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Preface

Broadly, this work discusses a dimensionality reduction method suitable for linear open quantum

systems with coherent time-delayed feedback. The background section provides a succinct introduc-

tion to relevant material needed for the other chapters. The remainder of the work is divided into

two main chapters. The first chapter deals with the simpler case of passive systems (beamsplitters,

phase shifters, time delays, etc.) while the second chapter tackles the more general case of generic

linear systems.

The basis of the method is to first describe the input-ouput behavior of a given system using its

transfer function, and then write that function as an infinite product of terms of a certain form.

Each of these terms should correspond to a physically realizable system (in our case having a single

degree of freedom). To obtain an approximate system, a truncation is made to the product. In

the case of passive linear systems, it suffices to use the input-output relation of the annihilation

fields only. It turns out we can use the Potapov-Blaschke factorization, a matrix-valued function

extension of the Blaschke factorization from complex analysis. In the case of active linear systems,

a description including both the creation and annihilation fields is required to properly capture the

input-output relations. Unfortunately, the Potapov-Blaschke factorization was no longer applicable

for this case (in particular, a typical transfer function considered is no longer J-unitary). Despite

this, we were able to obtain another analogous factorization theorem for a wide class of active linear

systems.

A reduced model resulting from our framework can be represented as a component within the

SLH framework, a useful formalism for representing a large class of open quantum systems. This

makes our method immediately useful for obtaining effective models of aggregate parts of networks

consisting internally of coherent time-delayed feedback loops, which can be used for simulation

purposes. In some sense, our factorization captures the ‘natural’ modes of a given system, so

we can capture the important behavior of a given system using few degrees of freedom. This is
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important for simulation purposes, especially if the (reduced) linear system is coherently combined

with a nonlinear quantum system. In this case, a full quantum simulation of the dynamics is often

required, and using more degrees of freedom than necessary can quickly become computationally

prohibitive.
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3.12 The output from a Fabry-Pérot cavity, with initial state zero. The mirror has reflec-

tivity r = 0.9 and the duration of the delay is 1. The two output ports represent the

signal reflected and the signal transmitted through the cavity. The signal enters the

system from port 0 and exists from both ports 0 and 1 (see Figure 3.13). In steady-

state, the norm of output 0 converges to zero, an the norm of output 1 converges

to 1. The stated number of modes in each diagram is the number of modes used in

the delay. We see that adding more modes eventually converges to a piecewise step

function. The steps result from the round-trip of the signal inside the cavity. . . . . 45

3.13 Here we interpret the dynamics of the system in the Fabry-Pérot cavity considered.
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Chapter 1

Introduction

This work will concern quantum input-output networks, which consist of localized quantum com-

ponents interacting via (directed) bosonic fields. The inputs and outputs of such a network are

the bosonic fields traveling along one-way channels. We refer to such networks as open quantum

systems.

There are many quantum network modeling scenarios in which it is necessary to capture the impact

of time delays in the propagation of signals between components. For example in large-area commu-

nication networks there is a obvious need to analyze synchronization issues; in integrated photonic

circuits the high natural bandwidth of nanoscale components may create problems of delay-induced

feedback instability, and may support the design of devices (such as oscillators) that exploit finite

optical propagation delays. Understanding the effects of delays is also important in the context

of quantum control, where finite delay propagation can have non-negligible effects in real systems,

although most work has focused on the zero delay limit. Recently it has also been shown that

coherent delayed feedback can be utilized as a tool to improving enhanced squeezing of coherent

states ([30], [39]).

In considering how best to represent and simulate time delays in quantum networks we would like

to strike an expedient balance between the need to minimize additional computational overhead

and the desire to derive intuitive approximate models. Our main interest in this work is to develop

a systematic approach to modeling the leading-order effects of signal propagation time delays in

a quantum optical network that can be specified naturally using the so-called SLH formalism of
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Gough, James and co-workers [13, 16, 14, 19, 60, 61, 6]. Whereas series and feedback intercon-

nections of open quantum systems in the SLH formalism are generally treated as having vanishing

signal propagation time delay, we seek to treat a class of systems having finite delays. Our approach

utilizes additional degrees of freedom to capture the behavior of trapped resonant modes created by

the system’s internal network of feedback pathways and time delays, targeting a specific frequency

range that corresponds to the intrinsic bandwidths of components in the network.

The study of time-delay systems has a long history (see [50] for a thorough overview). In the context

of quantum systems, a number of approaches different than ours have been suggested. Within the

quantum control scenario, incorporating time-delayed coherent feedback has been analyzed recently

by Grismo [21]. In that work, a series of cascaded systems is introduced, such that the system is

driven by past versions of itself. Later in [58], this work was extended to include the case of multiple

delays of different durations. The construction developed by Grismo appears most suitable for use

in scenarios with very large feedback time delay, requiring a much higher computational overhead

than should be necessary when propagation delays are relatively small.

Recently Pichler and Zoller [46] have described an approach to modeling the dynamics of a finite-

delay quantum channel that discretizes the delays as bins and exploits the Matrix Product State

formalism for computational efficiency, and demonstrate its use in analyzing quantum feed-forward

and feedback dynamics. Simulation and design of quantum networks using such an approach has

been further explored in [35] and applied in ([57, 45]). Our work here is distinguished by showing

how networks incorporating feedback via many coupled signal channels can be treated efficiently

and by focusing on SLH-compatible modeling at the level of quantum stochastic differential equa-

tions (QSDEs). The method we present can straightforwardly be incorporated into the Quantum

Hardware Description Language (QHDL) framework [56] for automated model construction for

complex quantum networks.

Our work provides an extension of some prior papers, and is closely related to others. In [22] and

[41], the authors obtain a cascade realization from a given linear quantum stochastic system. Our

work here can be considered a natural extension in the case that delayed feedback is included.

Isolated loops with time delays are also discussed in the context of linear quantum systems in

[17].
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Chapter 2

Background

2.1 Quantum states and observables

To represent physical states, a system is identified with a Hilbert space H. Generally it may be

infinite-dimensional, but for computational purposes one must often consider a finite-dimensional

Hilbert space. A physical state of an isolated system is described using a ‘ray’ in H, i.e. by a set

of nonzero vectors ψ ∈ H that can be obtained from one another by multiplication of a nonzero

scalar. In general, states that can be represented using rays on a Hilbert space are known as ‘pure

states’. Throughout, unless otherwise declared, when we pick a representative for a state ψ it will be

assumed to have norm 1 (and will sometimes just be referred to as the ‘state’). Common notation

we will sometimes use is the ‘bra-ket’ notation: |ψ〉 for ‘column’ vectors and 〈ψ| for ‘row’ vectors

(to be multiplied as matrices).

An observable A is self-adjoint operator (Hermitian in the finite-dimensional case) on H. Its ex-

pectation value is determined by 〈A〉 = 〈ψ|A |ψ〉. In the standard theory, it is assumed that when

an observable is measured, the state settles into one of its eigenvectors of the observable, and the

measurement yields the eigenvalue of the observable as the observed value. Suppose we expand the

state prior to measurement in terms of the observable’s eigenvectors: |ψ〉 =
∑
i ci |ψi〉. Then the

probability of the state settling to eigenvector i and the measurement resulting in eigenvalue i is

the norm of the ith component, |ci|2.

When there are multiple interacting systems, the composite system is described by the tensor

product of the individual systems. For example, the composite system of two individual systems

3



1 and 2 with respective Hilbert spaces H1 and H2 is described using H1 ⊗ H2. If system 2 is

inaccessible to measurements, we may wish to describe the state of system 1 only. In this case, it

is necessary to use the mixed states formalism to describe the state of system 1.

In the mixed state formalism, we represent the state of a system using an operator on the Hilbert

space H of the system ρ =
∑
i ci |ψi〉 〈ψi| ∈ L(H). Here ψi are pure states in H and ci are their

probabilities (which must be non-negative and sum up to 1). From this definition, the expectation

value of an observable can be found:

〈A〉 =
∑
i

ci 〈ψi|A |ψi〉 = tr (ρA) . (2.1)

The result of the measurement process is also analogous to the pure-state case. Remembering A is

self-adjoint, we can decompose it as A =
∑
i ciΠi, where ci are the eigenvalues of A and Πi are the

orthogonal projectors corresponding to each eigenvalue. The probability of observing ci is tr(ρΠi),

resulting in the new density matrix ΠiρΠi/tr(ρΠi).

To obtain the mixed state of system 1 from the composite system 1 and 2, we an first construct

the mixed state of the composite system: ρ12 = |ψ12〉 〈ψ12|, where ψ12 is the pure state of the

composite system. Then, we take the partial trace with respect to system 2 to obtain the mixed

state ρ1 = tr2(ρ12). The partial trace tr2 is the unique linear operator from L(H1 ⊗ H2) to

L(H1) that satisfies tr2(ρ1 ⊗ ρ2) = ρ1tr(ρ2). The choice of the partial trace can be physically

motivated by consistency conditions of measurements made on system 1 alone versus measurements

on the composite system 1 and 2 [51]. In the finite-dimensional case, the partial trace can be

computed efficiently using e.g. [38]. In general, the partial trace results in mixed states that may

not be representable as pure states, even when the composite system was representable as a pure

state.

2.2 Dynamics

We set ~ = 1 throughout. For an isolated quantum system, the dynamics evolve in time according

to the Schrödinger equation:

d |ψ(t)〉
dt

= −iH(t) |ψ(t)〉 . (2.2)
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HereH(t) is the Hamiltonian of the system. The mixed state analogously evolves according to

dρ(t)

dt
= −i[H(t), ρ(t)]. (2.3)

Here, [A,B] = AB −BA is the commutator between two operators A and B. These two equations

preserve the norm of |ψ(t)〉 and the trace of ρ(t). For a isolated system, we can also find the time

evolution operator U(t) satisfying

dU(t)

dt
= −iH(t)U(t), U(0) = I. (2.4)

The time evolution operator can then be used to find |ψ(t)〉 = U(t) |ψ(0)〉, or any operator in the

Heisenberg picture: A(t) = U(t)†A0U(t).

2.2.1 Quantum Stochastic Differential Equations

We will be interested in the dynamics of open quantum systems. One typical starting point used

to derive open system dynamics is a system with Hamiltonian HS interacting with a bath with

Hamiltonian HB via an interaction Hamiltonian HI . The dynamics of the ‘universe’ (system and

bath together) are then considered to be an isolated system with Hamiltonian H = HS +HB +HI .

It will be understood in this notation that HS is an operator acting only on the system (i.e. we

actually mean an operator HS ⊗ I), and similarly for HB . The bath is often represented an infinite

set of harmonic oscillator modes:

HB =

∫ ∞
−∞

1

2π
dωωb†(ω)b(ω), (2.5)

We assume the interaction term has form

HI = i

∫ ∞
−∞

1

2π
dω(L†b(ω)− Lb†(ω)), (2.6)

where the L is a system operator. Here the bath modes b(ω) satisfy the commutation rela-

tions [b(ω), b†(ω′)] = 2πδ(ω − ω′). Meanwhile, the system Hamiltonian remains arbitrary in this

model.

This interaction term (Eq. 2.6) can be obtained from a common interaction type of the form

i
∫∞
−∞

1
2πdωκ(ω)(b(ω) + b†(ω))(c − c†) for a system operator c under certain assumptions, most

importantly that the interaction strength κ(ω) varies slowly in ω (effectively causing the bath to be
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Markovian) and the rotating wave approximation (dropping interaction terms that oscillate quickly

after a change of frame). See [6].

Going to the rotating wave frame by making the substitution b(ω) 7→ b(ω)e−iωt results in the HB

term dropping out, and switching to the time domain via b(t) =
∫∞
−∞

1
2πdωb(ω), we obtain

H = HS + i(L†b(t)− Lb†(t)). (2.7)

In this picture each bath mode (in the time domain) interacts with the system at a different time.

