery to tune the empty cavity resonance � κ from
the optical probe frequency, and despite passive stabilization, cavity instability is
significant even on kHz timescales. The transmitted power was measured with direct
detection (top). Bottom plot shows the power spectrum of the transmission signal,
with instability noise out to 2kHz.

weak mounting with the RTV strips.

This solution yielded a cavity with no perceptible birefringence, but unfortunately

had far greater mechanical stability issues than the previous cQED experiment. The

finesse of the cavity used in this work is more than twice that of the first cavity (F �
130, 000) [Arm09, AMM09], meaning the stability constraints are also more than twice

as stringent. The relative floppiness of the RTV mounting probably also contributed

to the instability issues. For example, using only a battery voltage to supply the

piezo bias to define the mirror separation and the cavity resonance κ-detuned from

the the optical probe, the cavity-transmitted power is seen to fluctuate by almost

50% on ms-timescales, Fig. 5.2. We are still unsure of the origin of this instability

noise, but it is suspected to be mechanical vibrations in the piezo stack wires ‘short

circuiting’ the vibration isolation stack [Arm09], despite efforts to mechanically de-

couple these wires from the cavity mount. Efforts to actively compensate for these
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Figure 5.3: (a), Mechanical resonances in the Al block on which the cavity was
mounted, measured by microphone and tapping the bare, suspended block. The
largest resonances appeared to be near-fundamental flexure modes, with an antinode
right where the cavity was placed. (b), Electro-optical Bode plot of the cavity as seen
by its stabilization circuit. With the cavity length stabilized with only a � 100Hz
bandwidth servo, the AC piezo voltage to PDH error signal was mapped out, with
apparent resonances corresponding to the modes of the Al block.

mechanical fluctuations using the standard Pound-Drever-Hall (PDH) cavity locking

technique [DHK�83] were hindered by 5, 10, 12kHz and mechanical resonances in the

Al block, see Fig. 5.3a, which appeared to be near-fundamental, drumhead flexure

modes. Although eventually minimized with strategically placed (mechanically lossy)

Viton tabs and a complex PID controller, these cavity instabilities were a constant

technical difficulty; the cavity construction design could still be improved.

5.3 A tour of the apparatus

5.3.1 Science cavity locking and probing

Again, the apparatus used in this experiment was inherited from our group’s earlier

cQED work [Arm09, AMM09], and largely constructed by Mike Armen and Tony

Miller. Although significant structural re-arrangement of the optics, overhauls of

many supporting electronics, and more sophisticated modulation of the cavity probes
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Figure 5.4: A schematic of the major components involved in cavity stabilization
and probing, and homodyne detection of the cavity-transmitted field.

occurred in the course of this work, the vast majority of the hardware (and software)

was in existence, if not in place, long before I arrived on the scene. As most of the

apparatus is so similar to what is described in Mike’s thesis, in this section I largely

step through the new optical probe generation and mention the other modifications

of note since 2009. Both his and my descriptions barely scratch the surface of the

technical details required to make the whole apparatus work, but they provide some

guidance for navigating the structural overview.

A Toptica DL Pro laser operating at 852nm wavelength and 70mW cw optical

power acts as the master light source in this experiment. A double-passed acoustic

optic modulator (AOM1, see Fig. 5.4) operating at -126.5MHz allows us to fre-

quency stabilize the DL Pro 253MHz to the blue of a TEM00 mode of a 25cm long,
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mechanically-stable ‘transfer cavity’ (TC) using the PDH method and a servo band-

width of �500kHz. A small fraction of the DL Pro’s output power is also used in a

Cs modulation transfer spectrometer to measure the laser’s frequency deviation from

the p6S1{2, F � 4q Ø p6P3{2, F � 5q atomic transition, producing an error signal that

is servo’ed at �100Hz to lock the transfer cavity resonance to this atomic reference.

The primary purpose of the transfer cavity is to provide a stable frequency refer-

ence for the ‘science’ 852nm lasers and a ‘science cavity locking’ laser system operating

at 832nm. The 832nm laser is sourced from a titanium-sapphire (Ti:S) monolithic

block resonator that is also frequency locked to the transfer cavity via PDH, with

feedback to the Ti:S etalon and a double passed AOM (operating at �90MHz). As

the transfer cavity is 25cm long, FSR � 797MHz, the available resonant modes

are far denser in frequency than in the 27µm-long science cavity. Despite this, it

is impossible to pick a TC configuration such that the TC-locked DL Pro and Ti:S

lasers are also co-resonant with the science cavity. A Photline waveguide electro-

optic modulator (EOM2) is used to put broadband-tunable frequency sidebands on

the Ti:S carrier frequency that provide the needed additional degree of freedom. One

of these sidebands serves as the ‘laser’ for a transmission-PDH lock of the science cav-

ity length. While the Ti:S carrier is ultimately referenced to the Cs line via the TC,

EOM2 can produce an optical frequency exactly two science cavity FSR away from

the desired �852nm resonance frequency (thus setting the probe-cavity detuning Θ

in the experiment).

The secondary purpose of the transfer cavity is to spectrally ‘scrub’ the 852nm

laser. As our measurements rely on sensitive optical homodyne measurements, and

the science cavity effectively adds several meters of delay in one of the arms of the

‘interferometer,’ laser phase noise was significantly above the local oscillator shot noise

in the critical 1-10MHz band of our measurements for large science-cavity drive powers

(several nW). The solution to this difficulty was to use the dramatically narrower

852nm laser transmitted by the 8kHz-linewidth TC as the optical reference in the

experiment, see Fig. 5.5. As only a few µW were transmitted by the narrow-line TC,

it is used to seed a homemade slave diode laser. Remarkably, the narrow line of the

TC-transmitted DL Pro laser was perfectly replicated by the � 100mW slave laser,
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Figure 5.5: Frequency noise spectrum of various laser components, as measured by
a 1km (80MHz) self-heterodyne apparatus borrowed from the Kasevich group. Red,
free-running DL Pro operating at 852nm. Blue, DL Pro frequency stabilized to the
transfer cavity. Purple, slave laser output without DL Pro seed. Green, DL Pro
as transmitted by the transfer cavity and slave laser output when seeded by TC-
transmitted DL Pro. Note that the horizontal axis is linear in frequency (10MHz
span) and the vertical axis is logarithmic in frequency noise power.

see Fig. 5.5.

The output of the slave laser provides both the probe for the science cavity and

the optical local oscillator (LO) for the hetero/homodyne detection. The �1mW

LO was produced from a pick-off beamsplitter and a double-passed AOM2 set in the

vicinity of +126.5MHz, variable to perfectly frequency match the ∆ detuned probe

emanating from the science cavity. The probe beam is first further red-shifted by

another double-passed AOM3 at -253MHz, before entering another Photline EOM1

that is used to provide dynamic sidebands to the probe carrier, one of which becomes

the single, saturating ‘laser’ that near-resonantly drives the science cavity. The probe
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transmitted by the science cavity is carefully mode-matched to the LO beam and

interfered on a 50/50 beamsplitter. The two outputs of the beamsplitter are then de-

tected by a DC-80MHz balanced photodetector (New Focus model #1807), providing

a broadband homodyne detection of the science cavity-transmitted field with typical

fringe visibility of 80%.

5.3.2 Delivering the atoms

The laser cooling optical system is fairly standard [MvdS99]. Roughly �60mW of

power from the slave laser is picked off and after some more frequency modulation

seeds a homebuilt tapered amplifier. The �200mW amplified beam then enters a

custom-built 2 Ñ 6 PM-fiber splitter. The other fiber input receives a few mW of

the light from a completely separate, homebuilt ‘repumper’ diode laser locked to the

F � 3 Ø F 1 � 4 D2 transition. The 6 fiber outputs are polarized, collimated into

1”-spot sized modes of roughly 8mW each, and directed to orthogonally intersect

roughly 1cm above the science cavity in the vacuum chamber. A large anti-Helmoltz

and smaller Helmholtz coils outside the chamber form a quadrapole magnetic field

directly above the 10µm gap in edges of the cavity mirrors. A Cs getter run at�3A fills the 10�9Torr vacuum chamber with cesium, which then forms a   100µK

ensemble of perhaps 106 atoms (MOT) 1cm directly above the cavity in a few seconds.

The loading of atoms into the cavity is accomplished by simply turning off the

trapping anti-Helmholtz coils and cooling lasers (in a choreographed fashion) and let-

ting them fall under gravity toward the cavity mode. The atom cooling is enough such

that after falling 1cm, the free-fall velocity dominates any residual thermal motion of

atoms in the cloud. Because of the very narrow acceptance angle for atoms to make

it through both the top gap in the cavity mirrors and into the fundamental TEM00

mode, the imperfect, 1� vertical tilt in the cavity mode was almost too much for any

atoms to ever get into our cavity! Amazingly, positioning the MOT close to 2� from
the vertical, and relying on the thermal transverse velocity to put some atoms on the

right ballistic trajectory yielded a few atom transits per MOT-drop (more or less as

monte carlo simulations of atom deliveries suggested). The most frustrating aspect
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of the atom delivery was actually the fiber splitter. Despite taking good care of the

polarization of the injected light and thermal stabilization, the power balance in the

splitter was off by a factor of 2 in some places, and changed slowly in time. Moreover,

the polarization exiting the PM fibers was hardly stable, and it typically took a few

hours of repeated MOT-dropping for the entire splitter to thermalize to the switching

beams before the polarization (and thus MOT) stabilized to something serviceable.

Thankfully, the fiber-splitter has since been replaced with a free-space beam delivery

system.

5.3.3 Transit detection and homodyne measurements

While the entire MOT cloud takes only a few ms to pass by the cavity, each individual

atom that interacts with the cavity mode in free-fall spends only 40µs in a coupled

state. With only a few atoms near-maximally coupled per MOT-drop, it’s essential

that we trigger our experiment on maximal-coupling events.

With the science cavity locked to the appropriate resonance frequency for the

experiment, and while the MOT is loading, the probe is detuned from its experimental

frequency by a few MHz and attenuated to a power such that the cavity without any

atom has a mean intracavity intensity below the atomic saturation point. In this

non-saturation regime, the semiclassical MBE (3.17) predict that the steady state

intracavity field with an atom-position dependent coupling isxayunsat � E 1pγK � i∆1qpκ� iΘ1qpγK � i∆1q � g2prq (5.2)

where tE 1,Θ1,∆1u are the cQED drive amplitude and detuning parameters for this

weak probe. Thus, for a near-resonant probe, a minimum in the cavity transmis-

sion corresponds to a near-maximally coupled atom. With the weak, detuned optical

probe, continuous heterodyne detection of the transmitted field can reveal the pres-

ence or absence of individual atoms in the cavity mode in real time with a high

signal to noise ratio. Fig. 5.6 shows four individual atom transits with near maximal

coupling (and a few with lesser coupling) from one MOT drop, measured from the

demodulated amplitude quadrature of a continuous heterodyne measurement trace.
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Figure 5.6: Individual atom transits during a single MOT-drop, as seen with am-
plitude quadrature heterodyne detection of the field transmitted by the cavity with
a weak and off-resonant probe. Near-maximally coupled atoms are signaled by the
near-extinction of the measurement signal. Top, several-ms long, real-time measure-
ment record showing at least four, near-maximally coupled atom transits (and a few
less-coupled transits). Bottom, close up of the first near-maximally coupled transi-
tion.

The continuous, weak heterodyne probe serves another important purpose. The

eventual homodyne detection critically depends on the relative optical phase between

the signal emanating from the cavity and the LO. However, over the several meters

of free-space propagation, the length of the LO and signal paths fluctuate by more

than an optical wavelength due to slow mechanical and thermal drifts. While the

amplitude quadrature of the heterodyne signal is used to identify atom transits, the

phase quadrature is continuously fedback to the FM-modulation input of the RF

generator that drives the LO-shifting AOM2, locking the phase-quadrature signal to
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zero with a �1kHz unity gain bandwidth and thus also locking the relative optical

phase of the signal and LO beams. As the atom transits and the experiment itself last

for a small fraction of a ms, this slow feedback loop guarantees that the homodyne

measurement experiments may be performed with a known optical phase-reference.