We can think of the bath as a channel passing through the system. This picture will be important

later because we will want to concatenate multiple systems via interaction channels. We also assume

that each bath mode is initially in the vacuum state. When modeling components with nonzero

vacuum inputs, we could insert a component modifying the state of the bath modes before they

pass through subsequence components.

The time evolution operator can be found by integrating its dynamical equation in time:

U(t) = exp

{∫ t

0

−iH(s)ds

}
, U(0) = I. (2.8)

To avoid dealing with the singular commutation relations [b(t), b†(t′)] = δ(t − t′), it is convenient

to introduce the time-integrated quantities:

dB(t) =

∫ t+dt

t

b(s)ds, dB†(t) =

∫ t+dt

t

b†(s)ds. (2.9)

The expectation values of these terms with respect to the vacuum state satisfy

〈
dB(t)dB†(s)

〉
=

dt if t=s,

0 otherwise.
(2.10)

〈
dB(t)dB(s)

〉
=
〈
dB(t)†dB(s)

〉
=
〈
dB†(t)dB†(s)

〉
= 0. (2.11)

The dB(t) ‘noise’ terms are analogous to the Brownian increments in classical stochastic calculus.

Usually we take the expectation with respect to the vacuum, allowing us to replace each of the

terms above by their expectation. Also, we can integrate along these increments, just as in the

classical case. We can choose to use Stratonovich or Ito integrals, defined in the same way as in the
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classical case: for a function f(t), it’s Ito integral is given by

∫ t

0

f(s)dB(s) ≡ lim
n→∞

n−1∑
i=0

f(ti)[B(ti+1)−B(ti)]. (2.12)

The Stratonovich integral uses the midpoints at each increment instead:

∫ t

0

f(s)dB(s) ≡ lim
n→∞

n−1∑
i=0

f

(
1

2
(ti + ti+1)

)
[B(ti+1)−B(ti)]. (2.13)

Our choice of Ito versus Stratonovich is important, and will result in different terms. In practice

it is often more useful to use the Ito formalism. In this case we have to be careful because of the

modified chain rule (which arises analogously to the classical case):

d(X(t)Y (t)) = dX(t)Y (t) +X(t)dY (t) + dX(t)dY (t). (2.14)

To recast the singular bath modes b(t) in (Eq. 2.7) in terms of the increments dB(t) in (Eq. 2.11),

we can formally replace b(s)ds 7→ dB(s), but specifically in the Stratonovich interpretation. The

reason is that the substitution has to be accurate to second order in each increment due to the

stochastic terms, and the midpoint approximation used in the Stratonovich formulation satisfies

this condition. Fortunately it is not difficult to translate between the two formalisms. Another

nice way to determine the correct form is to remember U(t) must remain unitary throughout its

evolution and apply the Ito rule (Eq. 2.14) as in[24, 42]. Either way, we find there is a term − 1
2L
†L

that must be added for the case of our Hamiltonian in (Eq. 2.7). Finally, this tells us that the

propagator of U(t) in the Ito formulation is given by

dU(t) =

[
−(iHS +

1

2
L†L) + LdB†(t)− L†dB(t)

]
U(t), U(0) = I. (2.15)

From this type of equation, we will be able to derive the Lindblad master equation, which controls

the dynamics of the state ρ(t) assuming no knowledge of measurements, as well as quantum filtering

equations, which describe the evolution of ρ(t) given a measurement record. Before we do that,

let’s generalize (Eq. 2.15) in two ways. First, there will be N channels connecting the system to N

separate heat baths having operators bn(ω), via operators Ln for n = 1, ..., N . Second, there will

be additional linear interactions between the bath modes facilitated by the system, which can be

encapsulated by an additional Hamiltonian term of the form
∑N
n,m=1 b

†
n(t)Mnmbm(t). In the time

domain picture, this interaction occurs only at time t, when the modes bn(t) are ‘passing’ through

the system. Because the new Hamiltonian term is quadratic in the bath modes, we will need to
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introduce a new operator Λ(t), known as the gauge process, in order to write the propagator using

time-integrator quantities. The increments of Λ(t) are given by

dΛnm(t) =

∫ t+dt

t

b†n(s)bm(s)ds. (2.16)

Similarly to the dB(t) and dB†(t) noise terms, it is possible to multiply some combinations of

increments dΛ(t), dB(t), and dB†(t) resulting in increments of non-negligible order (as before,

under vacuum expectations):

〈dBidΛkl〉 = δikdBl,
〈
dBidB

†
k

〉
= δikdt, (2.17)

〈dΛijdΛkl〉 = δjkdΛil,
〈
dΛijdB

†
k

〉
= δjkdB

†
i . (2.18)

In this more general setting we can find an equation generalizing (Eq. 2.15) as done in [23]. The

correct form can be obtained as done in [24] by requiring the Ito form of the chain rule (Eq. 2.14)

and the preservation of the unitarity of the operator U(t) given the Ito rules (Eq. 2.17-2.18). The

result has form

dU(t) =

[
− (iHS +

N∑
n=1

1

2
L†nLn) +

N∑
n=1

LndB
†
n(t)−

N∑
n,m=1

L†nSnmdBm(t) (2.19)

+

N∑
n,m=1

(Snm − Inm)dΛnm

]
U(t), U(0) = I. (2.20)

The Ln operators in (Eq. 2.19) are modified from the ones appearing in the Hamiltonian and the

Hamiltonian HS becomes renormalized due to the newly added gauge process increments. Here

each Snm is an operator with the unitarity constraints SnlS
†
ml = δnmI, S†lnSlm = δnmI. We can

check that when the scattering matrix is the identify, i.e. Smn = δmnI, the propagator (Eq. 2.19)

with a single channel reduces to the previous case (Eq. 2.15).

At this point it is useful to collect the Ln terms to form a vector L = [L1, ..., LN ], the dBn terms

to form a vector dB = [dB1, ..., dBN ], the Snm operators to similarly form an N ×N matrix S, and

the gauge processes dΛnm to form an N×N matrix dΛ. This allows us to conveniently write

dU(t) =

[
− (iHS +

1

2
L†L) + dB†(t)L− L†SdB + tr

[
(S− I)dΛT

] ]
U(t), U(0) = I. (2.21)

From this equation we can find the evolution of each operator A(t) in which we are interested,

8



known as the Heisenberg-Langevin equations. This is done by evaluating

A(t) = U†(t)(A0 ⊗ I)U(t), (2.22)

where A0 is understood to be defined on the system alone. Remembering to keep second order

terms as indicated by the Ito chain rule (Eq. 2.14) and using the Ito rules (Eq. 2.17-2.18), we can

obtain the evolution of a generic operator A(t):

dA(t) = L(HS ,L, A(t))dt+ [L†, A(t)]SdB + dB†S†[A(t),L] + tr[(S†IA(t)S− IA(t))dΛ
T ], (2.23)

where

L(HS ,L, A(t)) = −i[A(t), HS ] +
N∑
n=1

(
L†nA(t)Ln −

1

2

(
L†nLnA(t) +A(t)L†nLn

))
, (2.24)

and IA(t) is an N ×N matrix with A on the diagonal and zero otherwise.

The (S,L, H) triplet captures the dynamics of the system and has particularly useful modular prop-

erties (see Section 2.2.4). This description is known in the literature as the SLH formalism.

2.2.2 Lindblad Master Equation

We can also obtain the Lindblad master equation, which controls the dynamics of the state ρ(t).

One way to do so (as in [26]) is by taking the expectation value of an arbitrary observable:

〈A(t)〉 = tr(ρ(t)A(0)) = tr(ρ(0)A(t)). (2.25)

Taking the time derivative and dropping the noise terms due to the expectation value,

d

dt
〈A(t)〉 = tr

(
d

dt
ρ(t)A(0)

)
= tr (ρ(0)L(HS ,L, A(t))〉 = 〈ρ(t)L(HS ,L, A(0))) (2.26)

= tr

({
−i[HS , ρ(t)] +

N∑
n=1

[
Lnρ(t)L†n −

1

2

(
ρ(t)L†nLn + L†nLnρ(t)

)]}
A(0)

)
. (2.27)
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In the last step above we rearranged the terms using the cyclic trace property. Since the operator

A(0) was an arbitrary observable, we can recover

d

dt
ρ(t) = −i[HS , ρ(t)] +

N∑
n=1

[
Lnρ(t)L†n −

1

2

(
ρ(t)L†nLn + L†nLnρ(t)

)]
. (2.28)

The master equation (Eq. 2.28) describing the evolution of ρ(t) corresponds to the partial trace of

the system and bath state with respect to the bath. It is the most general form of a generator for

the ‘smooth’ time evolution ρ(t) which is time-homogeneous, Markovian, and preserves the desired

properties of density matrices (trace-preserving, completely positive, and Hermiticity-preserving)

(see [51, 34, 4, 59])

2.2.3 Input-output relationship

Notice the master equation describes only the internal evolution of the system, and does not depend

on S. We can also obtain the output of the system by considering the transformed fields:

Bout(t) = U†(t)B(t)U(t), Λout(t) = U†(t)Λ(t)U(t). (2.29)

Expanding the increments between times t and t+ dt, one can find

dBout(t) = S(t)dB(t) + L(t)dt, (2.30)

dΛout(t) = L∗(t)LT (t)dt+ S∗(t)dΛ(t)ST (t) (2.31)

+ S∗(t)dB∗(t)LT (t) + L∗(t)dB∗(t)ST (t).

Input-output relationship for linear systems

For linear systems in particular, it is possible to describe the input-output relationship using the

state-space formalism (i.e. via matrices A,B,C,D, which can be related to the SLH parameters).

This is especially useful as we can take the Laplace transform and describe the input-output rela-

tionships via the transfer function formalism. In particular, the internal degrees of a system are

described by an annihilation and creation mode, ai(t) and a†i (t), satisfying the canonical bosonic

commutation relations [ai(t), aj(s)
†] = δ(t− s)δi,j .

The Ln operators and the Hamiltonian H in the SLH formalism are linear and quadratic, respec-

tively, in the ai(t) and ai(t)
† degrees of freedom. In general, it is necessary to include in the dynamics
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of both the creation and annihilation operators to be able to capture the effects of squeezing, but

for passive linear systems there is no squeezing and considering only the annihilation modes suffices.

For this reason, when considering non-passive linear systems, it is convenient to use the notation

ă = (a,a†)T .

Supposing Ln =
∑N
m=1φ

−
nmam+φ+

nma
†
m and H =

∑N
n,m a

†
nω
−
nmam+a†nω

+
nma

†
m+anω

+∗
nmam, we can

construct the matrices Φ± and Ω± consisting of the constant components φ±ij and ω±ij , respectively.

the state-space matrices can be obtained using (see [6, 19]):

Φ̃ =

(
Φ− Φ+

Φ∗+ Φ∗−

)
Ω̃ =

(
Ω− Ω+

−Ω∗+ −Ω∗−

)

Ã = −1

2
Φ̃[Φ̃− iΩ̃, B̃ = −Φ̃[D̃,

C̃ = Φ̃, D̃ =

(
S 0

0 S∗

)
.

Here we use the notation M [ ≡ JM†J for J = diag(In,−In).

Explicitly, the dynamics are given by the dynamical system of equations

d

dt
ă(t) = Ăă(t) + B̆b̆(t) (2.32)

b̆out(t) = C̆ă(t) + D̆b̆(t). (2.33)

Conversely, given state-space matrices A,B,C,D, specific conditions can be given in order to ensure

that a system is physically realizable [18].

Taking the Laplace transform, we can obtain the transfer function

T (z) = D̆ − C̆(Iz − Ă)−1B̆. (2.34)

In the case of passive linear systems, Φ+ = 0 and Ω+ = 0, and we get two sets of equivalent

equations for a and a†. Thus it suffices to write down dynamical equations for only the annihilation
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fields:

d

dt
a(t) = Aa(t) +Bb(t) (2.35)

bout(t) = Ca(t) +Db(t). (2.36)

Simplifying with Φ = Φ−, The state-space matrices in this case are given by

A = −1

2
Φ†Φ− iΩ, B = −Φ†D, (2.37)

C = Φ, D̃ = S. (2.38)

2.2.4 SLH Composition Rules

Several systems in the SLH framework can be combined using a set of rules found in [16, 15]. We

will denote Gi = (Si,Li, Hi) for i = 1, 2 There are three main types of rules:

Concatenation product: This denotes two systems places in parallel (not directly interacting). The

two systems can have different number of channels (say N1 and N2). The resulting system has

N1 +N2 channels.

G1 � G2 =

((
S1 0

0 S2

)
,

(
L1

L2

)
, H1 +H2

)
. (2.39)

Series product: This denotes two systems placed in series. They must have the same number of

channels (here all channels from system 1 feed into system 2).

G2 / G1 =
(
S2S1,L2 + S2L1, H1 +H2 + =(L†2S2L1)

)
. (2.40)

Here the ‘imaginary’ part of an operator A is denoted by =A = 1
2i (A−A

†).

Feedback Operation: For a system G = (S,L, H), suppose there is a total of N = N1 +N2 channels.

We will consider the first N1 to be the ‘internal’ channels and the last N2 to be the ‘external’

channels. By this, we mean that in applying the feedback operation, the outputs of the internal

channels are directed immediately to the inputs of the same channels. Meanwhile, the inputs and

outputs of the ‘external’ channels remain inputs and outputs after the feedback operation is applied.
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We split the S and L matrices to blocks:

S =

(
Sii Sie

Sei See

)
, L =

(
Li

Le

)
. (2.41)

The indices i or e represent with which channels each block of the S and L is interacting (i for

internal and e for external). For the S blocks, the first index corresponds to the input and the

second index the output channels along which the interaction mediated by each block occurs as the

bath modes interact with the system. The SLH of the resulting system once the feedback operation

is performed is given by

Sfeedback = See + Sei(I − Sii)
−1Sie, (2.42)

Lfeedback = Le + Sei(1− Sii)
−1Li, (2.43)

Hfeedback = H + =

∑
j=i,e

L†jSji(1− Sii)
−1Li

 . (2.44)

2.2.5 Open quantum systems with measurement – quantum filtering

Up to now, we have described the dynamics of open quantum systems without measurement feed-

back. Measurement feedback results when an output channel is being measured, affecting the state

of the system. We will consider three types of measurements most common in quantum optics in-

volving the continuous monitoring of the outputs: photon counting, homodyne measurement, and

heterodyne measurement. Experimentally, measurements have a certain efficiency, but here we will

only consider perfect measurements (i.e. perfect efficiency). It turns out if the system starts in a

pure state and its outputs are being continuously monitored with one of these three measurement

methods (having perfect efficiency), the system remains in a pure state. This is because performing

a measurement on the outputs can be thought of as tracing out any parts outside of the system that

could have become entangled with it. Thus it is sufficient for us to consider the evolution of pure

states. We will write the equations of motion in each case. Because of the measurement process,

there is a probabilistic component in each equation. In the photon counting case this manifests

as a jump process (whenever a photon is detected, the knowledge of the state is updated). In the

case of homodyne or heterodyne detection, an output signal is being continuously measured. This

results in stochastic terms in the equation of motion.

For each type of measurement setup, although the trajectories can be quite different, they can be

averaged in a certain sense to recover the master equation. Specifically, averaging the quantity
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|ψ(t)〉 〈ψ(t)| over many trajectories will recover ρ(t) given by the master equation (which is in-

dependent of any measurement process). Trajectories of pure states with this property are called

‘unravellings’ of the master equation. Interestingly, quantum state diffusion, the stochastic differen-

tial equation corresponding to continuous heterodyne detection, can be recovered in certain limits

from quantum jumps [47]. Simulating the master equation can sometimes be done more easily

than running multiple probabilistic trajectories, since it just involves a linear ODE. However, the

dimensionality of the master equation is quadratic with the dimensionality of the Hilbert space,

making it impractical for larger systems. In addition, quantum jumps can often reveal behavior

that is not immediately clear from the master equation, like bistable behavior.

Quantum filtering has been explored mathematically in detail in [3]. For our purposes we will

simply cite the equations of motion of the different unravellings.

Quantum Jumps (see [11, 5, 27]):

The state evolution is given by a modified Schrödinger equation with non-Hermitian Hamiltonian

given by

H = HS −
i

2

N∑
n=i

L†nLn, (2.45)

and is interrupted by jumps. A jump corresponds to a photon measurement in the output of channel

n. The probability of each such jump in a short time δt is given by

δp = δt 〈ψ(t)|L†nLn |ψ(t)〉 . (2.46)

When a jump occurs in channel n, the state is transferred to

|ψ(t)〉 7→ Ln |ψ(t)〉
〈ψ(t)|L†nLn |ψ(t)〉1/2

. (2.47)

Note: A standard implementation is given in QuTiP ([18]).

Homodyne Detection [23, 29]

We will consider a single channel here for simplicity. In this type of measurement, the output field

is projected onto one of its quadratures (say X ∝ L + L†). It produces a measurement process
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dMX(t) =
〈
L(t) + L†(t)

〉
dt + dWt, where dWt is an increment of a Wiener process satisfying

dW 2
t = dt. The state evolves conditionally on the measurement process according to

d |ψ〉 =

(
−(iHS +

1

2
L†Ldt) + LdMX(t)

)
|ψ〉 . (2.48)

This equation is often called the stochastic Schrödinger equation. Above in (Eq. 2.48) one can

also include normalization terms, but in practice it is convenient to simulation the unnormalized

equation and then directly normalize the state.

Heterodyne Detection [23]

In this case both quadrants are being measured, with noise terms being induced equally on both.

This can be thought of as projecting the system onto a coherent state. This results in the measure-

ment process dM(t) = 〈L(t)〉 dt+ dξt, where dξt =
dW

(1)
t +idW

(2)
t√

2
and each dW

(i)
t is an independent

increment of a Wiener process (ξt is known as a complex Wiener process). The state evolves

conditionally on the measurement according to

d |ψ〉 =

(
−(iHS +

1

2
L†Ldt) + LdM∗(t)

)
|ψ〉 . (2.49)

As before it is possible to include normalization terms. This equation is often called quantum state

diffusion.

Remark: The above equations can be extended naturally to the case when a system has multiple

channels, and each channel is being measured by a detector.
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Chapter 3

Passive linear systems with

coherent feedback

Abstract

Networks of open quantum systems with feedback have become an active area of research

for applications such as quantum control, quantum communication and coherent information

processing. A canonical formalism for the interconnection of open quantum systems using

quantum stochastic differential equations (QSDEs) has been developed by Gough, James and

co-workers and has been used to develop practical modeling approaches for complex quantum

optical, microwave and optomechanical circuits/networks. In this chapter we fill a significant

gap in existing methodology by showing how trapped modes resulting from feedback via coupled

channels with finite propagation delays can be identified systematically in a given network. Our

method is based on the Blaschke-Potapov multiplicative factorization theorem for inner matrix-

valued functions, which has been applied in the past to analog electronic networks. Our results

provide a basis for extending the Quantum Hardware Description Language (QHDL) framework

for automated quantum network model construction [56] to efficiently treat scenarios in which

each interconnection of components has an associated signal propagation time delay.

This chapter was published as an article in [55], and was slightly adapted for the purposes

of the dissertation.
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3.1 Preliminaries

In the spirit of SLH/QHDL we assume that we are given a network of open quantum systems whose

input and output ports are connected by passive linear channels. We additionally assume that an

end-to-end propagation time delay is specified for each channel. If feedback loops are created by

the network topology, trapped modes will be created that may need to be modeled dynamically in

order to accurately simulate the overall behavior of the network.

The basic problem lies in choosing a procedure for embedding new stateful dynamics into the “space

between components” in an SLH network. Prior work such as [46] has addressed the question of

how to model an individual channel with finite time delay efficiently, however, our philosophy here

will be to work at the level of more complex sub-networks that mediate interconnections among

multiple-input/multiple-output components. Our method is restricted to sub-networks that are

linear and passive, and thus may include components such as beam-splitters and phase shifters but

not, e.g., gain elements or nonlinear traveling-wave interactions. We nevertheless gain a significant

advantage by considering linear passive sub-networks in that we are able to recognize the creation

of trapped modes by feedback with finite time delays, and can provide a systematic procedure for

adding the stateful dynamics required to simulate the behavior of such modes within a frequency

band of interest.

We treat channels as passive linear quantum stochastic systems [36, 37, 43, 44] whose input-output

behavior can be characterized by the relationship of the input and output annihilation fields only.

The input-output relationship for a linear system must satisfy certain physical realizability condi-

tions. Our systematic method preserves the physical realizability condition while allowing us to

simulate the system with only a small number of degrees of freedom.

Essentially our approach introduces an approximation with finitely many state-space variables to

a given system (we will refer to such a system as a finite-dimensional system). For a system with

N input and output ports and M oscillator modes a1, ..., aM satisfying the canonical commutation

relations

[ai, a
∗
j ] = δij , [ai, aj ] = 0, [a∗i , a

∗
j ] = 0, (3.1)

a passive linear model can be described by the input-output relations Eq. (2.35). The A,B,C,D

are complex-valued matrices of appropriate size. We will refer to this formulation as the state-space

representation, or the ABCD formulation, of the system. It is related to the SLH formalism by

Eq. (2.37).
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Our approach seeks to approximate the transfer function within a given frequency range by selecting

only a finite subset of the original modes and generating a state-space representation using the

information close to the zeros or poles of the modes. The resulting approximation is a passive

linear system satisfying the physical realizability condition. We discuss a sufficient condition for

our approximation to converge to the true transfer function for a large class of possible transfer

functions.

There are other approaches that could be used to obtain a different set of modes that may approxi-

mate the system of interest. For example, one approach may involve approximating each delay term

in the system using a symmetric Padé approximation, which would result in a physically realizable

component (see Appendix A.4). Although this approach can be simple to use, the Padé approxima-

tion will not always introduce the zeros and poles of the transfer function at the correct locations,

and may introduce spurious zeros and poles to the approximated transfer function. On the other

hand, the zero-pole interpolation by construction adds zeros and poles to the approximated transfer

function only when they are present in the original transfer function. This feature of our approach

may be important in many physical applications because the locations of the zeros and poles have

physically meaningful consequences, including the resonant frequencies and linewidths of the effec-

tive trapped cavity modes resulting in the network due to feedback. Nevertheless, as discussed in

Section 3.7, there are passive linear systems for which the zero-pole interpolation is insufficient –

in this case, a finite-dimensional state-space representation will necessarily have spurious zeros and

poles.

3.2 Problem Characterization

Throughout we work in the frequency domain. Unless otherwise noted, we will be working specif-

ically in the s-domain. This representation of a linear system is obtained from the time-domain

representation of the state-space by applying the Laplace transform. Below F (z) is the Laplace

transform of f(t):

F (z) =

∫ ∞
−∞

e−ztf(t)dt. (3.2)

Here, z = σ+ iω for σ, ω ∈ R. When σ = 0, z = iω ∈ iR represents a real frequency. We consider a

linear system with N input and N output ports. We will primarily be interested in a system which

is linear, passive, and has a transfer function T (z) that is unitary for all z ∈ iR. The last condition

guarantees that the system conserves energy. We remark that more generally the loss of energy can
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be considered for example by adding additional ports. We assume throughout the transfer function

is a meromorphic matrix-valued function. For simplicity, we assume that each pole has multiplicity

one.