Rather than record the atom transits, as in Fig. 5.6, the amplitude quadrature of

the demodulated heterodyne signal is fed into a fast Schmitt trigger that compares the

transmitted optical signal to a low voltage threshold deemed to signify the presence

of a maximally-coupled atom. The firing of the Schmitt trigger causes the cavity

probe to be frequency, phase, and amplitude shifted to the appropriate settings for

measuring the dynamical response of the cQED system with a saturating drive. Its

firing is also recorded by the fast, 200MS/s GageScope card used for data acquisition.

As the signal produced by the balanced photodetector is recorded over the entire

period that the MOT cloud is expected to be in the vicinity of the cavity, this signal

from the Schmitt trigger is critical to mark the point in time that the experiment

actually began. In some experiments, the experimental probe drive was amplitude

modulated at relatively fast �1MHz frequencies, achieved by driving EOM1 with the

AM-modulated RF signal. Giving an RF signal such fast AM was a bit tricky. First,

a fixed amplitude RF-signal at the desired carrier frequency was sent to the L-port

of a standard RF mixer. Using an arbitrary function generator (also triggered by

the Schmitt) to drive the I-port, the envelope of the RF signal was modulated on

the R-port output, essentially driving the mixer “backwards.” In experiments that

required two laser drives within 1GHz of the cQED resonances, two RF generators

drove EOM1 separably, producing four optical sidebands on the probe beam, of which

two served as the coherent drives in the experiment.



Chapter 6

Observations of optical ‘bistability’

in single-atom cavity QED

Conceptually, the experiments described in this chapter are straightforward. A high-

finesse, Fabry-Perot cavity containing an atomic TLS strongly coupled and near-

resonant with one of its modes is optically driven at and past the point of TLS

saturation. A constant quadrature of the optical field transmitted by the Fabry-

Perot cavity is continuously monitored with optical homodyne detection, as depicted

in Fig. 6.1. Both static and dynamic drives were implemented.

The principle cQED parameters realized in these experiments [KAPM11, KAM10]

are tg, κ, γKu � 2π � t56.8, 9.3, 2.6uMHz. Although we do our best to minimize

variation, the atom-cavity coupling rate g is expected to fluctuate dynamically due to

atomic motion in the cavity. Nonetheless, we were able to observe optical ‘bistabiliy’

phenomenon in good quantitive agreement with theoretical predictions assuming a

static and near-maximal coupling rate.

6.1 Amplitude ‘bistability’

As analyzed in section 4.1, we made various measurements of the field transmitted by

the cavity with atom-drive and cavity-drive detunings such that dynamical switch-

ing of the output field would be expected in the amplitude quadrature, a quantum

84
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κ
γ⊥

g

Figure 6.1: A cartoon depiction of the experiments described in this section. The
optical field transmitted by a driven cQED system is continuously monitored with
high bandwidth optical homodyne detection.

mechanical phenomenon evocative of the I/O dynamics of the analogous ‘semiclassi-

cal’ system [KAM10], section 4.1. For example, choosing tΘ,∆u � t�1.1, .7uκ, the
semiclassical MBE predict a bistable response to a static drive in the E � r1.5, 2.3sκ
interval, largely along the ‘+45�’ quadrature, as in Fig. 6.2. For these parameters,

the quantum mechanical model, however, predicts a bimodal field steady state distri-

bution along the amplitude quadrature (0�) over a similar range of drive strengths.

Tuning the drive amplitude to the middle of the bimodal regime, and perform-

ing homodyne detection of the transmitted field’s amplitude quadrature, we observe

photocurrent signals such as in Fig. 6.2c. At 2µs (relative to the Schmitt trigger-

indicated detection of a maximally coupled atom) the cavity is driven with E � 2.6κ

(this, and all subsequent data has been analog post-filtered to 20MHz bandwidth for

clarity). The measured photocurrent immediately begins to switch between high and

low values, until at 14µs the photocurrent abruptly settles down to the intermediate

amplitude and shot-noise variance expected for the transmission of an empty cav-

ity. The clear interpretation of these traces is that the large variance signals (both

higher and lower than the empty cavity-transmission) are due to the presence of a

near-maximally coupled atom in the cavity (section 4.1). The abrupt transition from

a high- to a low-variance signal occurs when the atom is lost to the system, either
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Figure 6.2: (from [KAM10]) (a), Steady-state intracavity field amplitude α from
the MBE as a function of the cavity drive amplitude E for the experimental system
with tΘ,∆u � t�1.1, .7uκ. The dynamical stability of the steady-state solutions is
depicted in red and blue. (b), Wigner functions of the steady-state cavity field from
the quantum model as a function of drive amplitude for the same parameters as (a).
(c), Sample trace of amplitude quadrature homodyne measurement of the transmitted
field during an atom transit, as described in the text, with the drive turned on at
t � 2µs and held at E � 2.6κ.

because of pumping into the Cs F � 3 ‘dark’ ground state or the atom exiting the

cavity. In fact, in this representative trace, the switching variance appears to slowly

decrease from a maximal value at 2µs before the abrupt loss at 14µs. This is consistent

with the expectation that the atom coupling is also a dynamic variable, with smaller

effective g’s typically yielding less splitting between the steady state intracavity lobes,

and thus also lower variance homodyne signals.

By taking the largest variance, few-µs sections of photocurrent signals from var-

ious experimental configurations, we can compare our data to the steady state I/O re-

sponse predicted by the quantum mechanical model. With tΘ,∆, Eu � t�1.1, .7, 2.6uκ
(using the 20MHz bandwidth and calibrated detection efficiency that would vary from

10% to 20% – due to free-space mode-matching drifts in the homodyne detector), a

Wigner-function representation of the cavity-transmitted field appears as a amplitude-

quadrature (θ � 0) bimodal distribution in Fig. 6.3a (section 2.1.3). Thus, for this cw

drive, steady state amplitude quadrature homodyne photocurrents should be sampled

from a bimodal distribution and phase quadrature (θ � π{2) measurements should

be sampled from a normal distribution, as in Fig. 6.3d. The distribution of accu-

mulated, maximum variance photocurrent data from both quadrature measurements
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Figure 6.3: (from [KAM10]) (a-c), Wigner function representations of the expected
steady state photocurrent distributions, using calibrated detection efficiencies and
bandwidths, for three sets of detuning and drive parameters. (d-f), Histograms rep-
resenting the phase- (απ{2) and amplitude-quadrature (α0) photocurrent distributions
from ensembles of the highest-variance segments, for the same drive parameters. The
histograms are compared with theoretically expected distributions obtained from cor-
responding Wigner functions (a-c), respectively.

matches the expected distributions calculated from the Wigner representation. Ex-

ploring other parameter ranges, further detuning the probe from the atom such thattΘ,∆, Eu � t�1, 3, 2.6uκ, rather than an equal-bimodal distribution, the steady state

population is expected to be biased toward the low-amplitude state, as the drive

threshold for atomic saturation increases with |∆|. Again, measurements of both

quadratures correspond well with the predicted marginal distributions in Fig. 6.3e.

Finally, increasing the drive into the saturation regime to tΘ,∆, Eu � t�1, 3, 3.7uκ,
an even, bimodal distribution in the amplitude quadrature is both expected and

observed in Fig. 6.3f. All the data in Fig. 6.3 are in agreement with quantum the-

oretical predictions despite the use of a somewhat idealized model that assumes a

static coupling rate g (whereas g actually depends upon atomic position and Zeeman
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Figure 6.4: (from [KAM10]) The autocorrelation function for the same amplitude
quadrature photocurrent data presented as a histogram in Fig. 6.3d is displayed
in black. Blue crosses represent the autocorrelation of photocurrents simulated by
quantum trajectory methods for identical parameters. The autocorrelation of these
quasi-bistable signals is enhanced relative to normalized experimental empty cavity
transmission data (red pluses), also presented here with a 20MHz analog bandwidth,
and the κ�1 � 17ns cavity decay time (dashed orange line).

sub-state, and can vary within a photocurrent segment because of atomic motion

and optical pumping). Although it may be possible to apply quantum smoothing

techniques [Tsa09] to estimate time-varying atomic coupling trajectories on a shot-

by-shot basis from the data, I used a simple fixed effective value g � .8 � g0 in the

analysis for all three parameter sets (the only fit in Fig. 6.3). Quantum trajectory

simulations further suggest that this approximation of fixed g and the finite (20 MHz)

bandwidth of the presented homodyne signals account for slight mismatches between

theory and experiment in the amplitude quadrature splitting and phase-quadrature

mean in the three data sets.

As predicted in section 4.1, even in the single-atom, �10 photon regime, dis-

tinct high- and low-amplitude states of the output field are expected. Signatures

of this remnant optical bistability are visible in the bimodal output photocurrents of

Fig. 6.3. Similarly, we see from the same data in Fig. 6.4 that although the output field

switches spontaneously when an atom is present in the cavity, it remains correlated

over timescales much longer than that of light transmitted through an empty cavity.

This atom-induced memory effect can be seen as a quantum remnant of semiclassical

optical bistability, where classically the high- and low-amplitude states are truly sta-

ble (due to negligible fluctuations in the system) and would therefore exhibit infinite
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Figure 6.5: (from [KAM10]) (a-b), Single-shot, amplitude quadrature measurements
as the drive amplitude is swept at .25MHz and 1MHz, respectively. Black traces are
20MHz bandwidth photocurrents while the green, dashed traces represent the instan-
taneous drive amplitude. (c-d), dashed red (blue) traces portray the same photocur-
rent data in (a) and (b), respectively, as a function of the instantaneous increasing
(decreasing) drive amplitude. Error bars represent sample mean and variance of the
same photocurrents within non-overlapping drive amplitude intervals. Red and blue
regions represent theoretically expected photocurrent mean and sample variance as a
function of instantaneous drive (section 2.1.3).

correlation time. Consequently, it should also be possible to observe the hysteretic am-

plitude response characteristic of semiclassical optical bistability by modulating the

system drive slowly compared to the timescale for relaxation of the intracavity field

(set in our case by the cavity decay time) but rapidly compared to the ‘metastable’

memory timescale indicated in Fig. 6.4. Accordingly, the data in Fig. 6.5 were ob-

tained by recording amplitude-quadrature homodyne photocurrents while sweeping

the drive strength sinusoidally at 0.25MHz or 1MHz. Figs. 6.5a and 6.5b depict

representative single-shot photocurrent segments with tΘ,∆u � t�1.1, .7uκ encom-

passing several cycles of sinusoidal drive amplitude modulation (AM) spanning the

steady state bimodal region. Increases in both the mean and variance of the output
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photocurrent, largely in phase with the drive amplitude, can be discerned in both of

these real-time plots. However, plotting the photocurrent as a function of the instan-

taneous drive amplitude (Figs. 6.5c and 6.5d) reveals a significant hysteresis in the

system response at 1MHz AM that is barely noticeable at the more adiabatic .25MHz

AM rate. Whereas the response of the empty cavity is linear and non-hysteretic

with fixed (shot-noise) output photocurrent variance at these modulation frequen-

cies, nonlinear increases in the signal mean and variance are evident in both traces

at mid-sweep. At 1MHz AM, a hysteresis loop appears to open between the upward

and downward drive amplitude sweeps, with the low (high) state persisting over a

wider range of increasing (decreasing) drive amplitudes than at .25MHz AM. These

data are in agreement with theoretical predictions again assuming a fixed value of

g � .8 � g0. It can also be shown that the slight elevation of the experimental high-

amplitude branch in Fig. 6.5d is also consistent with slight fluctuation in g over the

entire sequence, as in Fig. 6.3d.

6.2 Phase ‘bistability’

If we drive the cQED system harder and on-resonance [KAPM11], we move into a

different I/O response regime, physically distinct from the absorptive ‘bistability’

behavior. As described in section 4.2.2, in the strong-driving limit, the atom becomes

fully saturated and is forced to choose a dipole orientation either in- or completely-out

of phase with the laser drive. The orientation of the dipole determines the phase of

the field the atom re-radiates into the cavity, either �90� out of phase with the drive

(i.e. in phase with the ‘velocity’ of the electric dipole).

Rather than drive the cQED system completely on resonance, we found that sig-

nificantly improved data could be obtained by tuning both the drive and the cavity

resonance slightly to the red of the atomic transition (i.e. Θ � 0, ∆ � κ ¡ 0).