We will be particularly interested in a system consisting of time delays and beamsplitters. A delay of

length T has transfer function of the form e−zT . In general, any system of delays and beamsplitters

can be written as (
H

Hout

)
=

(
M1 M2

M3 M4

)(
E(z)H

Hin

)
. (3.3)

Here Hout and Hin are respectively the N -dimensional input and output signals, and H are internal

signals of the system. The values of H are taken on each edge with a delay before the signal passes

through the delay. The Mi are constant matrices of the appropriate size determined by the specific

details of the system. E(z) is a diagonal matrix whose diagonal elements are the transfer functions

of the various delays in the system, e−zT1 , e−zT2 , ..., e−zTN . The system is illustrated abstractly in

Figure 3.1.

Inputs Hin

Outputs Hout

Internal 
Nodes H

Delays E(z)

U

Figure 3.1: An illustration demonstrating the set-up used to characterize the problem. This network
is described by eq. 3.4. The U in the figure represents a unitary component.

The transfer function of the given system can be formally solved as

Hout = T (z)Hin = [M3E(z)(I −M1E(z))−1M2 +M4]Hin = [M3(E(−z)−M1)−1M2 +M4]Hin.

(3.4)
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Notice that this transfer function will have poles when

det(I −M1E(z)) = 0. (3.5)

We can define the zeros of this transfer function as z satisfying det(T (z)) = 0.

Throughout, we will also assume that the system is asymptotically stable. In terms of the network

transfer function, all the eigenvalues of M1 have norm less than 1, with the consequence that T (z)

is bounded for <(z) ≥ 0.

This transfer function has the important feature of being unitary whenever z is purely imaginary.

That is, T (iω)T †(iω) = T †(iω)T (iω) = I whenever ω ∈ R. This is exactly the physical realizability

condition for a passive linear system. We will refer to this constraint throughout the chapter

as the unitarity constraint. One consequence of this condition that can be obtained by analytic

continuation is that T (z)T †(−z) = I except when a pole is encountered.

Some observations. We see that the poles and zeros occur in pairs z,−z. In this chapter we will refer

to such a pair as a zero-pole pair. In general, we observe that there may be infinitely many solutions

to eq. (3.5). If we take M1 to be a real matrix, z is a pole whenever z is also a pole. Furthermore,

applying the maximum modulus principle shows the system is stable (see Appendix A.2). This

implies that the poles appear in the left half-plane.

The solution to eq. (3.5) can be found numerically within a bounded subset of C. There are

dedicated algorithms that use contour integration to guarantee finding all the roots within a contour,

which we briefly discuss in Section 3.5.1. In the special case when the time delays are commensurate,

we can re-write the equation for the poles as a polynomial equation of the variable w = e−zT0 for

some T0. Doing this will make the root fiding procedure much more simple.

If the system has passive linear components other than delays and beamsplitters, the transfer

function shown above may be modified. It will still have the same important features that the

poles appear on the left half-plane (except when the system is marginally stable) and the function

restricted to the imaginary axis is unitary.
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In1

Out1

τr

Figure 3.2: An illustration a single time delay τ and a single beamsplitter with reflectiveness r.

3.3 Specific Example and Approximation Procedure: One

time delay and one beamsplitter

We will consider the example illustrated in Figure 3.2, where a single beamsplitter and time delay

are combined to form a single-input and single-output (SISO). The example here is analogous to

the one considered in Section VII B of [19].

In this particular example, with the convention that the beamsplitter has the transfer function

TBS =

(
t −r
r t

)

where r2 + t2 = 1. and the time delay of length τ has transfer function

Tτ (z) = e−τz.

One will find the resulting transfer function of the combined system drawn above is

T (z) =
e−τz − r
1− re−τz

. (3.6)

The poles pn for n ∈ Z are found to be

pn =
1

τ
(ln(r) + 2πin) . (3.7)

Notice that the real part is negative, as it should be for a stable system. Each of the poles in the
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system here corresponds to a cavity mode. The imaginary part corresponds to the mode frequency

and the real part determines the linewidth properties. With this interpretation, we can readily

relate the free spectral range to the delay length. In an attempt to approximate the system, we can

consider a product of the following form of terms having the same (simple) poles as T (z), satisfying

the unitarity condition, and agreeing in value with T (z) at z = 0.

T̃ (z) = −
∏
n∈Z

(
z + pn
z − pn

)
. (3.8)

For more general infinite products we might need to introduce additional phase factors cn in each

product term to ensure the convergence of the product. However, this is not necessary in the

example discussed here.

One interpretation of each term in the product is the frequency-domain representation of a cavity

mode. We can obtain an approximation for T (z) by truncating the product with a finite number

of poles. The resulting rational function can then be interpreted as the transfer function of a

finite-dimensional system.

Notice that the procedure used to obtain T̃ (z) does not guarantee that T̃ (z) = T (z), although

this is indeed the case for the example above. In general the procedure above may not capture

some of the properties of the system. For example, if we added another delay with no feedback

in sequence, we would obtain an additional phase factor dependent on z, while still satisfying the

desired properties. For a SISO system satisfying the unitarity constraint with the same root-pole

pairs, a phase dependence T (z) = T̃ (z)e−αz (α ≥ 0) is actually the most general modification we

might need. For a system satisfying the same conditions but having N input and output ports, the

e−αz term will be replaced by a similar singular function which we will refer to throughout as the

singular term (see Section 3.4.1 for a discussion). An illustration of T (z) and the transfer function

resulting when an additional delay is augmented to the system is illustrated in Figure 3.3.

Notice how the augmented delay substantially changes some of the properties of the transfer func-

tion in the complex plane. For instance, when <(z) → −∞, the transfer function in Figure 3.3a

approaches a constant, while that in Figure 3.3b diverges. In Section 3.7 we will be able to utilize

the difference in behavior of transfer functions to determine whether they incorporate a nontrivial

everywhere analytic term, like the exponential resulting from a time delay.

We can check to see if such a factor is needed in the factorization above. Assuming that lim<(z)→−∞ T̃ (z) =

C 6= 0, (see Appendix A.5), we can take lim<(z)→−∞ T (z) to check if the additional phase factor

is present in T (z). We see lim<(z)→−∞ T (z) = −1/r, which shows in our example that no such
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additional term is needed, and therefore T̃ (z) = T (z). It can be confirmed numerically that the

values of T (z) and T̃ (z) agree.

(a) T (z) = e−z−r
1−re−z .

10 5 0 5 10
Re(z)

10

5

0

5

10

Im
(z

)

(b) T (z) = e−z−r
1−re−z e

−z.

Figure 3.3: The plots here compare two transfer functions as seen in the complex plane. The hue
and the brightness correspond to the phase and magnitude, respectively. The transfer function
plotted in Figure 3.3a corresponds to a cavity with r = 0.8 and τ = 1 while that in Figure 3.3b in
addition augments a delay of length τ in sequence with the original system.

In the rest of the chapter, we will show how a similar procedure can be applied more generally to

multiple-input and multiple-output (MIMO) systems.

3.4 Factorization theorem and implications for passive linear

systems

Certain kinds of matrix valued functions can be factored using the Potapov factorization thoerem.

The more general factorization theorem is discussed in Appendix A.3.2. Here we discuss the special

case for a passive linear system satisfying the unitarity condition.

3.4.1 Special case of the factorization theorem for passive systems

To apply the factorization, we need the transfer function to be contractive (That is, I−T (z)T (z)† ≥
0). See Appendix A.2 for the justification of this condition. After some simplifications discussed in
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A.3.2, we find that the factorization has the following form.

T (z) = UB(z)S(z), (3.9)

where

B(z) =

∞∏
k=1

Bk(z), S(z) =

y∫ `

0

e−zH(t)dt. (3.10)

In the product, each of the terms Bk has the form

Bk(z) = Vk

(
eiφk z−λk

z+λk
Ip′k 0

0 I

)
V −1
k = I − Pk +Ak(z)Pk. (3.11)

The Bk terms are the Blaschke-Potapov factors written in the s-plane (see Appendix A.1), the

U is some unitary matrix, and the S(z) is defined in eq. (A.4) in Appendix A.3.1, where we set

J = I. We use the symbol
y∫

to refer to the multiplicative integral, or product integral. The Pk is

an orthogonal projection, Ak(z) = z−λk
z+λk

eiφk , and φk = φk(λk) is a phase factor to guarantee the

convergence of the product. When B(z) is a finite product, the phase factors φk can be absorbed

into U .

We will refer in the future to the terms B(z) and S(z) respectively as the Potapov product and the

singular term. Both B(z) and S(z) are inner functions.

3.4.2 Interpretation as cascaded passive linear network

We remark the Blaschke-Potapov factorization for an inner function can be interpreted as a limiting

case of a system of beamsplitters, feedforward delays, and cavity modes.

First, we will interpret the Blaschke-Potapov product in the optical setting. Each unitary matrix

appearing in the factorization can be interpreted as a generalized beamsplitter. Each Blaschke

factor with zero λk has the form Bk(z) of eq. (3.11) in Section 3.4.1. We can interpret Ak(z) in

eq. (3.11) as the transfer function of a single cavity mode. The location of the zero λk in the

complex plane determines the detuning and linewidth of the mode. The modes resulting from the

Blaschke-Potapov product can be visualized as a sequence of components of the form portrayed in

Figure 3.4.

Next, we shall interpret the singular term represented as the multiplicative integral in eq. (A.9)
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Vk Vk

-1

Ak

Figure 3.4: A physical interpretation of a single Blaschke-Potapov term for a passive linear system.
Here the Vk represents a beamsplitter and the Ak represents a passive SISO system with a single
degree of freedom. The zero-pole interpolation generates a series of factors of this form in a cascade.

of Appendix A.3.2. Approximating the multiplicative integral with intervals ∆tk = ti+k − tk, we

obtain a product of terms of the form

e−z∆H(tk) = Uke
−zDkU†k , (3.12)

which is interpreted as a component consisting of parallel feedforward delays illustrated in Fig-

ure 3.5. Here ∆H(tk) = Hk+1−Hk ≥ 0, Uk are some unitary matrices resulting in the diagonaliza-

tion ∆H(tk) = UkDkU
†
k , and we find tr(∆H(tk)) = ∆tk is the sum of the delays in this component

found in the parallel ports. It is possible to further approximate the feedforward delays in the

factorization with modes, but for conceptual purposes we do not do this here.

3.5 Approximation Procedure – Zero-Pole Interpolation

In order to reconstruct an approximation for the transfer function T (z) using only a finite number

of modes, we will use a two-step procedure. The first step consists of finding the zero-pole pairs

in a region of interest. The second step consists of examining the numerical values of the transfer

function near the zeros or poles to obtain the correct form of each of the Blaschke-Potapov terms,

which are determined up to a constant unitary factor. The product of the resulting terms will

equal a truncated version of the Blaschke-Potapov product discussed in Section 3.4.1, and will

approximate the transfer function in the region of interest.
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τ1
τ2

τN

UkUk
-1

Figure 3.5: An illustration of the physical interpretation of a component resulting in the approxima-
tion of the multiplicative integral. Here the Uk represents a beamsplitter and each τj (j = 1, ..., N)
represents a delay of that duration.

We will take a transfer function T and obtain an M -dimensional approximation by identifying

appropriate factors for a Blaschke-Potapov product. It is possible that the transfer function may

have a nontrivial singular component (i.e. a nontrivial everywhere analytic term) as discussed in

Section 3.4.1, in which case the zero-pole interpolation may not reproduce a converging sequence

of approximations to the given transfer function T (z). In this section we assume that the singular

term is trivial or otherwise unimportant. In any case we determine U in eq. 3.9 of Section 3.4.1

using T (0).