We attribute this signal enhancement to an attractive optical dipole force that tends

to draw the atom towards the maximally-coupled cavity anti-node positions. Luck-

ily, this opto-mechanical effect on the atom is apparently significant for ∆ � κ, but

the population distribution of the low- and high-phase states is barely perturbed,
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Figure 6.6: Phase quadrature perspective of the steady state intracavity field Wigner
function for the drive parameters tΘ,∆, Eu � t0, 0, 3.7uκ (Left) and tΘ,∆, Eu �t0, 1, 3.7uκ (Right).

so that the I/O response is nearly identical to the on-resonance case, see Fig. 6.6.

Taking the parameters tΘ,∆, Eu � t0, 1, 3.7uκ, the phase quadrature photocurrent

measured during an atom transit show clear, binary switching between positive and

negative phase-shifted states in Fig. 6.7. The photocurrent segment (again, recorded

at 200MS/s but displayed with 20MHz bandwidth for clarity) resembles a random

telegraph with added Gaussian noise, featuring sporadic jumps between levels indi-

cating positive and negative phase shifts of the transmitted optical beam. Such sig-

nals stand as a marked improvement over our previous observations of TLS-induced

phase noise (as opposed to clear, binary phase switching) in Mike Armen’s thesis

work [Arm09], and more convincingly support long-standing theoretical predictions

[AC91] summarized in section 4.2.2. For example, the photocurrent histogram in

Fig. 6.7b suggests a dual-Gaussian distribution in this single shot segment, whereas

only “flat-top” distributions were previously visible after averaging many single-shot

signals in [AMM09]. Although a complex physical model is required to describe the

TLS-cavity system (section 3.2), the output of a device that possibly could function

as a random binary phase modulator should also be well described by a two-state,



92 CHAPTER 6. OBSERVATIONS OF OPTICAL ‘BISTABILITY’

a b c

P
h

o
to

cu
rr

e
n

t 
[α

]

Figure 6.7: (from [KAPM11]) (a), An experimental phase-quadrature homodyne
photocurrent segment taken with tΘ,∆, Eu � t0, 1, 3.7uκ is shown in blue. The
red overlay is the decoded binary signal produced by the Viterbi algorithm with
hidden Markov model parameters obtained via expectation maximization for this
segment. (b), A histogram of the photocurrent data segment from (a), displaying
a dual-Gaussian distribution consistent with binary phase modulation. (c), Dual
histograms of the photocurrent data, each taking counts only when the Viterbi path
occupies the positive or negative state.

time-invariant hidden Markov model (HMM) [CMR05]. Allowing for unequal tran-

sition rates between the two HMM states and assuming only that each state pro-

duces normally-distributed (but otherwise unspecified) photocurrent, it is possible

to apply a standard expectation maximization (EM) algorithm [Wel03, CMR05] to

full-bandwidth photocurrent data segments to find HMM parameters that best fit the

data. The red trace overlay in Fig. 6.7a represents the decoded binary signal produced

by the Viterbi algorithm [Vit67, CMR05] using optimal parameters from the EM pro-

cedure applied to the same trace. The histograms in Fig. 6.7c were constructed by

segregating the photocurrent according the Viterbi path, which apparently results

in two near-normal distributions, confirming the quality of the binary decoding. I

emphasize that these conditional distributions mainly reflect optical shot-noise but

are broadened by random variation of gprq.
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Figure 6.8: (from [KAPM11]) Both plots depict contours of the likelihood functions
of hidden Markov model transition rates for lowØhigh switching. The most likely
rate-pairs inferred from data taken from individual atom transit segments are indi-
cated by grey dots, with the diameter of each dot representing the duration of the
corresponding data segment. The grey bars represent the intervals over which the
likelihood of the individual transits’ rate-pairs are at least 1/3 of their maximum.
The red cross locates the most likely rate-pair, given an aggregated segment formed
from the individual transit measurements, with the red oval enclosing the region of
rate-pair likelihoods that are at least 1/3 of the maximum. The teal cross and oval
represent the same likelihood contours produced from simulated data. (a), Likelihood
contours for tΘ,∆, Eu � t0, 1, 3.7uκ. (b), tΘ,∆, Eu � t0, 3, 3.7uκ.

With the good visibility of the switching states, we can also confirm that binary

decoding of the experimental photocurrent segments yields transition rate estimates

that match predictions of the full quantum model (section 3.2). The plots in Fig. 6.8

depict contours of the likelihood functions of HMM parameters estimated from indi-

vidual and aggregated atom transits, obtained under two different input conditions.

Fig. 6.8a reflects data acquired from a ‘near-detuned’ system with the same param-

eters as in Fig. 6.7. The high likelihood of a symmetric switching model apparent

here is both theoretically predicted (section 4.2.2) and consistent with the symmetric

photocurrent histograms in Fig. 6.7. The slightly greater than γK{2 switching rates

of the most likely models (as opposed to exactly γK{2, which occurs in the strong-

driving limit) is due to the moderate power of the probe. Fig. 6.8b reflects data taken
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Figure 6.9: Raw photocurrent data from a run in which the drive was amplitude
step-modulated between E � 3.7κ and E � 7.6κ with the detunings fixed at tΘ,∆u �t0, 1uκ is shown in the top plot in blue with a 100kHz-10MHz analog bandwidth (the
red trace gives the DC-100kHz signal). Bottom, the amplitude modulation voltage
that defines the drive amplitude, proportional to E .

with cavity and probe held 40MHz below atomic resonance. A significant asymmetry

in the transition rates is expected and inferred from the likelihood contours. Both

figures compare parameter estimates obtained from experimental data to estimates

from simulated photocurrent data of comparable aggregate duration and detection

efficiency (using quantum trajectory simulations assuming no atomic motion). For

both detunings, the likelihood contours for the experimental and simulated signals

largely overlap, indicating that the device physics model (section 3.2) also accounts

well for the observed binary switching rate statistics, but with no fit parameters.

In principle, the phase ‘bistability’ response simply saturates once the drive is

in the E " g{2 regime, producing a constant splitting in the bimodal distribution

for arbitrary drives (e.g. Fig. 4.8). Unfortunately, in contrast to our group’s first

attempt to observe this behavior, atom-induced phase switching was increasingly
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rare to see, per atom transit event for drives E ¡ .8g � 5κ. In contrast to drive

amplitudes below this regime (e.g. for E � .6g � 3.7κ), where phase bistability

effects were observed for several to tens of µs, in a majority of atom triggering events

in the very high saturation regime, phase bistable effects were rarely seen, and if

seen, only persisted for a few µs. We attribute this lack of high-drive data to the

strong drive mechanically expelling the atoms from the cavity mode with dipole force

effects. The significantly larger atom-cavity coupling in this experiment, g � 2π �
56.8MHz, compared to the earlier iteration, g � 2π � 16MHz [Arm09, AMM09],

means that the same opto-mechanical forces 9∇gprq?n̄ present in this experiment

occurred at � 13 times greater intracavity photons in the previous experiment. As

the quality of the phase bistability data in that experiment began to peter out at

about n̄ � 110, with shorter and shorter visible phase noise segments [Arm09], the

limitations of both systems seem compatible (note too, that the the earlier iteration

was also likely effected by faster dark state-pumping due to large cavity birefringence).

Importantly, amplitude step-modulating the drive strength between near- and far-

saturating regimes, we see that the high drive state causes the atom-induced phase

bistability to be lost, as in Fig. 6.9, rather than phase-bistable effects simply not

existing for very large drives. As the drive amplitude is step-modulated between

n̄ � 14 and n̄ � 58, phase switching is apparent for the initial, low-drive state, but

abruptly disappears when the drive is increased, and does not reappear when the

drive is switched low again.

Finally, despite our atomic system’s large g{κ ratio, which is unfavorable for the

control method simulated in Fig. 4.9, we attempted exert an external, optical control

of the switching rate experimentally using the ‘near-detuned’ system. Fig. 6.10 shows

inferred ‘total’ transition rates (the mean rate at which switching in either direction

occurs) as a function of the power of the control beam, for three different control

beam frequencies. In the strong driving limit the optimum control detuning would

be 425MHz, but given our moderate signal power the effective coupling energy (and

therefore optimal control detuning) should be somewhat smaller. The statistical

significance of the data displayed in Fig. 6.10 is marginal, but the data do show

consistent trends that match expectations: data taken with -375MHz and -425MHz
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control detuning induce higher transition rates with higher power, with -375MHz

consistently higher, while the -525MHz detuning induced essentially no net transition

increase over the accessible range of control powers (limited by opto-mechanical effects

on the high end). Linear fits to data obtained from trajectory simulations reproduce

these general trends of the data and confirm the limited degree of control achievable

in our experimental system. We thus infer an apparent control energy requirement of

only � 1fJ/edge even in our atomic implementation (with unfavorable parameters for

efficient control) of the dressed-state binary phase modulator. I’d also like to point

out that the data presented in Fig. 6.10 was the last data ever taken in our group’s

Varian-Astro era, obtained the night before the lab tear-down for the Nano move!
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Figure 6.10: (from [KAPM11]) Data points represent inferred ‘total γ’ for vari-
ous control beam parameters. The thin lines track the most likely total γ and the
confidence intervals represent the range of γ values with at least 1/3 the maximum
likelihood. The green, blue and red data points depict the total γ as a function of
control power for a control probe detuned by -375MHz, -425MHz, and -525MHz from
the signal probe, respectively. The colored shaded regions represent linear best fits
of the corresponding confidence intervals based on a simulated data set with perfect
detection efficiency and duration several times that of the experimental data. The
apparent positive, constant bias in the experimental γ relative to simulation for con-
trol powers at least equal to the probe’s is perhaps due to enhanced opto-mechanical
motion induced by a strong control beam.
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Introduction

Traditional approaches to quantum information theory [NC00] are non-committal to

any particular implementation. Instead, the basic concepts are framed in terms of the

axiomatic laws of quantum mechanics. This generality is a testament to the simple

power of the ideas, and allows for an impossibly large range of experiments to get

into the game, from trapped ion-computation [Win09] to liquid state NMR [VSB�01].
The fundamentals of quantum information can be explained using the same abstract

formalism of quantum mechanics taught to undergraduates, and usually are [NC00].

Because of this, there is a sense that experiments simply have to ‘catch up’ with

the established theory of quantum information, that qubits, gates, and measurements

that better approximate these simple ideals simply have to be realized. While this

is no doubt true, theoretical approaches framed in the natural laws of promising

systems are also lacking. It might be inappropriate that next generation quantum

information systems with trapped ions implement the same protocols as those made

from superconducting microwave circuits. But guided by equivalent, basic models, it’s

perhaps inevitable that all breeds of quantum information hardware have so far been

driven towards equivalent demonstrations [RRH�04, DCG�09, CLS�04, DRS�10,
VSB�01, PMO09].

In this final part, I describe some of our efforts to develop a method for de-

signing protected quantum memories out of networks of nanophotonic components

[KNPM10, KPCM11]. Modeling these systems with a framework based on a circuit

description of quantum optics, in applying basic quantum error correcting (QEC)

concepts we are naturally led to designs that are continuous and stationary in time
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Figure 6.11: An example of a traditional quantum ‘circuit’ that depicts a traditional
discrete time version of the 3 qubit bit-flip code described in section 7.1.1.

and operate autonomously. This approach is in contrast to the traditional descrip-

tion of quantum error correction (QEC) [Got09, NC00] involving discrete operations,

clocked execution, instantaneous measurement and external corrections. These de-

signs are communicated through circuit schematics, with each ‘block’ representing a

physical device, with its own internal dynamics, and each connection between them

representing a physical optical field (e.g. Fig. 8.3). The continuous time dynamics

of this system are constructed from these diagrams simply by describing them in the

quantum circuit formalism based on quantum stochastic differential equations (QS-

DEs) (part I). Again, we like to contrast these schematics with traditional, so-called

‘quantum circuit’ diagrams composed of blocks representing discrete operations, not

devices, and the connections between them defining a chronology, not a physical cou-

pling (e.g. Fig. 6.11) [NC00]. Our designs are much more like an electrical schematic

that represents a specific hardware construction, while the traditional schematic rep-

resentation is more like a high-level programming language.

Moreover, these all-optical network designs naturally sidestep the difficulty of

having to build a distinct, classical apparatus operating in parallel with the quan-

tum memory, constantly monitoring and maintaining it. Typically, the mechanics of

this essential half of a quantum memory system are hardly considered at all, taking

a back seat in the analysis to the qubits in which the information is stored. This

assumption of a perfect, classical overseer glosses over the inherent technological mis-

match of typically fast, nanoscale and cold quantum systems with slow, mesoscopic,

and/or hot classical ones. The extreme performance demands for quantum informa-

tion processing should motivate solutions that weigh classical and quantum resources
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wholistically and utilize system models as close to physical mechanics as possible.

Not only do our photonic networks model both the memory and controller on equal

footing, but they do so in a technologically homogenous context.



Chapter 7

Preliminary Models

The focus of the work described in this final part has been the design of nanophotonic

networks that could form a protected quantum memory element and require a min-

imum of external maintenance. Before we can get to the full designs, though, basic

concepts of quantum error correction, and the intuition behind and continuous-time

models of the nanophotonic components need to be introduced.

7.1 Quantum error correction

Quantum error correction (QEC) addresses the problem of how to do ‘nothing’

[Got09, NC00]. Simply staying in the same state for an extended period of time

is difficult for quantum objects, especially for highly entangled, many body systems.

Uncontrolled, unmonitored interactions between a quantum state we’d like to pre-

serve and its environment generally ruin the utility of the stored state. While noise is

a problem in classical memory banks too, of course, the problem of preserving a single

qubit of quantum information is more subtle. For instance, we can’t simply copy a

state to protect it through redundancy; measuring quantum states to diagnose errors

will perturb the states in general; and errors on spin-1/2 qubits are usually contin-

uous rotations, not discrete operations [NC00]. Rather than summarize the general

theories of stabilizer QEC [Got09], I will directly explain the operation of three basic

quantum codes our networks emulate.
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7.1.1 The bit-flip and phase-flip codes

A qubit is a two-level system (TLS) whose state represents a quantum informational

resource. The general qubit state is|ψ̃y � α|1y � β|0y, |α|2 � |β|2 � 1. (7.1)

This qubit state may be easily corrupted, for example, by an arbitrary X-rotation

induced, perhaps, by a stray magnetic field:

eiθX |ψ̃y � cospθq pα|1y � β|0yq � i sinpθq pα|0y � β|1yq (7.2)

While a known interaction like eiθX may be reversed perfectly, the continuum of

available “errors” that could occur renders a simple TLS extremely vulnerable to

such disturbances. As perfect calibration of the environment is impossible, the exact

angle of rotation cannot be known for sure and perfect compensation for these types

of errors is impossible.

A qubit need not be a single object, however, but simply a two-dimensional sub-

space in, perhaps, a multi-body system. For instance, the logical qubit|ψ̃y � α|1y � β|0y, (7.3)

may be encoded in the two-dimensional, completely symmetric subspace of a physical

memory element composed of three TLSs:|ψ̃y Ñ |ψy � α|111y � β|000y, (7.4)

where |111y (|000y) refers to the state of all three TLS jointly in their |1y (|0y) state.
The particular state of the logical qubit is sometimes referred to as the codeword.

Now suppose during a brief storage period there is a pi ! 1 probability that each

TLS i is ‘bit-flipped’ by an environmental disturbance, inducing the transformation
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Z1Z2 result Z2Z3 result syndrome subspace
+1 +1 spant|111y, |000yu
-1 +1 spant|011y, |100yu
+1 -1 spant|110y, |001yu
-1 -1 spant|101y, |010yu

Table 7.1: Right column, the possible subspaces that a 3-TLS system may project
into as a result of pair-wise bit-parity measurements. The left two columns list the
corresponding Z1Z2 and Z2Z3 parity measurement results that project the system
into each subspace.|1y Ø |0y. Thus, after the storage period the (unmonitored) state of the system is|ψyxψ| � ρψ Ñ ρψp1� 3̧

i�1

piq � 3̧

i�1

piXiρψXi (7.5)

where Xi acts as the X-Pauli operator on TLS i, and we consider the probability

of multiple bit-flips negligible. It may look like we’re in more trouble than we were

with a single TLS, but we’re actually better off. If we now measure the two-TLS

parity operator Z1Z2, a �1 result will mean that the system either suffered no error

(ρψ) or an X3-type error (X3ρψX3), while a �1 result will mean we know the system

suffered a X1 or X2 error. Further measuring the Z2Z3 parity operator will fully

specify the error syndrome, according to table 7.1. For example, if we get a �1 result

for Z1Z2 and a �1 result for Z2Z3, we learn that the system is in the state X3ρψX3.

Now, to recover the state ρψ, we simply apply another ‘bit-flip’ to the third TLS

(X2
3ρψX

2
3 � ρψ). This is parity measurement and recovery strategy is known as the

three-qubit bit-flip code [Got09, NC00].

In a classical, majority-rule bit-flip error correcting code we can simply measure

the state of each bit and if most are ‘1’ we rule that the originally encoded state was

probably ‘111.’ In a quantum code, we cannot simply measure each qubit separably

because while doing so will specify the type of bit-flip error that occurred (if any),

the information-carrying quantum superposition in the original state, α|111y�β|000y,
will be destroyed. It is thus critical that we only measure qubit parities, which do

not reveal if the TLSs are either ‘up’ or ‘down.’
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In the above bit-flip code example we presumed a very specific error model, either

TLS bit-flips occurred or they didn’t, which may seem a serious limitation if our errors

are more likely to be continuous rotations. However, one of the most powerful con-

cepts in QEC is that if a code can correct for the random application of error operatorstEu, then it can also correct for the random application of arbitrary linear combina-

tions of tEu [NC00]. Thus, since the bit-flip code works in the above pi ! 1 example

where tEu � tI,X1, X2, X3u, it also works when tEu � expriθtI,X1, X2, X3us. This
remarkable result can be understood as a consequence of the measurement proce-

dure discretizing ‘analog’ errors. Even if a possible bit-rotation acting on TLS i is

not θ � π{2, measuring Z1Z2 and Z2Z3 forces the system into either |ψy or Xi|ψy.
Thus, although continuous error models are appropriate in quantum information sys-

tems, QEC has more in common with digital classical error correction than (famously

impractical) analog error correction.

However, what about the finite possibility in the bit-flip example that multiple

bit-flip errors occur? In these cases, the strategy fails: if the first two TLSs flip, the

algorithm will erroneously determine that the third TLS flipped and apply the wrong

correction. Hence, the general notion is that QEC has to be done repeatedly and

rapidly enough such that the likelihood of multiple, independent single-TLS errors is

negligible. Moreover, what if the errors are of a different sort, such as Z-rotations?

Z-errors map |1y Ñ |1y and |0y Ñ �|0y, and are consequently known as phase errors.

Again, the bit-flip code is helpless against such error types. However, if these are the

only type of error affecting each TLS, we can apply an analogous strategy and encode|ψ̃y Ñ |ψy � α| � ��y � β| � ��y, (7.6)

where |�y � 1?
2
p|1y � |0yq, and measure the phase-parity operators X1X2 and X2X3,

performing the analogous error decoding and recovery. This three qubit phase-flip

code is related to the bit-flip code via a simple basis change, and shares the analogous

advantages and limitations.

While very promising, both codes are also very limited, only capable of protecting

against a narrow class of errors. To make more powerful, general QEC codes, a
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(a)

Q1,1 Q1,2 Q1,3

Q2,1 Q2,2 Q2,3

Q3,1 Q3,2 Q3,3

X2,  X3,∗ ∗

Z ,1 Z ,2∗ ∗

Stabilizer generator examples

(b)

Q1,1 Q1,2 Q1,3

Q2,1 Q2,2 Q2,3

Q3,1 Q3,2 Q3,3

ZL

Logical operators

XL

(c)

Q1,1 Q1,2 Q1,3

Q2,1 Q2,2 Q2,3

Q3,1 Q3,2 Q3,3

ZT1

XT1

ZT2

XT2

XT3 XT4

ZT3

ZT4

Gauge operators

Figure 7.1: (a), Two of the stabilizer generators in the 9 qubit Bacon-Shor code.
One stabilizer generator acts as the Z operator on all qubits in the first two columns,
the other generator shown acts as X on all qubits in the last two rows (the remaining
two stabilizer generators are not shown for clarity). (b), Logical operators that act
on the 2D subsystem L in the no-error subspace: boxes again indicate Z (blue) and
X (green) acting on all enclosed qubits. (c), One choice for the remaining gauge
operators that act on the remaining, 4-qubit T subsystem in the no error subspace.

memory element composed of more TLSs is needed.

7.1.2 The 9 qubit Bacon-Shor code

Abstractly, the three-qubit codes in the previous section took the strategy of decom-

posing a multibody Hilbert space into

H � L` E (7.7)

where L is a 2-dimensional ‘logical space’ in which the logical qubit is encoded. Any

states in E are deemed errorful. A generalization of this subspace-coding strategy is

a subsystem code [KLP05] in which a multibody Hilbert space is decomposed into

H � pLb T q ` E (7.8)
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where now information is encoded in the L subsystem and any state in E is in error.

Thus, while a valid logical state has the form

ρψ � pρL b ρT q ` 0 (7.9)

the state of the ‘gauge subsystem’ ρT carries no information, and may be scrambled

without consequence. This general strategy is exploited by another famous code, the

9 qubit Bacon-Shor subsystem QEC code [Bac06], which is the smallest of a class

of naturally fault-tolerant QEC codes [Got09, NC00] capable of protecting a single

logical qubit from arbitrary single-TLS errors.

In this code, 9 TLSs are arranged in a 3�3 grid, as in Figs. 7.1. In this configu-

ration, a non-Abelian operator group is the set of operators generated by pairs of X

operators acting on adjacent-row TLSs and pairs of Z operators acting on adjacent-

column TLSs

T � xXi,jXi�1,j, Zj,iZj,i�1|i P Z2, j P Z3y, (7.10)

where Xi,j and Zi,j act as Pauli operators on the TLS in row i, column j and as the

identity on all others. An Abelian subgroup S � T known as the ‘stabilizer’ group is

generated by X operators acting on all TLSs in two adjacent rows and Z operators

acting on all TLSs in two adjacent columns

S � xXi,�Xi�1,�, Z�,iZ�,i�1|i P Z2y, (7.11)

as depicted in Fig. 7.1a. These generators of the stabilizer group play the same role as

the parity operators Z1Z2 and Z2Z3 in the three qubit bit-flip code: measuring them

reveals which errors have occurred to the 9 TLS system. That is, the �1 eigenvalues

of the generators of S may be used to label subspaces of the H � pC2qb9
system

Hilbert space

H �à
~a

H~a, (7.12)

where ~a is a string of the four binary eigenvalues of the stabilizer generators and

each H~a represents a 25-dimensional space. Each H~a may be further decomposed into
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subsystems

H~a � HL
~a bHT

~a (7.13)

where elements from T (which commute with S) act non-trivially on some HT
~a , and as

the identity onHL
~a , encoding four ‘gauge’ qubits, modulo S. This action leaves theHL

~a

as single-qubit subsystems, in one of which our logical qubit is stored. We can choose

this logical qubit to be the one encoded by the operators XL � X1,� and ZL � Z�,1 in
the ~a � t�1,�1,�1,�1u subspace (such that, for example, XL|1L, ψT y � |0L, ψT y),
as shown in Fig. 7.1b. The other four gauge qubits that live in this subspace’s HT

~a�1b4

subsystem may be specified by four commuting pairs of anticommuting operators in

T : tXT i, ZT i|i P Z4u, as in Fig. 7.1c. Again, although a valid code state will define

some state on these gauge qubits, they will have no information encoded in them and

may be scrambled in the QEC procedure without consequence.