A trivial example when the above approach might fail is a delay with no feedback at all. In this

case, there are no poles to evaluate and the method fails. When a transfer function is entirely

singular, or when its singular component cannot be neglected, a different approach will be needed,

such as using the Padé approximation. This is discussed in Appendix A.4.

3.5.1 Identifying Mode Location.

We remind the reader that we take our coordinate system in the s-domain. We assume for simplicity

that we are interested in the behavior of the system near the origin. However, our procedure can

be used to obtain approximations of the given transfer function for arbitrary regions in the s-plane.

In order to identify the appropriate modes, we find roots of the transfer function of the full system,

p1, ..., pM . Each root will represent a “trapped” resonant mode. In general, there will be infinitely

many such roots in the full system, so it is important to have a criterion for selecting a finite

number of roots. Each root will have an imaginary part, which will correspond to the frequency of
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the mode, and a real part, which is linked to the linewidth of the mode. One criterion might be

to select root whose imaginary part falls in some range [−ωmax, ωmax], so that the approximation

is valid for a particular bandwidth. This approximating system may be improved by increasing

the maximum frequency, ωmax. As the number of root-pole pairs increases, the quality of the

approximation increases, but in addition the approximated system will incur a greater number of

degrees of freedom.

Luckily there is a well-known technique that can be used based on contour integration developed in

[8]. This algorithm runs in a reasonable time and can essentially guarantee that it does indeed finds

all of the desired points. The latter point is an important feature that most typical root-finding

algorithms do not have because they do not utilize the properties of analytic functions. For details

about a more polished algorithm see [31]. Methods of this kind require a contour in the complex

plane as the input in which the roots of the function will be found. This contour may be, for

example, a rectangle in the complex plane. In practice we may make use of symmetries in the

system and the known regions where poles and zeros are located.

In Figure 3.6 we illustrate the step of our procedure for finding roots or poles. The various contours

in dashed lines represent areas where roots and poles will be found. Notice in this plot that the

roots and poles lie along a strip close to the imaginary axis. This is a typical feature for systems of

this kind. If the maximum possible real part of each root is determined for the system of interest,

a computational advantage can be gained since the contour does not need to be extended beyond

that value.

3.5.2 Finding the Potapov Projectors

The procedure we use assumes that the given transfer function T (z) has a specific form guaranteed

by the factorization theorem (see eq. (3.9) in Section 3.4.1). For the purposes of this section, we

neglect the contribution due to the singular term (the S(z) in eq. (3.9 )). This procedure is similar

to the zero-pole interpolation discussed in [2]. We handle the singular term separately, as we will

discuss in 3.7.

We introduce an inductive procedure for this purpose. Each step will involve extracting a single

factor of the Blaschke-Potapov product. Suppose the full transfer function being approximated is

T (z). write

T (z) = T̃ (z)

(
I − P + P

(
z + p

z − p

))
(3.13)
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The P is in general the orthogonal projection matrix onto the subspace where the multiplication

by the Blaschke factor takes place. We wish to extract the P given the known location of the pole

p, which we assume to be a first-order pole for simplicity. We also assume for simplicity that P is

a rank one projection, and so it can be written as the product of a normalized vector

P = vv†.

The simplifying assumptions above have been sufficient for the systems we inspected, and could be

easily removed. Rewriting,

T (z)(z − p) = (z − p)T̃ (z)(I − P ) + (z + p) T̃ (z)vv†. (3.14)

Now take z → p. We assumed that T (z) has a first-order pole at p, so T̃ (z) will be analytic at p.

Therefore, the first term on the right hand side goes to zero. Taking L ≡ limz→p T (z)(z − p), we

get

L = (p+ p) T̃ (p)vv†. (3.15)

Since we assumed that P is a rank one projector, have obtained an expression where L must also

be rank one. In order to find v we can simply find the normalized eigenvector corresponding to the

nonzero eigenvalue of L. This task may be done numerically. Finally, we can find the T̃ (z) from

eq. (3.13) above.

The procedure outlined above may be repeated for each of the M desired roots of T (z) to obtain a

factorization

T (z) = TM (z)

M∏
k=1

(
I − Pk + Pk

(
z + pk
z − pk

))
. (3.16)

We assume that the TM (z) is close to a constant in the region of interest. This is exactly true in

the case where the transfer function T has only the M roots picked. We can approximate TM with

a unitary factor that can be determined from T and the product in eq. (3.16) evaluated at some

point z0 in the region of interest.

The computer code for this procedure can be obtained by contacting the authors.
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3.6 Examples of zero-pole decomposition

In this section, we show two examples. For both examples, we show the network discussed in

Figures 3.7 and 3.9. We plot the various components of the transfer functions of these networks

along iω for ω ≥ 0 in Figures 3.8 and 3.10, respectively. Along both examples, we also plot sev-

eral approximate transfer functions determined by the zero-pole interpolation of Section 3.5. The

approximate transfer functions correspond to a Blaschke-Potapov product that has been truncated

to a certain order. In both examples we see that as we increase the number of terms, the approxi-

mation improves. The first example illustrates the case when the zero-pole interpolation converges

to the correct transfer function. In the second example, while the zero-pole interpolation appears

to converge, the function to which it converges deviates from the original transfer function. This

suggests that the singular term S(z) in Section 3.4.1 makes a contribution for which the zero-pole

interpolation does not account. In Section 3.7, we discuss a condition for convergence and show

how the effects of the singular term may be separated from the rest of the system. Figure 3.10

also includes the transfer function once the singular term has been removed, demonstrating the

zero-pole approximations converge to that function.

3.6.1 Example 1. Zero-pole interpolation converges to given transfer

function

The first example we discuss involves two inputs and two outputs. Figure 3.7 shows this network

explicitly. In Figure 3.8 we see the zero-pole interpolation appears to converge to the correct

transfer function. We can check this by confirming that the M1 is nonsingular, as we will show in

Section 3.7.

The matrices of eq. (3.3) in Section 3.2 are given by

M1 =


0 −r1 0 0

−r2 0 t2 0

0 0 0 −r3

t2 0 r2 0

 , M2 =


t1 0

0 0

0 t3

0 0

 , (3.17)

M3 =

[
0 t1 0 0

0 0 0 t3

]
, M4 =

[
r1 0

0 r3

]
. (3.18)

Here τ1 = 0.1, τ2 = 0.23, τ3 = 0.1, τ4 = 0.17, r1 = 0.9, r2 = 0.4, r3 = 0.8.
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3.6.2 Example 2. Zero-pole interpolation fails to converge to given trans-

fer function

In the next example, we have two inputs and two outputs, as in the first example of Section 3.6.1.

However, the design of the network is significantly different. The network for this example is shown

in Figure 3.9. This example combines elements of an interferometer and an optical cavity. In some

regimes, such as τ4 << τ2, the zero-pole decomposition yields a good approximation for the transfer

function. In general, however, the singular component of the transfer function must be incorporated

in some other way.

The matrices of eq. (3.3) in Section 3.2 are given by

M1 =


0 0 −r 0

r 0 0 0

0 r 0 t

t 0 0 0

 , M2 =


t 0

0 t

0 0

0 −r

 , (3.19)

M3 =

[
0 0 t 0

0 t 0 −r

]
, M4 =

[
r 0

0 0

]
. (3.20)

Here τ1 = 0.1, τ2 = 0.039, τ3 = 0.11, τ4 = 0.08, r = 0.9.

The important differentiating feature from the previous example of Section 3.6.1 is that the singular

term for the transfer function of this network is nontrivial. This can be seen when examining the

resulting transfer functions from the zero-pole interpolation, which are shown in Figure 3.10. In

Section 3.7 we will show that this condition can be checked by observing that the M1 in eq. (3.19)

is singular.

In Figure 3.10, we see that the zero-pole interpolated transfer functions deviate from the true

transfer function in the (0, 1) and (1, 1) phase components. This demonstrates how in general it is

important to consider the singular function. On the other hand, for the systems in consideration it

is possible to separate the Blaschke-Potapov product from the singular term, which corresponds to

feedforward-only components, as discussed in Section 3.7.3. In black we graph the transfer function

components resulting once the feedforward-only components have been removed. Up to a unitary

factor, this function is equal to the infinite Potapov product. We see that the approximated transfer

functions from the zero-pole interpolation converge to this function.
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3.7 The Singular Term

In this section, we examine the factorization of the transfer function with J = I given in eq. (3.9)

in Section 3.4.1. In the form of the fundamental theorem by Potapov that we obtained, we had an

infinite product of Blaschke-Potapov factors and a singular term. Although the zero-pole decom-

position allowed us to extract the Blaschke-Potapov factors, they gave us no information regarding

the singular term. In some systems, it may be crucial to include the singular term to obtain a good

approximation of the system. To learn about this term, we will need a different method.

In this section, we give the condition for the singular term to be trivial. This condition can then

be specialized to the network from Section 3.2. Based on this condition, we can develop a method

to explicitly separate the network given in eq. (3.4) in Section 3.2 into the Potapov product and

the singular term.

3.7.1 Condition for the multiplicative integral term to be trivial

We examine the form of the singular term in the factorization theorem and notice that its deter-

minant becomes large when <(z)→ −∞. To avoid mathematical details, we will assume here that

the Blaschke-Potapov product
∏
Bk(z) is well-behaved in the limit <(z) → −∞ in the sense that

the limit of the product converges (to a nonzero constant). Justification for this assumption is

discussed further in Appendix A.5. We have the following observations.

Observation. If lim<(z)→−∞ T (z) is a constant, then the multiplicative integral in eq. (3.9) of

Section 3.4.1 is a constant.

This follows from the properties of the multiplicative integral defined in eq. (A.4) of Appendix A.3.1.

�

Observation. In particular, for the transfer function T (z) in eq. (3.4) of Section 3.2, lim<(z)→−∞ T (z)

is a constant if and only if M1 in eq. (3.4) is full-rank. This gives a sufficient condition for when

the zero-pole expansion converges exactly.

To obtain this result, it is enough to consider the term (E(−z)−M1)−1 in the limit <(z)→ −∞.

�

The above observations can be seen in the two examples discussed in Section 3.6. In example 1,

the M1 matrix is full-rank, while in example 2 it is not.
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3.7.2 Maximum contribution of singular term

For many applications we anticipate that we may be able to drop the contribution of the singular

term altogether. One example is an optical cavity in certain regimes. If the lifetime of the modes in

the cavity is long in comparison to the delays in the system, we would expect the delays to be less

significant. We would like to be able to provide a justification for when it is acceptable to neglect

the singular term.

First, we will obtain the maximum value for ` necessary in the multiplicative integral appearing

in eq. (3.10) of 3.4.1. This is an important result because it tells us that the lengths of the delays

themselves determines the greatest contribution of the singular function.

Remark: To apply the factorization in eq. (3.9) of Section 3.4.1 to the transfer function in eq. (3.4)

of Section 3.2, it suffices to take ` ≤
∑
k Tk.

This can be seen by noting the scaling of det[(E(−z)−M1)−1] in the limit <(z)→ −∞. �

The above bound occurs in the case of several delays feeding forward in sequence.

We can give one condition under which the singular term can be dropped: |z| << 1/`. Furthermore,

crude estimates for the error can now be found using the Taylor expansion of the exponential.

Intuitively, Potapov factors correspond to resonant modes while the singular function corresponds to

feedforward-only components. With this interpretation, we see see that the zero-pole interpolation

yields a transfer function close to the true transfer function when the feedforward-only term can

be neglected. We can interpret ` as an upper bound on the duration of time the signal can spend

being being fed-forward only. When 1/` becomes large with respect to the size of the region of

interest in the frequency domain, the feedforward-only terms become unimportant.

3.7.3 Separation of the Potapov product and the singular term in an

example

In this section, we discuss how for a network of beamsplitters and delays the Blaschke-Potapov

product and the singular term of Section 3.4.1 can be separated explicitly. We will give a systematic

procedure at least with the simplifying assumption that the delays are commensurate.