In the 9 qubit code, the encoded codeword may be rendered impervious to ar-

bitrary single-TLS rotations of any of the nine TLSs, although the state of the

gauge qubits may be depolarized. Measurement of the four stabilizer generators

“discretizes” any partial qubit rotations, projecting the system state into some er-

ror space H~a, with ~a � t�1,�1,�1,�1u being the “no error” space. The results of

these syndrome measurements localize Pauli-X errors down to the column in which

they occurred, Pauli-Z down to the row, and Pauli-Y errors down to the TLS. Al-

though the precise location of the error is not known generally, codeword recovery

is achieved by applying a Pauli-X (-Z) to any qubit in the same column (row) as

a detected bit-flip (phase-flip) error. For example, if a partial Pauli-Y rotation oc-

curs to TLS Q2,2 (the middle TLS in the 3�3 grid), syndrome measurement may

project the system into the ~a � t�1,�1,�1,�1u subspace, digitizing and indicating

the error. The encoded codeword may be recovered by then applying the operator

X3,2Z2,1, as the net, recovery-error operator, X3,2Z2,1Y2,2, commutes with S, XL and

ZL. However, X3,2Z2,1Y2,2 P T and thus the recovery operation disturbs the state of

the gauge qubits. Moreover, remarkably, the error syndrome need not be acquired by

directly measuring the 6-body operator generators. Separably measuring the 2-body

generators of T yields the same syndrome information as the generators of S and
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although such measurements perturb the gauge qubits, they commute with XL and

ZL and thus preserve the codeword [AC07].

7.2 cQED parity networks

From the previous sections, it is apparent that multibody parity measurements are

at the heart of many QEC protocols. However, the physically abstracted models

used above presume perfect and instantaneous projective measurements. This is an

idealization: any actual measurement takes a certain amount of time, no measurement

is perfect and perfect TLSs do not exist. Physical systems operate according to

continuous time laws. Moreover, weak measurement, in which partial information

is gained incrementally in time, is usually (if not always) a more accurate physical

description of a measurement process.

We are interested in modeling how a system of nanophotonic devices could em-

ulate the key concepts of QEC in the context of their own, natural dynamics. One

motivator, the binary TLS model leads us to consider nanophotonic systems with

‘atoms,’ while another, the desire for a physical, continuous time description of these

systems and their measurement process immediately leads us to consider quantum

stochastic differential equation (QSDE) models (chapter 1).

7.2.1 Physical model of a cQED TLS

The central object in our nanophotonic QEC networks are cQED devices that should

increasingly approximate a continuously measurable TLS as the volume of the device

vanishes [KBSM09]. The physical intuition of these devices is represented in Fig. 7.2.

If an optical pulse encounters an ultra-high reflector, the pulse is simply reflected

with a π phase flip. If that same mirror is matched with a perfect reflector, so that

an optical resonator is formed between them, when a resonant optical pulse reflects

off the front mirror, it will instead be reflected with no net phase shift (in the limit

that the duration of the pulse is greater than the inverse of the field decay rate

of the resonator). If that same resonator contains a TLS with a degenerate and
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Figure 7.2: Top, when an optical pulse scatters from a high reflector, it does so
with a π optical phase shift. Middle, when the same pulse scatters off of a resonant,
single-sided cavity (with a fast field decay rate), it scatters with no net phase shift.
Bottom, if that same cavity also contains a strongly coupled atom (and the pulse
isn’t too strong), the optical pulse does not excite the cavity and again reflects off
the front reflector with a π phase shift.

strongly coupled optical transition between the two states, then (in the limit that

the coupling is also very large) the coupled TLS will prevent an applied optical pulse

from entering the resonator. Therefore, the cQED system looks like a simple high

reflector to the pulse, and it will reflect off with a π phase flip. By probing a cavity

containing a multilevel atom with a resonant pulse and measuring the phase of the

reflection, we can determine whether or not the atom is in a strongly coupled state

[DK04, KBSM09]. Note that this argument implies that the system parameters need

to simply respect a certain hierarchy, rather than finely tuned ratios: the field decay

rate and atom coupling need to be fast, while the pulse should be slow (the atom,

cavity and pulse should all be roughly co-resonant, however).

In our cQED TLSs [KBSM09], the single-sided resonators contain multilevel ‘atoms’

or comparable solid-state emitters. As represented by the blue transitions in Fig.
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a b

Figure 7.3: (from [KNPM10]) Atomic level diagrams of (a), Z probe interaction, (b)
X probe interaction.

7.3, Z and X probe interactions emerge from a three level atomic system in a λ-

configuration interacting with a quantized mode of a single-sided cavity. In the case

of the Z probe, the |gy Ø |ey transition is strongly coupled and on resonance with

the cavity mode, while the |hy state is fully uncoupled. In the case of the X probe,

both |gy Ø |ey and |hy Ø |ey transitions are simultaneously coupled and on resonance

with the cavity mode. The X probe configuration could be realized with a degenerate

spin �1 ground state pair coupled to an excited spin-0 state via a linearly polarized

cavity mode, for example. Thus, in a properly rotating frame and applying the usual

rotating wave approximation, the familiar Jaynes-Cummings Hamiltonian interaction

for both systems is (section 3.1)

Hi � igcpσ:a� σa:q (7.14)

where a is the cavity mode annihilation operator, the atomic ‘lowering operators’ act

as σ � |gyxe| on the atomic states in the Z-probe device, σ � 1?
2
p|gy � |hyq xe| in the

X-probe device, and the coupling rate gc may be taken real without loss of generality.

The remaining red optical transitions shown in Fig. 7.3 are for Raman interactions

discussed in the next chapter.

However, the cavity mode and atom also interact with the free fields that surround



112 CHAPTER 7. PRELIMINARY MODELS

them: the cavity photons will decay out of the resonator and the excited atomic

state will spontaneously emit photons into the environment. These interactions are

included in a QSDE description of the dynamics with the inclusion of two coupling

operators 1:

L1 � ?
2κa; L2 �a2γKσ (7.15)

where κ and γK are the cavity field and atomic dipole decay rates, respectively. As

there is no direct coupling between the cavity and atomic decay channels, the scat-

tering matrix for this system is the identity. Thus, the QSDE descriptions of the

dynamics for the Z and X systems with vacuum inputs are characterized by the

operator coefficients (see section 1.5)

Q � �
I,

� ?
2κa?
2γKσ �

, igcpσ:a� σa:q� . (7.16)

I will eventually use the limiting evolution of these ‘vacuum’ cQED systems in the

network model, but note that familiar, driven cQED dynamics may be derived with

the inclusion of a Weyl operator (Eq. 1.33) in series product with the vacuum system

(representing an on-resonance, cw laser input to the cavity mode)

Qα � Q��I,� α

0

�
, 0

�
� �

I,

� ?
2κa� α?
2γKσ �

, igcpσ:a� σa:q �
i
?
κ

2
pα:a� αa:q�, (7.17)

followed by the application of the master equation from section 1.3.

Rather than use the entire physical model for the cQED TLS given by Eq. (7.16)

in the network, I implement an adiabatic elimination procedure [BvHS08] (see section

1The physical system suggested for the X probe should actually include three coupling operators,
as the state |ey may spontaneously emit right- or left-handed photons in a given direction. However,
the proper inclusion of this additional decay channel leads to an equivalent limiting evolution.
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1.6) on Q to obtain the very simple limiting dynamics of a measurable TLS, which

will be used in the network model. The physical intuition of the derived dynamics

is as follows. As described above and in [KBSM09, KNPM10], in a bad cavity limit

(κ Ñ 8), with the atom in a uncoupled state, a coherent probe resonant with the

cavity will enter the cavity and exit ‘immediately’ (due to the large κ), picking up no

additional phase shift. However, if the atom is in a coupled state, and the system is

also in a ‘small volume’ coupling limit (gc, κ Ñ 8 is expected as the device volume

vanishes), then the same probe will simply reflect from the off-resonant, atom-and-

cavity system, picking up an additional π phase shift. Thus, in these limits, the cQED

system acts as a simple scattering object with no internal dynamics, but which imparts

a phase shift on a cavity-incident coherent probe, as determined by the binary ground

state.

Following the mathematical formalism of [BvHS08], I redefine and relabel Q with

a scaling parameter k, which is assumed to take the limit k Ñ 8, and write the

component as a left QSDE (essentially the Hermitian conjugate of Q)

dQ
pkq
l,t � Q

pkq
l,t

!� k
?
2κadB1:

t � k
?
2κa:dB1

t�a
2γKσdB2:

t �a2γKσ:dB2
t � k2κa:adt� γKσ:σdt�

k2gcpσ:a� σa:qdt). (7.18)

Note that with the scaling, the cavity field decay and coupling rates take the limits

described above (with gc{κ constant).

In the notation of [BvHS08], the operator coefficients of the above left QSDE are

Kpkq � �k2κa:a� γKσ:σ � k2gc
�
a:σ � aσ:� ,

Lpkq � � k
?
2κa:?

2γKσ: � , N pkq � I.
(7.19)

Through the adiabatic elimination procedure, a set of limiting operator coefficients

(denoted without the ‘pkq’) are derived, which define another, limiting propagator,

Ql,t, to which Q
pkq
l,t strongly converges (see section 1.6). It is this limiting propagator
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that will be used in the eventual network model in place of the physical cQED model.

For the adiabatic elimination we use (see section 1.6)

Y � �κa:a� gc
�
a:σ � aσ:� , A � 0, B � �γKσ:σ,

F � � ?
2κa:

0

�
, G � �

0?
2γKσ: � , W � I. (7.20)

In the Z probe case for the bit-flip network, H0 � span t| g, 0y , |h, 0yu is the domain

of the ‘slow’ dynamics the adiabatic elimination procedure isolates and we define

Ỹ t| g 0y , |h 0yu � 0,

Ỹ |hny � � 1

κn
|hny , n ¥ 1;

Ỹ | e pn� 1qy � � gc
?
n

κ2n pn� 1q � g2cn
| g ny�

κn

κ2n pn� 1q � g2cn
| e pn� 1qy , n ¥ 1;

Ỹ | g ny � � κ pn � 1q
κ2n pn� 1q � g2cn

| g ny�
gc
?
n

κ2n pn� 1q � g2cn
| e pn� 1qy , n ¥ 1. (7.21)

which provides Y Ỹ � Ỹ Y � P1, the projector onto the complement of H0 (see section

1.6). Then by [BvHS08], the limiting operator coefficients are,

K � 0, L1 � L2 � 0, M1 �M2 � 0, (7.22)
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and (with Πin � |i, nyxi, n|)
N11 � P0W11

�
F
:
1 Ỹ F1 � δ11

	
P0� P0 � 2κP0aỸ a

: pΠg0 � Πh0q� P0 � 2κP0aỸ p| g 1y xg 0| � |h1y xh 0|q� P0 � 2κP0a

�
1

gc
| e 0y xg 0| � 1

κ
|h 1y xh 0|
� P0 � 2 |h 0y xh 0|� Πg0 � Πh0 � Z,

N12 � P0W11

�
F
:
1 Ỹ F2 � δ12

	
P0 � 0,

N21 � P0W22

�
F
:
2 Ỹ F1 � δ21

	
P0 � 0,

N22 � P0W22

�
F
:
2 Ỹ F2 � δ22

	
P0 � 1, (7.23)

Collecting the results, the limiting system (as a usual right-acting QSDE) is charac-

terized by the operator coefficients

Q � ��
Z 0

0 I

�
,

�
0

0

�
, 0

�
, (7.24)

to which the physical cQED system, Qpkq from Eq. (7.16), strongly converges in the

limit k Ñ 8. For the X probe case in the phase-flip network, the analogous follows,

but with the Pauli-X spin operator eventually replacing Z in equation (7.24).

7.2.2 Continuous parity measurement in a nanophotonic net-

work

Employing the series concatenation product (section 1.4), we can construct a QSDE

representation of a nanophotonic network in which two of these cQED TLSs are placed
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|h〉

|g〉

⊥

⊥

c

c

|h〉

|g〉

Figure 7.4: (from [KBSM09]) Cartoon of a nanophotonic bit-wise parity measurement
network with two Z-probe cQED TLSs.

sequentially along a single mode waveguide, as in Fig. 7.4 [KBSM09]. Simply driv-

ing the network with an on-resonant cw laser and performing amplitude-quadrature

homodyne measurement of the field that exits the network will effect a continuous,

weak parity measurement on the state of the two cQED systems. We can construct

a network model utilizing either the complete, physical model of the cQED devices

N � pQ2 `2 Iq � pQ1 ` Iq � pWα ` I2q (7.25)

using the full physical Eq. (7.16) or limiting Eq. (7.24) version of Q (`2 is a “padding

operator” related to the concatenation product [KNPM10], necessary for proper field

indexing) – the mathematical consistency of the series product and similar limiting

models was recently shown [GNW10].

Given the QSDE model N , we can derive the conditional evolution of network

variables affected by our continuous measurement of the output field (section 2.2.1).

A stochastic Schrödinger equation can be used to propagate a conditional quantum
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Figure 7.5: (from [KBSM09]) Two independent simulations of atomic Bell-state
preparation in a realistic system (see text). The top pair of graphs show a simulation
in which the system happened to reduce to even parity; the bottom pair shows an
odd-parity example.

state derived from the continuous measurement records M
piq
t (where index piq speci-

fies the observed output channel). If the conditional state remains pure for all times

we may represent it by a vector |ψty. As complete purity of the conditional state

can only be achieved if all output channels are monitored with perfect efficiency, this

is not a realistic assumption in any actual implementation. However the equations

so derived are very useful for simulation and analysis; analogous equations for im-

perfect/incomplete observation with a mixed conditional state (density operator) are

easily derived as required for more practical purposes.

If we assume a Z-probe construction for Q and homodyne detection of the am-

plitude quadrature observable of the field that scatters off of both cavities Y
p0q
t �

N
:
t pBt � B

:
t qNt � jtpBt � B

:
t q, using Nt, the QSDE integral represented by the full

physical version of Eq. (7.25), and separate photon counting of each of the atomic ra-

diation modes Y
pkq
t � jtpΛpkkq

t q k � t1, 2u, the ‘physical’ pure-state propagator derived
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from (7.25) is (section 2.2.1)

d|ψty � #p?2κa1 �?
2κa2 � αqdY p0q

t � g

2̧

i�1

�
σpiq:ai � σpiqa:i	dt�pa:1a1 � a

:
2a2qκdt� 2a:2a1κdt� α

?
2κpa1 � a2q:dt� 2̧

i�1

�pa2γKσpiq � IqdY piq
t � γKσpiq:σpiqdt	+|ψty. (7.26)

For simulation purposes Eq. (7.26) can be used to generate realistic homodyne mea-

surement records dY
p0q
t by driving the innovations and gauge processes with appro-

priate pseudo-random numbers (section 2.2.1 and [Tan99]). Similarly, if we define

j̄tpXq � N̄
:
tXN̄t using the QSDE integral N̄t represented by the limiting version of

Eq. (7.25) we can construct the ‘idealized’ pure state propagator assuming homodyne

measurement of Ȳt � j̄tpBt �B
:
t q as

d|ψ̄ty � #αZ1Z2dȲt � |α|2
2
dt

+|ψ̄ty, |ψ̄0y P H0 (7.27)

where Zi � |hyxh|�|gyxg| on TLS i (note that for the limiting model for Q Eq. (7.24),

we don’t need to monitor the atomic radiation channels to maintain state purity).

It is straightforward to show that the idealized filter (7.27) represents a finite-time

unraveling of an ideal Z1Z2 projective measurement as discussed in [SvHM04]. As a

side note, it is interesting to point out that we can alternatively think of (7.27) as a

reduced filter for analyzing the homodyne photocurrent in a two-cavity setup, which

exploits adiabatic elimination for a reduction in the number of system variables. In

particular we could track the parity of the two ‘physical’ TLSs (approximately, but

with little computational effort) by driving (7.27) with an experimentally measured

homodyne photocurrent in place of dȲt (see section 2.2.1). Below we will examine

the results of driving (7.27) with simulated ‘experimental’ photocurrents generated

by the physical Eq. (7.26).
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To demonstrate that the physical model does realize an approximate parity mea-

surement, we can use (7.26) to simulate Bell-state entanglement generation from sep-

arable initial states of the atom-cavity systems [NC00], using parameters that should

be achievable in a Fabry-Perot cavity/cold Cs atom system with mm-scale dielectric

mirrors, tg, κ, γK, αu � t20, 4.5, 0.5, 0.2u. We numerically integrate (7.26) from the

initial state |ψ0y � 2�1pp|gy � |hyq b |0yqb2 (that is, both cQED systems separably

in a superposition of the ground states and no photons in the cavity). As can be

seen in Fig. 7.5, the system begins with equal projections on the 2�1{2p|ggy � |hhyq
and 2�1{2p|ghy � |hgyq joint atomic states and the expected homodyne photocurrent

vanishes. The laser is then adiabatically switched on and the conditional state grad-

ually projects into an atomic parity subspace with the corresponding xdY p0q
t y � �2α.

After a fixed time γKt � 40 the probe is adiabatically switched off, but the projected

state persists. While the probe is on, the non-zero overlap with atomic Bell states not

present in the initial state is caused partially by entanglement with the cavity mode

states, but the residual expectation of such Bell states after the laser is switched off is

wholly due to the accumulation of weak measurements performed within the atomic

parity subspaces by the radiation field modes.

Finally, we compare the physical (7.26) and limiting (7.27) by two different com-

putational procedures. First, we compare independent simulations of the ideal-

ized projective measurement represented by Eq. (7.27) and the approximate pro-

jections represented by Eq. (7.26). To this end, we construct trajectories of the vari-

ance of parity operators: Varpσp1qZ σ
p2q
Z q from |ψty in simulations of Eq. (7.26) (with

σZ � |eyxe| � |gyxg| � |hyxh| distinguishing cavity-coupled and -uncoupled states),

and VarpZ1Z2q from |ψ̄ty in independent simulations of Eq. (7.27). Some summary

statistics from these simulations are depicted in Fig. 7.6. The integrations of the

idealized filter are initialized with |ψ̄0y � 2�1p|gy � |hyqb2. At t � 0 we begin with

Varpσp1qZ σ
p2q
Z q � VarpZ1Z2q � 1, and both variances decrease in time as the systems

randomly project into one parity subspace or the other. Indicative of their similar

statistics, the Varpσp1qZ σ
p2q
Z q and VarpZ1Z2q trajectory ensembles largely overlap at all

times. Moreover, it can be shown that the excited state population remains small at

all times, pα?2κ
g
q2, and that the atomic dynamics are principally constrained to the
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two ground states.

Second, following up on our side note, we assess how well (7.27) performs as a

reduced filter for analyzing the physical system. In this case, we construct trajectories

of VarrfpZ1Z2q by integrating |ψ̄ty with photocurrents simulated from Eq. (7.26). A

representative VarrfpZ1Z2q,Varpσp1qZ σ
p2q
Z q trajectory pair in Fig. 7.6 suggests the ac-

curacy of the reduced parity estimate. Underlaying this are the statistics of the frac-

tional residual error from 1000 such pairs: |Varpσp1qZ σ
p2q
Z q�VarrfpZ1Z2q|{Varpσp1qZ σ

p2q
Z q.

Although the range of Varpσp1qZ σ
p2q
Z q spans 5 orders of magnitude, the reduced filter

performs well, tracking this physical parity estimate to within a factor of 2 in every

shot.
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Figure 7.6: (from [KBSM09]) Summary of 1000 Bell-state projection simulations.
The top graph compares the statistics of the ideal and physical parity variance. The
mean of the Varpσp1qZ σ

p2q
Z q trajectories is shown as a solid, black line; grey shading

indicates the one-standard deviation range of trajectories above and below the mean.
The mean and standard deviation range of VarpZ1Z2q are shown by the dotted line
and blue shading. The bottom graph highlights the performance of the reduced filter.
Referenced to the right axis, a representative Varpσp1qZ σ

p2q
Z q, VarrfpZ1Z2q trajectory

pair are shown in solid black and dotted green, respectively. The blue-grey line and
shading, referenced to the left axis, depicts the mean and standard deviation range
of the fractional residual error over all trajectories.



Chapter 8

Autonomous QEC nanophotonic

networks

It’s well-established that quantum error correction (QEC) is critical to quantum in-

formation processing [NC00], but the usual formulation of error correction (e.g. see

section 7.1) entails a substantial overhead of classically controlled quantum operations

that is cumbersome to accommodate. In this section, I present a novel approach to

designing elementary QEC memory cells [KNPM10, KPCM11], in which all control

operations are performed autonomously by an embedded optical feedback loop. The

approach is natural for nanophotonic or superconducting microwave implementations

and in fact is expected to generally approach the ideal operation as the overall volume

of the system shrinks. The feedback network is entirely on-chip, requiring no external

clocking or control, and during steady-state operation would only need to be powered

by the injection of constant-amplitude coherent fields.

While the designs presented here are not yet possible to build, the network is

built from passive components such as optical waveguides, beamsplitters and cQED

devices, which have all shown rapid improvement in recent solid-state optical research

and should eventually be natural to integrate into large scale networks [PLP�11,
SBF�10, KMV�10, HKD�09, FFE�08]. Moreover, the details of the device imple-

mentation are of secondary importance. The specific designs were conceived of by

considering basic trends in device fabrication and the theoretical models available at

122
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this time. There are many different designs that could achieve these general goals. I

feel that the emphasis on designing quantum networks that control themselves and

the use of continuous-time physical modeling will be essential in developing actual

quantum technologies [JNP08, NJD09, Mab08a, IYY�11, Mab11]. With QEC, even

in the abstract, this approach is also attractive for design and analysis because it

can connect the goal of quantum decoherence suppression with formal optimization

methods of classical control theory [ADL02, Mab09b].

While our approach exploits rigorous theoretical results derived using techniques

from quantum fields theory and coherent-feedback quantum control (part I), I first

give an intuitive presentation of a network that comprises five cavity QED devices and

emulates bit- or phase-flip QEC codes, depending on the configuration. That such

networks are naturally communicated both intuitively and formally (in the language

of QSDEs) suggests their general ability to bridge the gap between abstract quantum

information formulations and specific hardware implementations. The final section

builds off of the bit-/phase-flip network to propose a more powerful network capable

of protecting an encoded qubit from arbitrary single-TLS errors, demonstrating the

generalizability of the approach.

8.1 An autonomous bit-/phase-flip network

8.1.1 Intuitive operation

The photonic circuit shown in Fig. 8.1 implements continuous QEC [ADL02, Mab09b,

OLB08] based on the bit-flip or phase-flip code (section 7.1.1). Recall that in the bit-

flip code a single logical qubit is encoded in the joint state of three physical TLSs

and is protected against independent bit-flip errors on any of these register TLSs.

The logical state |0̃y is encoded by the physical state |000y (all three register TLSs

jointly in the ‘0’ state), while |1̃y is encoded by |111y. The analogous phase-flip code

associates |0̃y with |���y and |1̃y with |���y (where |�y � p|0y � |1yq {?2) and the

logical qubit is protected against independent register phase-flip errors. In Fig. 8.1

Q1, Q2 and Q3 represent the register TLSs; the blue signal lines indicate the routing
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Figure 8.1: (from [KNPM10]) Schematic diagram of an autonomous nanophotonic
quantum memory showing TLSs in cavities (Q1, Q2 and Q3), circulators, beamsplit-
ters, steering mirrors and relays.

of a laser beam (injected in the coherent state |2αy, where |α|2 has units photons

time�1) used for error detection (following principles described in section 7.2.1); R1

and R2 represent two qubit-based photonic relays (as analyzed in [Mab09a]); and

the red signal lines indicate pathways for optical feedback using two additional laser

beams (injected in the coherent state |βy) for corrective Raman bit- or phase-flips.

The constant Hamiltonian interactions among the elementary physical systems along

the syndrome measurement pathway (blue signal lines) in Fig. 8.1 cause the |2αy field
to be scattered into the inputs of the control relays R1 and R2 in such a way that

the relays correctly switch the routing of the optical power in the |βy feedback fields

(red signal lines) to perform a Raman bit flip or phase flip on any register qubit that

needs one. In this scheme α and β take the place of the usual discrete time interval

between executions of the circuit that implements syndrome measurement and unitary

restoration. Clocked execution of a special measurement/restoration circuit is not

required in this approach—with the physical component models described below,

the operation of the coherent controller is stationary in the sense that α, β and all
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a b c

Figure 8.2: Details of the cQED relay component model (modified from [KNPM10,
Mab09a]): (a) input and output ports, (b) coupling of input and output fields to
resonant modes of the two cavities, and (c) relay internal level diagram.