To motivate intuitively the procedure we will use, we demonstrate it for the case of the example in

Section 3.6.2. In this network, extracting a single feedforward delay is sufficient for obtaining the

separation of the two terms we desire. We will assume that τ2 < τ4. The important observation is
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that a collection of k parallel delays can be commuted with a given a unitary component U of k

ports. This is illustrated in Figure 3.11a.

Next, it becomes apparent in the new network in Figure 3.11a that one of the internal system nodes

is unnecessary, since it is followed by a delay of duration zero (call it HX). For this reason, HX

can be eliminated from the system. In the process, we can combine two of the unitary components

preceding and following HX to form a separate unitary component, illustrated in Figure 3.11b.

The network depicted in Figure 3.11b has a feedforward-only component (the identity following In0

and the delay τ2 following In1) followed by a network for which the M1 matrix is invertible, and

therefore has trivial singular part.

3.7.4 Systematic Separation of Potapov product and analytic term for

passive delay networks

Suppose we have a system given in the form of eq. (3.4) in Section 3.2. Our observation that in

order for the multiplicative integral term to be trivial we need M1 to be invertible suggests that

there may be a way to isolate the Potapov product term from the remaining analytic function. We

now present a systematic way of doing this. For simplicity we will assume that all the delays have

equal durations, so that E(z) is a multiple of the identity.

The essential idea is to make a change of basis that allows the elimination of a node at the expense

of modifying the inputs in such a way that a part of the analytic term can be extracted from the

network. We are interested in the case with M1 not invertible. When this is the case, we can find

some change of basis represented by the matrix S such that

M1 = SJS−1, (3.21)

where the J is the Jordan decomposition such that the zero eigenvalue block is at the right bottom

block of J . We introduce H̄ = S−1H and rewrite the equation for H in eq. (3.4) of Section 3.2

as

H̄ = JS−1E(z)SH̄ + S−1M2Hin. (3.22)

Now, H̄1 = [S−1M2Hin]1, which depends only on the inputs. We can separate the dependence of

the remaining coordinates of H̄ on each other and the inputs only. Explicitly, denoting the last

column of S by S1 and the matrix of columns excluding the last S\1, and similarly the vector of

components of H̄ before the last as H̄\1 and the matrix of rows of J preceding the last as J\1, we

33



can write

H̄\1 = J\1S
−1E(z)

[
S1H̄1 + S\1H̄\1

]
+ S−1M2Hin. (3.23)

We can now separate the network into two networks. The first network takes the original inputs

Hin and yields the outputs

H̃in = J\1S
−1E(z)S1[S−1M2Hin] + S−1M2Hin. (3.24)

Notice the first network is a feedforward network (i.e. no signal feeds back to a node from which it

originated). The second network takes the H̃in as inputs and yields the outputs

H̄\1 = J\1S
−1E(z)S\1H̄\1 + H̃in. (3.25)

Using the simplifying assumption that the E(z) = Ie(z) is a multiple of the identity, we ob-

tain

H̄\1 = J̃e(z)H̄\1 + H̃in, (3.26)

where the J̃ is matrix resulting from dropping the last row and column in J . We see that eq. (3.26)

has the same form to the original equation for H in eq. (3.4) in Section 3.2. The difference is that

now the J̃ replaces M1, and has one fewer zero eigenvalue. Conveniently, J̃ is also in its Jordan

normal form, so the procedure can be repeated until the matrix ultimately replacing M1 (call it M̃1)

has no zero eigenvalues left. In this case M̃1 is an invertible matrix, which is exactly the condition

we needed for the transfer function of the network to consist of only the Potapov product and not

the multiplicative integral.

A very simple example illustrating the intuition of our procedure is a network where the internal

nodes all feed forward in sequence. Explicitly, take

M1 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 . (3.27)

Notice that this matrix is already in its Jordan-canonical form, so the analysis becomes transparent.

Also notice that all of the eigenvalues of M1 are zero, which implies that our procedure will extract

all the delays and collect them in the singular term.
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3.8 Relationship to the ABCD and SLH formalisms

In this section we demonstrate how the approximating system our procedure designs is physically

realizable. In particular we show how to extract the ABCD and SLH forms for a single term

resulting in the truncated Blaschke-Potapov product designed to approximate the transfer function

of the system. Since the transfer function is equal to a product of such terms, we can interpret the

approximating system as a sequential cascade of single-term elements of this form.

The state-space representation of the Potapov factor will have the form

B(z) = C(Iz −A)−1B +D. (3.28)

To obtain the ABCD model for a single Potatpov factor, begin with the following factor.

B(z) = I − vv† + vv†
(
z + λ

z − λ

)
= I + vv†

λ+ λ

z − λ
. (3.29)

In this instance we have also assumed that the orthogonal projector P = vv† has rank one.

There is some freedom in how the B and C matrices may be chosen. In particular, one choice is also

consistent with the form used for passive components in the SLH formalism. The ABCD formalism

is related to the SLH formalism in the following way for a passive linear system.

A = −1

2
C†C − iΩ, B = −C†S, D = S. (3.30)

In order to satisfy the above equations, we choose

B = −
√
−(λ+ λ)v†, C =

√
−(λ+ λ)v. (3.31)

Finally, we can solve for the Ω.

Ω = [i(A− 1

2
(λ+ λ))] = −[=(A)]. (3.32)

For the last equality, we use that 1
2 (λ+ λ) is exactly the real part of the eigenvalue, and so cancels

exactly with the real part of A. The only remaining component is the imaginary part of A, which

is multiplied by i. Notice the Ω satisfies the condition of being Hermitian.
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3.9 Simulations in Time Domain

We translate our model into the ABCD state-space formalism, as discussed in Section 3.8. Doing

this allows us to run a simulation in the time domain. Notice that for linear systems this approach

suffices for finding the dynamics in the time domain. We can apply an input field at some frequency

and record the output. The relationship between the inputs and outputs at the steady-state will

correspond to the value of the transfer function at the appropriate frequency.

As a simple example, we consider the input-output relationship of a Fabry-Pérot cavity with a

constant input (i.e. ω = 0) at one of the ports (port 0) and zero input in the other port (port 1). In

the steady-state, the signal will be transmitted from the input port 0 to the output port 1. However,

if the initial state of the system is different than the steady-state, we will observe some transient

behavior in the system. This transient behavior is captured by our simulation and is demonstrated

in Figure 3.12. Here, we show the outputs of the two ports based on different numbers of modes

selected to approximate the cavity formed due to the delay. As the number of modes is increased,

we see the signal from the output ports as a function of time approaches a step function, and we

better reproduce the time-domain dynamics of the network with feedback loops. The jumps we see

in the time-domain correspond physically to times when a propagating signal arrives at one of the

ports. This physical interpretation is further explained in Figure 3.13.

3.10 A method to add non-linear interactions

Since our factorization methodology does not automatically incorporate nonlinear components, one

may wish to compute an additional Hamiltonian term representing the interaction between the

bosonic field and a chosen One strategy is to follow the conventional approach of expanding the

electromagnetic field in terms of a chosen basis for a given Hamiltonian. This can be done if there

is a physical interpretation of the spatial profile of each mode generated by our factorization, which

we give below.

A typical treatment of modes in quantum electrodynamics assumes the interesting behavior (e.g.

interaction between coherent light and an atom) occurs inside of a high-finesse device, resulting

in near-orthogonal modes. In our formalism we have not taken this limit, instead considering

the complex-valued frequencies corresponding to both a mode frequency and decay. To find the

spatial profile of our modes, we will identify them with the quasi-modes of the network, which have

both a real and imaginary component, representing the frequency and decay of each mode (see [9],
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[1]).

The quasi-modes can be defined as solutions f(r, ω) of the equation

∇×∇× f(r, ω)− ω2

c2
χ(r)f(r, ω) = 0. (3.33)

The relation (Eq. 3.33) results from solutions of the electromagnetic field E(r) for Maxwell’s equa-

tions without sources, ∇ × E(r) = iωµ0H(r) and ∇ × H(r) = −iωε(r)E(r). Here ε(r, ω) is the

permittivity (for now we will consider the vacuum permittivity ε0 for simplicity), ω is the frequency,

χ(r) = ε(r)/ε0 is the relative permittivity, µ0 is the permeability of vacuum (since it tends to be

close to a constant we will assume vacuum permeability throughout) and c is the speed of light. The

parameter ω is the frequency of the quasimode (r, ω), which we will allow to be a complex valued pa-

rameter. The domain and boundary conditions are also important – we will define the domain as the

internal network edges, and take the boundary conditions to be determined by each component (e.g.

beamsplitter) either internally in the network, or combining internal channels with input/output

channels. If we only consider planar solutions by fixing the condition ∇ · (ε(r)f(r, ω)) = 0 and fix

the polarization, and assume there are no free charges, the above equation can be written more

simply as [
∂2 − ω2

c2
ε0

]
f(r, ω) = 0. (3.34)

This is the wave equation, which translates planar solutions (with appropriate initial conditions)

along edges of the network in time. From this we see that the time-domain equations (with zero

inputs) are equivalent to the Helmholtz equation (one our chosen domain).

We determined the resonance frequencies (and thus the quasi-modes frequencies) by finding the

poles of the transfer function, which are solutions of

det [I −M1E(z)] = 0. (3.35)

We remind the reader that M1 was the matrix carrying the transmission information among all

internal nodes of the network, while E(z) = diag(e−zT1 , e−zT2 , ...e−zTN ) was the time delay matrix

consisting of N non-dimensionalized time delays.
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Finally, we can determine the spatial profile of each mode by considering the equation that repro-

duces the modes at each eigen-frequency,

M1E(z)x = x. (3.36)

Here x is a vector representing the field at each node of the network (i.e. the ‘start’ of an edge

immediately after a boundary condition).

The resulting modes are not orthogonal, and thus interact. This interaction is captured by our

factorization method. However, it is not unique, as the order of terms in the factorization can be

changed, resulting in a different interactions (but still producing the same input-output relation).

This reflects the freedom in how the modes can be chosen (there is no standard way to orthogonalize

them). In the limit of high-finesse (i.e. all input-output beamsplitters have reflectivity approaching

1), the modes become increasingly orthogonal. In many applications this limit is sufficient. In

many respects using this method to incorporate non-linearities is similar to the so-called ‘black-box

quantization’ method from the superconducting community [40].

This method should be sufficient in many cases, as long as the electromagnetic field can still be

well-represented by the chosen basis. If the non-linearity is too strong, the number of required

modes may become large.

3.11 Conclusion

In this chapter we have utilized the Blaschke-Potapov factorization for contractive matrix-valued

functions to devise a procedure for obtaining an approximation for the transfer function of physically

realizable passive linear systems consisting of a network of passive components and time delays. The

factorization in our case of interest consists of two inner functions – the Blaschke-Potapov product,

a function of a particular form having the same zeros and poles as the original transfer function,

and an inner function having no roots or poles (a singular function). The factors in the Potapov

product correspond physically to resonant modes formed in the system due to feedback, while the

singular term corresponds physically to a feedforward-only component. We also demonstrate how

these two components may be separated for the type of system considered.

The transfer function resulting from our approximation can be used to obtain a finite-dimensional

state-space representation approximating the original system for a particular range of frequencies.

The approximated transfer function can also be used to obtain a physically realizable component
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in the SLH framework used in quantum optics. Our approach has the advantage that the zero-pole

pairs corresponding to resonant modes are identified explicitly. In contrast, obtaining a similar

approximation for a feedforward-only component requires introducing spurious zeros and poles.

Our approach has the advantages that we may retain the numerical values of the zero-pole pairs of

the original transfer function in our approximated transfer function and that we can conceptually

separate these zero-pole pairs from spurious zeros and poles. These advantages may be important

in applications and extensions of this work.

In the next chapter we will show how our factorization method can be extended to a more general

class of linear systems. We also hope to introduce nonlinear degrees of freedom in a similar way

to atoms in the Jaynes-Cummings model and quantum optomechanical devices in the presence of

modes formed due to optical cavities.
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Figure 3.6: This plot illustrates the locations where root-pole pairs may be found. As the contours
grow and includes more root-pole pairs, the quality of the approximation improves.
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Figure 3.7: An example of a network for which the zero-pole interpolation is accurate due to the
absence of the singular term.
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Figure 3.8: Here, we take T to be the transfer function for Example 1 of Section 3.6.1. This is a
plot of the various components of T (iω) for ω ≥ 0 and various approximated transfer functions.
We only include nonnegative ω because of the symmetry of both T and its approximations. The
zero-pole interpolation appears to converge to the correct transfer function as we add more terms.
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Figure 3.9: An example when the Potapov method would not be wholly applicable.
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Figure 3.10: Here, we take T to be the transfer function for Example 2 of Section 3.6.2. This is
a plot of the various components of T (iω) for ω ≥ 0 and various approximated transfer functions.
We only include nonnegative ω because of the symmetry of both T and its approximations. See
Section 3.6.2 for further details.
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Figure 3.11: This illustration demonstrates one way in which the Potapov product and the singular
function can be separated for the particular example from 3.6.2. We notice that some of the parallel
delays can be commuted with a beamsplitter, forming the network in Figure 3.11a. The node labeled
HX can then be eliminated, forming the network in 3.11b which has a 3-input 3-output unitary
component denoted by U .
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Figure 3.12: The output from a Fabry-Pérot cavity, with initial state zero. The mirror has reflec-
tivity r = 0.9 and the duration of the delay is 1. The two output ports represent the signal reflected
and the signal transmitted through the cavity. The signal enters the system from port 0 and exists
from both ports 0 and 1 (see Figure 3.13). In steady-state, the norm of output 0 converges to zero,
an the norm of output 1 converges to 1. The stated number of modes in each diagram is the number
of modes used in the delay. We see that adding more modes eventually converges to a piecewise
step function. The steps result from the round-trip of the signal inside the cavity.
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Figure 3.13: Here we interpret the dynamics of the system in the Fabry-Pérot cavity considered.
Before the system achieves steady-state, we can learn about the output by tracing the possible paths
the signal may follow. The arrows in the diagram between the two mirrors represent the possible
paths the signal may follow before leaving through an output port. We use the vertical direction to
represent time. For each arrow in each output direction, some of the signal leaves through one of
the mirrors. We will therefore see a step in the output as a function of time. This gives a physical
interpretation of the steps seen in Figure 3.12.
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Appendix A

Appendix for Passive Systems

A.1 The Cayley Transform

Throughout this chapter, we work in the frequency domain common in the engineering literature.

In some of the literature, the unit circle D is used instead of the right half-plane C+ as the do-

main on which the properties of the transfer function are studied. These are sometimes known

as the z-domain and the s-domain, respectively. These two domains are related by a conformal

transformation known as the Cayley transform. We will recall this transformation here.

From the right half-plane to the unit circle:

f(z) =
z − 1

z + 1
.

From the unit circle to the right half-plane:

f−1(z) =
1 + z

1− z
.

Sometimes in the literature the upper half-plane is used instead of the right half-plane, which

slightly changes the transformation.

In our notation, a zero zk of the Blaschke factor in the disc zk−z
1−zkz

|zk|
zk

is transformed to a zero in

the plane λk = zk+1
zk−1 of the factor ck

z+λk
z−λk

, for the factor ck =
|1−λ2

k|
1−λ2

k
. Notice |ck| = 1, and therefore

the factor ck contributes only to the overall phase.
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A.2 Unitarity implies a function is inner

(based on [10], lemma 3 on page 223).

This Section will prove the assertion that

T (z)T †(z) = I for z ∈ iR =⇒ T (z)T †(z) ≤ I for z ∈ C+, (A.1)

assuming T (z) is an N ×N matrix-valued analytic (except possibly at infinity) function bounded

in C+.

For any appropriately sized unit vectors u, v, we have from the Cauchy-Schwartz inequality and the

maximum modulus principle that

| 〈u, T (z)v〉 |2 ≤ ‖u‖‖T (z)v‖ ≤ 1. (A.2)

Since the u, v were arbitrary, the assertion follows.

A.3 Potapov factorization theorem and non-passive linear

systems

In this section we cite the Potapov factorization theorem for J-contractive matrices. This factor-

ization, when applicable, consists of several terms which each have a different property. For this

chapter we will only need a special case for the theorem, but we cite the full version because it may

be conductive to extensions of the work in this chapter. Originally, we were hoping an extension

could be found for active linear system, which can be described using a set of ‘doubled-up’ inputs

and outputs for the annihilation and creation fields. In particular, a frequency-domain condition of

physical realizability is discussed in [43] and [53], which seems closely related to the J-unitarity con-

dition. However, upon further inspection it was found to be difficult to directly relate the Potapov

factorization with generic active linear systems, since one of the hypothesis of the Potapov theorem

(the function being J-inner, see Section A.3.1) is not generally satisfied for the transfer function

in this formalism. However, there might be a way to modify the transfer function in some way to

make it amenable to factorization by the Potapov factorization. Notice in the passive linear system

case we were almost automatically able to get the inner condition (see Section A.2), but this is not

the case of active linear systems in the doubled-up formalism.
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A.3.1 Definitions

First, we introduce some terminology common in the literature. Let D = D or C+ (the unit disc

or right half-plane, respectively). Further let J be the signature matrix

J =

(
Im 0

0 −Ir

)
, (A.3)

for some m, r. A matrix-valued function M(z) is called:

1. J-contractive, when M(z)JM(z)† ≤ J ′ for z in D,

2. J-unitary when M(z)JM(z)† = J ′ for z on ∂D,

3. J-inner (or J-lossless) when M(z) is J-unitary and J-contractive.

When J = I, we drop the J in the definition.

Definition: Stieltjes multiplicative integral (from [48]):

Let H(t) (with a ≤ t ≤ b) be a monotonically increasing family of J-Hermitian matrices with

t = tr[H(t)J ] and f(t) (a ≤ t ≤ b) be a continuous scalar function. Then the following limit

exists

lim
max ∆tj→0

ef(θ0)∆H(t0)ef(θ1)∆H(t1)...ef(θn−1)∆H(tn−1) (A.4)

where we take a = t0 ≤ θ0 ≤ t1 ≤ ... ≤ tn = b. The limit is denoted

y∫ b

a

ef(t)dH(t)

and is called the multiplicative integral.

A.3.2 Potapov Factorization

In much of the mathematical literature the domain of the transfer function is transformed via the

Cayley transform (see Appendix A.1). This changes how some of the terms in the factorization are

written, but not the fundamental features of the factorization.

Next we will cite some of the theorems by Potapov. In the case J = I the function ω satisfies
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the unitarity condition ω(z)ω†(z) = I on the boundary of the disc or half-plane (depending on the

domain taken).

The fundamental factorization theorem by Potapov characterizes the class of J-contractive matri-

ces.

Theorem. (from [48]):

Let ω(z) be an analytic single-valued J-contractive matrix function in the unit circle |z| < 1, and

suppose that det(ω(z)) does not vanish identically; then we can write

ω(z) = B∞(z)B0(z)

y∫ `

0

exp

(
z + eiθ(t)

z − eiθ(t)
dE(t)

)
. (A.5)

Here

B∞(z) =
∏
k

Uk

(
I 0

0 1−µkz
µk−z

µk
|µk|Iq

′
k

)
U−1
k (A.6)

is a product of elementary factors associated with the poles µk of the matrix function ω(z) inside

the unit circle, q′k ≤ q, and Uk is a J-unitary matrix;

B0(z) =
∏
k

Vk

(
λk−z
1−λkz

|λk|
λk
Ip′k 0

0 I

)
V −1
k (A.7)

is a product of elementary factors associated with the zeros in |z| < 1 of the determinant of the

matrix function ω∞(z) = B−1
∞ (z)ω(z), which is holomorphic in |z| < 1, p′j ≤ p, Vj is a J-unitary

matrix; the last term is the Stieltjes integral, where E(t)J is a monotone increasing family of

Hermitian matrices such that t = tr[E(t)J ] = t. �

The integral in the above expression is known as the Riesz-Herglotz integral. It captures the effects

of the zeros and poles that occur on the boundary as well as effects not due to zeros or poles. In

our case, we will assume there are no zeros or poles on the boundary, and therefore we will be able

to obtain a special form for the decomposition, discussed below.

The poles in this factorization may occur inside the unit circle (right half-plane), on the boundary

(imaginary axis), or outside the unit circle (left half-plane). In the case of passive, stable systems,

we will find the zeros in the interior of the unit circle and the poles on the exterior. We will have

no poles or zeros on the boundary. This allows us to ignore the component B∞(z) in the above

theorem. Further, the next theorem will allow us to express the multiplicative integral in a special
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way.

Theorem. (from [48]): An singular matrix function ω(z), J-contractive in the right half-plane and

J-unitary on the real axis, can be represented in the form

ω(z) = ω(0)

y∫ `

0

e−zH(t)dt (A.8)

where H(t) is a summable non-negative definite J-Hermitian matrix, satisfying the condition

tr[H(t)J ] = t. �

If the zeros of ω(z) in eq. (A.5) occur only in the interior of the disc, the B∞ is trivial. We can detach

the Potapov factors B0(z) from the left, resulting in an singular function ω0(z). After applying the

Cayley transformation, the factorization eq. (A.8) above can be invoked. Thus we conclude that a

matrix function ω(z), J-contractive on the right half-plane, J-unitary on the imaginary axis, and

with zeros only in the right half-plane has the form

ω(z) = B0(z)ω0(0)

y∫ `

0

e−zH(t)dt. (A.9)

Here the B0(z) is the Blaschke-Potapov product from the factorization theorem written in the

coordinates of the half-plane representation. The ω0(0) makes a contribution to the overall phase

(i.e. a constant unitary factor).

A.4 Using the Padé approximation for a delay

For a system involving only feedforward (i.e. no signal ever feeds back), no poles or zeros will

be found in the transfer function. For this reason, the zero-pole interpolation cannot naturally

reproduce a transfer function to approximate the system. Instead, a different approach is needed

to obtain an approximation for the state-space representation for systems of this kind. Still, any

finite-dimensional state-space representation will have poles and zeros in its transfer function. If

we use such a system as an approximation of a delay, these zeros and poles will be spurious but

unavoidable.

The Padé approximation is often used to approximate delays in classical control theory [33]. When
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using the [n, n] diagonal version of the Padé approximation to obtain a rational function approxi-

mating an exponential, we obtain

e−Tz ≈ exp[n,n](−Tz) =
Qn(zT )

Qn(−zT )
. (A.10)

The Qn(z) is a polynomial of degree n with real coefficients. Because of this, its roots come

in conjugate pairs. As a result, we can write the Padé approximation as a product of Blachke

factors:

exp[n,n](−Tz) =
∏
n

−z + pn
z + pn

. (A.11)

In particular, note that the approximation preserves the unitarity condition, and is therefore phys-

ically realizable. For this reason, it is possible to approximate time delays with this approxima-

tion.

Although this approach may be useful for the case of feedforward-only delays, in the case of delays

with feedback this may produce undesirable results. To illustrate this, we introduce an example

where the Padé approximation is used in order to produce an approximated transfer function for the

network discussed in Section 3.6.1. For this approximation, the order used for the approximation of

each delay is chosen to be roughly proportional to the duration of the delay. Figure A.1 illustrates

the approximated transfer function. Please compare this result to Figure 3.8, where we have used

the zero-pole interpolation.