Hamiltonian coupling strengths are constant in time. Other than the coherent field

inputs no interfacing to external detectors or electronics is required. As long as the

relays can be implemented in the same hardware platform as the register qubits,

the coherent controller can be entirely ‘on-chip.’ Much like an electronic operational

amplifier with a feedback impedance network, together the memory and controller

devices represent an integrated, self-stabilizing system that simply requires DC power

to function.

The quantitative performance of such a quantum memory will of course depend

on physical parameters such as the qubit-cavity coupling strengths and the cavity

decay rates, but as shown in section 7.2 and [Mab09b] this approach does not require

any fine-tuning of the parameters and requires only that certain ratios be large. It

is interesting to note that these ratios become large in a small volume limit for the

optical resonators, which is a natural limit to consider in nanophotonic implementa-

tions. Passage to the small volume limit also gives rise to drastic simplifications of

the quantum input-output models for the components in the QEC circuit, and thus

emerges as a significant new abstraction principle for the analysis of nanophotonic

signal-processing networks.

The physical qubits Q1, Q2 and Q3 are assumed to be multilevel ‘atoms’ in res-

onators whose internal states may be continuously probed, as in section 7.2.1. The

central component in the network’s QEC ‘controller’ is a proposed cavity-QED relay

[Mab09a], some details of which are presented in Fig. 8.2. Three cavity modes are
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resonant with various transitions in an intra-cavity atom, as shown in Fig. 8.2 (b)

and (c). In a similar small volume limit [Mab09a], the atomic dynamics are limited to

only the ground states, and when the atom is in state |hy (|gy) the cavity’s POWER

input is connected to the OUT (OUT) output port. A probe signal driving the SET

input port (in the absence of signal at the RESET input) causes the relay state to

decay to |hy, while driving only the RESET input induces decay to |gy. Through

these internal dynamics, a probe signal entering either the SET or RESET port of

the relay routes the POWER input out either the OUT or OUT port, respectively.

I now trace through the circuit dynamics of Fig. 8.1 in more detail, assuming a

bit-flip code implementation. A coherent input |2αy is split into probe and reference

beams. The probe beam first reflects from the cavity containing Q2, gaining a π or

0 phase shift depending on the state of that atom, putting the probe signal into a

coherent state with amplitude
?
2αZpQ2q (where ZpQ2q � |hyxh| � |gyxg| on Q2 and

the identity operation on all other Hilbert spaces is implied). The probe signal is

again split and the two resulting fields separately probe the cavities containing Q1

and Q3, resulting in signals with coherent amplitudes αZpQ1qZpQ2q and αZpQ2qZpQ3q.
These are interfered with copies of the reference beam, producing four signals with

amplitudes αpI�ZpQ1qZpQ2qq{?2 and αpI�ZpQ2qZpQ3qq{?2. The ‘+’ signals are sent

to the SET inputs of relays R1 and R2, the ‘-’ to the RESET inputs. In this way,

the SET (RESET) input to R1 receives a coherent input signal if Q1 and Q2 have

even (odd) parity, while the RESET (SET) receives only a vacuum input. Similarly

for R2 and qubits Q2 and Q3. The POWER inputs to R1 and R2 are two more

coherent fields, each with amplitude β and frequency and polarization that drive the

remaining, far-detuned atomic transitions depicted in Fig. 7.3. The OUT port of R1

(R2) is directed to both Q1 and Q2 (Q2 and Q3). The OUT port of R1 (R2) is

directed to Q3 (Q1). When a qubit is simultaneously illuminated by two of these

feedback beams, Raman resonance conditions are satisfied, inducing a coherent Rabi

oscillation between the states of that single qubit. When only one feedback beam

illuminates an atom, the beam is assumed to be sufficiently detuned such that it only

imparts an AC Stark shift to one of the atomic ground states. Remarkably, a proper

choice of the ground state each feedback beam targets prevents Stark shift-induced
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Figure 8.3: (from [KNPM10]) QSDE circuit representation of the autonomous net-
work depicted in Fig. 8.1.

dephasing of the stored codeword in any error state [KNPM10].

Assuming the register qubits are initialized in a proper bit-/phase-flip codeword,

this network will self-stabilize against bit/phase-flip errors without any external input

other than the coherent probe and Raman fields (α, β, and all Hamiltonian coupling

constants are constant in time). For an intuitive understanding of the network, note

that if no flip errors occur, the SET inputs to the relays are activated, Q1 and Q3 only

receive one feedback signal each and no corrective dynamics occur. If for example Q2

flips, the RESET inputs on both R1 and R2 are activated, Q2 receives both feedback

signals, while Q1 and Q3 again get only one each. A corrective flipping Hamiltonian

is thus implemented on Q2 until a flip is ‘complete,’ which drives the relays back to

the ‘no-error’ state, which extinguishes the flipping Hamiltonian.
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8.1.2 Network model and dynamics

A more schematic depiction of Fig. 8.1 appropriate for a QSDE representation of

the network is shown in Fig. 8.3. Static devices are now shown as labeled blocks,

with multiple I/O ports, while the fields connecting them are directional connections

between these ports. The QSDE component models are defined in the supplement of

[KNPM10], but Wα are coherent inputs (Weyl operators, section 1.4), B are beam-

splitters, Qij are the probe and Raman interaction subsystems of qubits Qi, and Rij

are subsystems of relay Ri.

The network considered in this section, shown schematically in 8.3 is slightly dif-

ferent from the network shown in Fig. 8.1. This is because in this more formal section,

the cavity for Q2 is taken to be two sided with a coherent probe laser impinging on

each side, allowing a decomposition of the network into two (symmetric) parts as

shown in Fig. 8.3 and simplifying the calculations for the overall network parameters.

On the other hand, in Fig. 8.1 all qubit cavities are identical and one sided, which

would be probably more suited in actual cQED implementations. Similar effects can

be achieved with either a double sided cavity for Q2 or a single sided cavity that is

followed by a 50/50 beamsplitter. Although the two networks are slightly different,

they only differ in the overall network scattering matrix, and a slightly modified re-

peat of the lengthy calculations, with Q2 one-sided and followed by a beamsplitter,

show that the network coupling vector and Hamiltonian will be the same for both

networks. As a consequence, I emphasize that the two networks will have the same

network master equation. Since, the main interest here is the network master equa-

tion, to derive this equation it is more convenient to work with the slightly modified

network of Fig. 8.3.

The unconditional master equation that describes the dynamics of the autonomous

network is immediately constructed after deriving the component model for G` G1,
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according to Fig. 8.3. First, following Fig. 8.3, the parts of G are

Gp � R12 � B � ppQ12 � Q21q` pI, 0, 0qq �
B � �W?

2α ` pI, 0, 0q� ,
Gf � pQ11 `Q31 `Q22q � pB `2 pI, 0, 0qq �pR11 ` pI, 0, 0qq � pWβ ` pI2, 0, 0qq , (8.1)

representing the ‘probe’ and ’feedback’ network subsystems of G � Gp ` Gf , re-

spectively, and `2 is a “padding operator” related to the concatenation product

[KNPM10] (necessary for proper field indexing). Correspondences in G1 :
R22 Ø R12, R21 Ø R11, Q23 Ø Q11, Q33 Ø Q22,

Q13 Ø Q31, Q24 Ø Q21, Q32 Ø Q12. (8.2)

The overall structure of the network is (with a trivial rearrangement of field indices)

N � �
diagpSppq, S1ppq, Spfq, S1pfqq, ������ Lppq

L1ppq
Lpfq
L1pfq

������ ,
H ppq �H 1ppq �H pfq �H 1pfq�. (8.3)

In this calculation, the network components representing the bit- or phase-flips errors,

E
pQiq
X,Z , may be simply concatenated to the ‘correction’ network N immediately before

the derivation of the full system’s master equation.

A full, physical model for the network then follows from plugging in the physical

models for each of the W , B, Q, and R subsystems and applying the series and

concatenation products to obtain a single triplet, N � pS, L,Hq network model. This

symbolic calculation may be done tediously by hand, but may also be automated

using symbolic matrix manipulation scripts. As the physical model utilizing both



130 CHAPTER 8. AUTONOMOUS QEC NANOPHOTONIC NETWORKS

the Q models derived in 7.2.1 for the probing component of Q1, Q2 and Q3 and the

full model for the Raman interactions are too cumbersome to analyze and too large

to simulate, we make use of the same adiabatic elimination theorem [BvHS08] to

consider instead the limiting dynamics as parameters are appropriately scaled. The

small volume limit may be taken before the network construction [GNW10], and so

the limiting version of Q model derived in section 7.2.1 (Eq. (7.24)) may be simply

plugged into N . The Raman interaction eliminates the excited state r in each qubit

(see Fig. 7.3) in the limit of large feedback amplitude and detuning. As the limiting

dynamics require input from both Gf and G1
f components, this procedure may only

be done after N is at least partly constructed (see the supplemental of [KNPM10]).

After interconnecting simplified (small-volume) models for the bit-flip components

according to the bit-flip circuit diagram, including individual bit-flip error processes,

and adiabatically eliminating of all but the qubit and relay ground states, one obtains

[KNPM10] the closed-loop master equation9ρt � �irH, ρts � 7̧

j�1

�
LjρtL

�
j � 1

2
tL�jLj , ρtu
 , (8.4)

where

H � Ω

�?
2X pQ1qΠpR1q

g Π
pR2q
h �X pQ2qΠpR1q

g ΠpR2q
g �?

2X pQ3qΠpR1q
h ΠpR2q

g �
ΠpR1q
g pΠpQ1q

g � Π
pQ2q
h q � 2Π

pR1q
h ΠpQ3q

g � ΠpR2q
g pΠpQ2q

g � Π
pQ3q
h q � 2Π

pR2q
h Π

pQ1q
h



,

L1 � α?
2

�
ΠpR1q
g Op12q � σ

pR1q
hg Ep12q	 , L2 � α?

2

��σpR1qgh Op12q � Π
pR1q
h Ep12q	 ,

L3 � α?
2

�
ΠpR2q
g Op32q � σ

pR2q
hg Ep32q	 , L4 � α?

2

��σpR2qgh Op32q � Π
pR2q
h Ep32q	 ,

L5 � ?
ΓX pQ1q, L6 � ?

ΓX pQ2q, L7 � ?
ΓX pQ3q (8.5)

where X pCq � |hyxg| � |gyxh|, σpCqjk � |jyxk| and Π
pCq
j � |jyxj| on component C,

Epijq � ZpQiqZpQjq � 1 and Opijq � ZpQiqZpQjq � 1, each qubit suffers random flips at

a rate Γ, and the ‘feedback parameter’ Ω is proportional to |β|2{∆ (note that several

Lj terms corresponding to strong dephasing of the relay states have been omitted
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Figure 8.4: (from [KNPM10]) Decay of fidelity, xΨ0|ρt|Ψ0y, for several values of the
feedback parameter Ω � |β|2γK{2∆ (see the supplemental of [KNPM10]), α � Ω{8,
and Γ � 0.1. The fidelity decay of a single, bare qubit also suffering bitflip errors at
rate Γ � .1 is also shown.

as they have no appreciable effect on the dynamics). An analogous procedure using

the phase-flip component models leads to a master equation with the substitutions

ZpQiq Ø X pQiq, 2ΠpQiq
h
g

Ñ 1 � X pQiq. While L5 through L7 drive the corrupting bit-

flip processes, the first three terms of the Hamiltonian (H) and remaining ‘collapse

operators’ work in concert to implement the corrections: L1 through L4 chiefly drive

the states of the two relays to reflect the qubit parities, and each bit-flipping term in

the Hamiltonian is only active for a particular ‘syndrome state’ [Got09], as indicated

by the relays. The remaining Hamiltonian terms physically correspond to AC Stark

shifts, whose effects have been minimized by design [KNPM10].

In Fig. 8.4 we display some illustrative numerical integrations [Tan99] of Eq. (8.4)

for the bit-flip scenario. With the flip rate set to Γ � 0.1, the feedback amplitude is

varied from Ω � 0 (no feedback) to Ω � 210, with the probe amplitude kept at α �
Ω{8. The initial state of the qubit register is chosen as |Ψ0y � p|gggy � i|hhhyq{?2,
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ρ0 � |Ψ0yxΨ0|, and the fidelity decay xΨ0|ρt|Ψ0y is computed to quantify the deco-

herence suppression achieved by the coherent feedback loop. With Ω � 0 the fidelity

decay is identical to that of the three-qubit register without any measurement or

feedback, while for larger values of Ω and longer storage times, the fidelity of the

encoded qubit is clearly improved relative to what it would be for a bare qubit. Vari-

able performance with |Ψ0y simply reflects the different susceptibilities of codewords

to bit-flip errors. Because of the small probability that additional errors accrue be-

fore the correction of a single flip, fidelity is gradually lost for finite probe/feedback

strengths, as in conventional QEC with finite correction time intervals.

8.2 The autonomous subsystem QEC network

While the network described in the previous section is able to emulate the bit- or

phase-flip QEC codes, such codes are severely limited: they can only protect the

encoded logical qubit against either single-qubit bit-flip or single-qubit phase-flip er-

rors. To emphasize how straightforwardly the approach scales to more powerful QEC

codes, in this final section I describe, model and simulate an autonomous nanopho-

tonic network that emulates the 9 qubit Bacon-Shor subsystem code [Bac06, AC07],

the smallest of a class of naturally fault-tolerant QEC codes capable of protecting a

single logical qubit from arbitrary single-qubit errors (see 7.1.2 for a description of

this code).

Using the same components and the intuition gained in section 8.1, it’s in fact

immediately clear how one could design a self-correcting nanophotonic network that

emulates the 9 qubit Bacon-Shor QEC code [Bac06]. In addition, one may also

immediately write down the full master equation that governs the internal dynamics

of all memory and controller devices of this network without having to resort to

a quantum circuit model, suggesting the general applicability of the approach (a

laborious, but straightforward network calculation confirms the master equation; see

below). In figure 8.5 we sketch the nanophotonic design. Two probe laser inputs first

travel down the middle row and column of a 3 � 3 grid of memory qubits. At the

end of the middle row or column, both probes are split on a beamsplitter with each
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Figure 8.5: (from [KPCM11]) a) Schematic of nanophotonic network capable of
implementing the 9 qubit Bacon-Shor QEC code. CW coherent field inputs that
probe the “Z” and “X” syndromes of the memory qubits, Qi,j, enter from the middle
of the bottom and left-hand side, in blue and green, respectively. After traversing
the memory qubits, the phases of these fields represent measurements of the four
syndrome generators. Through interference with four more cw “local oscillator” laser
inputs on beamsplitters and interaction with four “relay controller” qubits, Ri, these
phases effectively control the relays’ internal states. The relay internal states then
direct four “feedback” cw inputs towards the memory qubits. When two red (orange)
feedback beams simultaneously illuminate a memory qubit, coherent Pauli-X (-Z)
rotations occur until a “no-error” syndrome state is recovered, at which point the
corrective feedback dynamics automatically shut off. b) & c) Example memory and
relay cQED input-output, internal level structure, and coupled atomic transition
schematics, adapted from [KNPM10].

of the now four probe beams traveling back along the remaining rows and columns,

respectively. The frequency and polarization of the laser probe traversing the rows

(columns) is such that upon reflection from each memory cQED device, the probe

picks up either a π or 0 phase shift according to the atomic ground state in a Pauli-X
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(Pauli-Z) basis. Thus after traversing the memory qubits, the phases of the four probe

lasers become entangled with the memory qubits via controlled-NOT interactions (in

a qubit Z- or X-basis) – essentially as four ancilla qubits would be to extract the

error syndrome in a measurement-based QEC scheme [Got09, NC00, AC07]. By

interfering with four local oscillator lasers, the phases of the four probes set the

internal state of four relays, which thus play the role of the classical register in a

measurement-based scheme; the four relay states together represent the quantum

memory’s error syndrome [Got09, NC00]. As in [KNPM10], these relays control

the routing of four more input “feedback” lasers that perform corrective, unitary

rotations on the ground state of the memory qubits via Raman interactions: when

a single qubit is simultaneously illuminated by feedback beams emitted by both “Z-

syndrome” (“X-syndrome”) relays, it undergoes coherent Pauli-X (Pauli-Z) rotations

between its ground states (for simplicity in this much larger network, we assume Stark-

shift compensation mechanisms are in place [KNPM10]) until the memory qubits –

followed by the controllers – recover their “no-error” state, and automatically shut

off the corrective feedback. Although errors may occur to any of memory qubits,

corrective feedback is applied to only a small subset of the memory qubits, as in

figure 8.5, due to the subsystem structure of the code [KLP05, Bac06] (see 7.1.2).

Moreover, as the internal states of the relays are continually reenforced by the cw

probes, errors in the relays’ atomic states should be self-corrected by the network.

The subsystem structure of the Bacon-Shor code [KLP05, Bac06] may be further

leveraged in a slightly modified network configuration. Although doing so would re-

quire a significantly more intricate waveguide network and/or cQED devices, instead

of threading the probe fields directly along rows and columns, a zig-zag configura-

tion, as in figure 8.6, should aid network robustness against optical waveguide loss.

Whereas photon loss almost anywhere in error-probe waveguide depicted in figure 8.5

effectively causes network-induced “errors” (which sometimes can be ameliorated by

the correction network), logical fidelity in the “zig-zag” network should be immune to

any waveguide loss in half of the probe network connections [AC07] (see 7.1.2). We

will consider these losses and other critical robustness concerns in depth a later pub-

lication, however, and so for my purposes here, both networks represented in figures
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Figure 8.6: (from [KPCM11]) Schematic of the “zig-zag” configuration of the Z-
probe network only. Due to the subsystem structure of the code, dotted connections
are capable of suffering calibrated waveguide loss without disruption to the logical
information stored in the memory qubits (section 7.1.2). The “zig-zag” configuration
for the X-probe network follows analogously, essentially rotated by 90�.
8.5 and 8.6 have equivalent dynamics.

The quantum circuit model approach to deriving the master equation dynamics of

the network depicted in figure 8.5 proceeds by appropriately “connecting” individual

quantum optical device models in series (section 1.4) and parallel (section 1.5) along

freely-propagating optical field modes. In an equivalent procedure as in section 8.1,

the entire closed loop QSDE model for our 9 qubit Bacon-Shor network may be
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constructed from

GZ
p � pRc

1 ` Rc
2q � pB ` Bq ���

QZ
3,1 �QZ

2,1 �QZ
1,1

�` I1 ` �QZ
3,3 �QZ

2,3 �QZ
1,3

���ppB `2 I1q` I1q � ��QZ
1,2 �QZ

2,2 �QZ
3,2 �W

?
2α
	`W α ` I1 `W α

	
Gf1 � �

QX1
3,3 `QX1

3,1 `QX1
3,2

�� pI1 `Bq � ��Rf
1 � �W β ` I1

�	` I1
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QX1
3,1 `QX1

3,3 `QX1
3,2

�� pI1 `Bq � ��Rf
2 � �W β ` I1

�	` I1
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p � pRc

3 ` Rc
4q � pB ` Bq� ��QX

1,1 �QX
1,2 �QX

1,3

�` I1 ` �QX
3,1 �QX

3,2 �QX
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?
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QZ1
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�� pI1 `Bq � ��Rf
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QZ1
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3,1 `QZ1
2,1

�� pI1 `Bq � ��Rf
4 � �W β ` I1
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Gnetwork � GZ

p `Gf1 `Gf2 `GX
p `Gf3 `Gf4 (8.6)

where GZ
p (GX

p ) describes the “Z” (“X”) syndrome extraction network, Gfi describes

the feedback network controlled by relay i, and Gnetwork represents the pS, L,Hq
triple of the entire system, describing all but the error dynamics. As in the previous

section, the final step in the calculation, which yields a relatively low-dimensional total

network Gnetwork, is the application of an algorithmic adiabatic elimination procedure

[BvHS08] that restricts the Raman interaction dynamics to the ground states of the

memory qubits only.

Including arbitrary single-qubit dephasing of each memory qubit toGnetwork through

simple concatenation products, the closed loop dynamics of ρt, the density matrix for

all 9 memory and 4 relays qubits (physically representing the entire system’s dynam-

ics after tracing over the field degrees of freedom), is read off from the entire system’s
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where tXi,j, Zi,ju are the Pauli-tX,Zu operators on the memory qubit in row i and

column j, Π�
i is the projector onto state |�y of relay i, σ�	i � |�yx	| for relay i, andt�OZ

i&j, E
Z
i&j,�OX

i&j, O
X
i&j, u � 1�t�Z�,iZ�,j, Z�,iZ�,j,�Xi,�Xj,�, Xi,�Xj,�u with index� signifying the operator product of all operators acting on some row or column. Γ

is the mean error rate of each type of single-qubit error, α is the coherent amplitude

of the (eventual) four probe lasers (where |α|2 has units photons time�1), and Ω is

proportional to the optical power in each feedback beam. Comparison with the master

equation derived in the previous section Eq. (8.4), reveals that these dynamics for

the 9 qubit QEC subsystem code appear as an almost trivial expansion of that simple

bit-/phase-flip network.

Despite the idealized description of all cQED systems as simple qubits, Eq. (8.7)

still represents complex dynamics on a (sparse) density matrix with dimensions 29�4�
29�4. Due to the size of the problem, multi-threaded numerical integration of Eq.

(8.7) was carried out on a multicore computational server using BLAS routines with

OpenMP. Figure 8.7 depicts the time-evolution of the fidelity of the logical information

stored in the system, initialized with the logical qubit in the +1 YL eigenstate, the
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Figure 8.7: (from [KPCM11]) Decay of the logical codeword fidelity (see 7.1.2) in
time for several feedback parameters. In the simulation, single-memory qubit X-, Y-
and Z-errors occur each at average rate Γ � .1 per qubit. While the amplitude of the
probes, are fixed at α � Ω{8, the feedback “strength” Ω is varied from 0 (no feedback)
to 200. For large feedback strengths, the logical storage fidelity is eventually superior
to that of a single, bare qubit suffering arbitrary dephasing.

four gauge qubits in +1 ZT i eigenstates (see 7.1.2), and the four relays each in their

“no error” |�y state. The bitwise-error rate was fixed at Γ � .1, the probe strength

kept at α � Ω{8, and the “feedback strength” Ω varied from 0 to 200. Initially, all

fidelity curves drop steeply, representing a network “latency” before both probe and

feedback networks begin to correct errors. Thereafter, fidelity still drops due to the

finite probability that multiple errors irrecoverably accumulate before correction, but

at a retarded rate that decreases with increasing feedback strength. For Ω ¡ 100,

despite the initially steep fidelity loss, the decay is slow enough to eventually achieve

superior storage fidelity than a single, uncorrectable qubit suffering X-, Y-, and Z-

errors at the same bit-wise rate.

Finally, we may break down the dynamics of this particular network by calculating
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Figure 8.8: (from [KPCM11]) Comparison of network storage fidelity between
systems suffering different types of errors. All solid curves are simulated withtΓ, α,Ωu � t.1, 100{8, 100u, except for the magenta curve, which has no feedback,
as indicated. The blue curve represents the storage fidelity when only X- or only
Z-errors occur to each memory qubit. The only slightly lower red curve comes from a
system suffering only Y-errors, which require coordination between all aspects of the
network. The green curve represents a system suffering all three types of error, each
at the same bit-wise rate, and has roughy the same fidelity decay as a sum of the
decays from each type of error acting alone. The dashed black line again represents
the logical fidelity of a single, bare qubit suffering all three types of errors at mean
rate Γ � .1 each.

its performance in response to different types of errors. In figure 8.8, we plot the

fidelity decay in time with tΓ, α,Ωu � t.1, 100{8, 100u, but with the memory qubits

suffering only single-qubit X-, Z-, or Y-errors. Systems suffering only X- or Z-errors

require only “half” of the feedback network to function well and achieve the best

storage fidelity. The system responds slightly worse to Y-errors. This is expected as

Y-flip errors (i.e. simultaneous bit-flip and phase-flip errors on a single qubit) requires

the two halves of the correction network to work in concert to correct the error. That
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such coordination occurs without too much additional fidelity loss suggests that the

apparatus is fairly unbiased towards the types of errors it corrects. Similarly, when

all three errors are acting simultaneously, each at mean rate Γ � .1 per qubit, the

additional fidelity loss scales roughly linearly with the total error rate in this strong

feedback regime, as one would expect for an efficiently operating system.
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