We see in Figure A.1 that the peaks in the approximating functions often do not occur in same

locations as the peaks of the original transfer function. This may be problematic when attempting

to simulate many physical systems for which the locations of the peaks correspond to particular

resonance frequencies that have physical relevance. For instance, if one chooses to introduce other

components to the system, such as atoms, the resonance frequencies due to the trapped modes

of the network must be described accurately or else the resulting dynamics of the approximating

system may not correspond to the true dynamics of the physical system. For this reason, using the

Padé approximation may not always be the best choice.

A.5 Blaschke-Potapov Product in the limit <(z)→ −∞

In Section 3.7, we proposed a criterion for checking when the multiplicative integral component in

Section 3.4.1 was not necessary. We assumed that the Blaschke-Potapov product converged to a
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Figure A.1: This figure illustrates approximated transfer functions resulting from applying the
Padé approximation on individual delays in the network. Although we see that this approximation
converges, the peaks often do not occur at the correct locations, as opposed to the approximations
resulting from the zero-pole interpolation (compare to Figure 3.8).

nonzero constant in the limit <(z)→ −∞. In this section, for demonstrative purposes we show this

is the case for the example of a single trapped cavity discussed in Section 3.3.

In order to examine the convergence of the product in eq. (3.8) of Section 3.3, we write it in the

following way. We observe by taking the logarithm with an appropriate branch cut that

∏
n

(1 + an(z)) (A.12)
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converges if and only if the infinite sum

∑
n

an(z) (A.13)

converges, assuming
∑
n |an(z)|2 converges. We take

an(z) = 1− z + pn
z − pn

=
2<(pn)

z − pn
. (A.14)

Using the relation

cot(z) =
∑
n∈Z

1

z − nπ
, (A.15)

we get that

lim
<(z)→−∞

∑
n

an(z) = − ln(r). (A.16)

Actually, higher-order terms of the logarithm expansion of eq. (A.12) go to zero in this limit, so we

get that

lim
<(z)→−∞

T̃ (z) = lim
<(z)→−∞

−
∏
n∈Z

(
z + pn
z − pn

)
= lim
<(z)→−∞

−
∏
n

(1 + an(z)) = −1/r. (A.17)

This shows the desired result that the infinite product in this limit goes to a nonzero constant.

Also interestingly, we have been able to compute this value and remark that it is indeed equal to

lim<(z)→−∞ T (z).

The above example with a single trapped cavity formed is illustrative of typical behavior for more

complicated systems formed by networks of beamsplitters and time delays. The zero-pole pairs

of the system occur in a region of bounded positive real part, and roughly uniformly along the

imaginary axis. This suggests that the Blaschke-Potapov product resulting from the zero-pole

interpolation will converge to a nonzero constant in the <(z)→ −∞ limit under quite general

circumstances.
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Chapter 4

Generic linear systems with

coherent feedback

Abstract

We consider the transfer functions describing the input-output relation for a class of linear

open quantum systems involving feedback with nonzero time delays. We show how such trans-

fer functions can be factorized into a product of terms which are transfer functions of canonical

physically realizable components. We prove under certain conditions that this product con-

verges, and can be approximated on compact sets. Thus our factorization can be interpreted as

a (possibly infinite) cascade. Our result extends past work where linear open quantum systems

with a state-space realization have been shown to have a pure cascade realization [Nurdin, H.

I., Grivopoulos, S., & Petersen, I. R. (2016). The transfer function of generic linear quantum

stochastic systems has a pure cascade realization. Automatica, 69, 324-333.]. The functions

we consider are inherently non-Markovian, which is why in our case the resulting product may

have infinitely many terms.

This chapter will be submitted to publication with authorship by Gil Tabak, Ryan Hamerly,

and Hideo Mabuchi. Ryan has made significant contributions, especially in Sections 4.7.1 and

4.7.2, and edits in other sections.
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4.1 Overview

We will be concerned here with a class of non-Markovian linear open quantum systems, which we

will construct by incorporating coherent time-delayed feedback to a (Markovian) finite-dimensional

open quantum system (which can be represented using the SLH formalism). By finite dimension,

we mean that the system has a finite number of internal degrees of freedom. The transfer function

of such a system is a rational function, having specific physical realizability constraints. After the

procedure of incorporating delayed feedback, the transfer function may no longer correspond to a

rational function. Our main result is that under certain conditions the input-output relationship

of such systems can be realized as a (possibly infinite) cascade of physically realizable canonical

components with a single degree of freedom. To obtain this result, we will factorize the transfer

function into an infinite product of canonical terms, where each term corresponds to a physically

realizable component. Each such term will be identified using a pair of poles and zeros. The delayed-

feedback system can then be approximated using a finite truncation of the infinite product.

In the case of rational transfer functions, properties of the the state-space representation matrices

can be used to determine if a system is physically realizable. It has been shown in [53] that

under some non-degeneracy assumptions these conditions are equivalent to certain properties of the

transfer function in the frequency domain. Essentially, as long as the state-space realization matrices

are in ‘doubled-up’ form and certain non-degeneracy conditions hold, the physical realizability of

the system is equivalent to the transfer function having the J-unitary property (and a property

preventing static squeezing). Once delayed feedback is incorporated, although the system remains

linear, it loses its Markovian property and no longer has a corresponding state-space representation.

We introduce an extension of the frequency domain constraints for physical realizability and utilize

it to obtain our factorization under certain assumptions, stated in Section 4.4.1 and in the non-

degeneracy conditions in the hypothesis of Theorems 4.7.1 and 4.7.2. Some of the assumptions follow

from our construction starting with a finite-dimensional physically realizable system (Assumptions 1

and 2), and others are introduced for simplicity (Assumptions 4, 5, and 6). Assumption 3 ensures

the network does not have effectively time-delayed feed-forward terms. An analysis similar to the

one in ([55], i.e. Chapter 3) can be used to isolate such terms.

In Section 4.2, we introduce the various definitions and notation we use throughout. In Section 4.3

we introduce (finite-dimensional) linear quantum stochastic systems and discuss the physical real-

izability conditions of transfer functions. In Section 4.4 we construct a delayed-feedback network

and state assumptions we make throughout. In Section 4.5 we provide some properties of our

delayed-feedback network. In Section 4.6 we provide theorems that relate the transfer function of
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the delayed-feedback network with a simpler transfer function resulting from replacing the internal

components of the network with static components. These theorems will be useful in providing

convergence results. In Section 4.7 we introduce physically realizable canonical transfer functions

having only two poles and two zeros. Finally, in Section 4.8, we provide our factorization re-

sult.

We anticipate our work will have applications in modeling and simulating open quantum systems,

as well as conceptually help understanding linear open quantum systems with delayed feedback.

There is interest in how feedback can be used for control, although the effect of delays has not been

thoroughly explored. For example, in [7], a network of OPOs was interpreted in terms of a quantum

plant and a quantum controller. In that work, coherent feedback was shown to be capable of shifting

the frequency of maximum squeezing and broadening the spectrum over a wider frequency band.

The effects of a time delay in coherent feedback networks on optical squeezing have been studied

in [30] and [39]. In these works, it was demonstrated that the enhanced squeezing of quantum

feedback networks may be improved by incorporating a time delay in the feedback loop. Depending

on the implementation, the time delay can increase squeezing either on or off resonance.

4.2 Definitions

The definitions below are frequently used in the literature (e.g. [19],[20],[53]).

definition 4.2.1 The signature matrix J of dimension 2n is a diagonal matrix with alternating

(+1,−1) on its diagonal.

definition 4.2.2 For a matrix M we use the notation M [ = JM#J .

definition 4.2.3 A doubled-up matrix has the form

M̆ = ∆(M−,M+) ≡

(
M− M+

M#
+ M#

−

)
. (4.1)

A doubled-up column vector has the form

v̆ =

(
v

v#

)
. (4.2)

Here M#, v# denote the elementwise conjugates of M,v.
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definition 4.2.4 A matrix M is J-unitary iff

MJM† = M†JM = J. (4.3)

definition 4.2.5 A matrix-valued function M(z) is J-unitary iff

M(z)JM(z)† = M(z)†JM(z) = J, (4.4)

for z on the imaginary axis.

It a transfer function is J-unitary and meromorphic on the plane, then satisfies M(z)JM(−z)† = J

on its domain.

It will be convenient to permute the annihilation and creation operators using the symmetric per-

mutation matrix P , exchanging the first N indices, 1, 2, ..., N with the odd indices up to 2N , and

exchanging the last N indices N + 1, ..., 2N with the even indices up to 2N . When this is the

case (Section 4.4 and beyond) it will be understood that doubled-up matrices will have the form

M̃ = PMPT instead. For example, the matrix

M = ∆(M−,M+) =


M−,11 M−,12 M+,11 M+,12

M−,21 M−,22 M+,21 M+,22

M#
+,11 M#

+,12 M#
−,11 M#

−,12

M#
+,21 M#

+,22 M#
−,21 M#

−,22

 (4.5)

would be re-arranged as

PMPT =


M−,11 M+,11 M−,12 M+,12

M#
+,11 M#

−,11 M#
+,12 M#

−,12

M−,21 M+,21 M−,22 M+,22

M#
+,21 M#

−,21 M#
+,22 M#

−,22

 . (4.6)

definition 4.2.6 We will say a rational transfer function is in ‘doubled-up’ form when it has a

realization given by matrices A,B,C,D, (i.e. T (z) = D + C(zI − A)−1B), where each is in

doubled-up form.
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definition 4.2.7 Given a dimension b, let

Σb =

(
0 Ib

Ib 0

)
(4.7)

The subscript b will be dropped when the dimension is clear from context.

It will be understood that when the annihilation and creation ports are permuted as discussed

above, we will use Σ̃ = PΣPT instead.

remark 4.2.1 A matrix M is doubled-up if and only if it satisfies

MΣ = ΣM#, (4.8)

4.2.1 Zeros and poles

In the literature, there are different definitions for zeros and poles of a matrix-valued function. We

will describe two kinds of definitions, which we will denote respectively by (I) and (II):

definition 4.2.8 A complex number z is called a pole(I) of A(z) if it is a pole of one of the entries

of A(z), and z is called a zero(I) of A(z) if it is a pole(I) of A(z)−1. This is the definition used in

Ref. [49].

definition 4.2.9 A complex number z is called a pole(II) of A(z) if it is a pole of detA(z), and z

is called a zero(II) of A(z) if it is a zero of detA(z). This is the definition used in Ref. [55]. Note

that definition 4.2.9 implies 4.2.8, but not the converse.

remark 4.2.2 The definitions (I) could have a pole and a zero in the same location. Instead, for

definitions (II) this cannot occur. If zeros (I) and poles (I) do not occur in the same location, then

the definitions (I) and (II) coincide. For simplicity, we will assume that is the case (Assumption 5).

definition 4.2.10 (eigenvectors at zeros and poles, adapted from Ref. [49]) Suppose z0 is a zero(I)

of matrix valued function A(z). A nonzero column vector x1 is called an eigenvector of A(z) at z0

if there exist column vectors (x2, x3, . . .) such that f(z) = A(z)
∑∞
j=0 xj+1(z − z0)j is analytic at

z0 and has a zero at z0. We will say the order of the zero of A(z) with eigenvector x1 at z0 is the

order of f(z) at z0.

Similarly, if z0 is a pole of A(z), then y1 is a pole vector of A(z) at z0 (we will sometimes say an

eigenvector at the pole) if there exist vectors (y2, y3, . . .) such that g(z) =
∑∞
j=0 yj+1(z−z0)jA(z)−1
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is analytic at z0 and has a zero at z0. We will say the order of the pole of A(z) with eigenvector y1

at z0 is the order of g(z) at z0.

remark 4.2.3 Definition 4.2.10 is most intuitive in the case where zeros and poles do not overlap

and have order and multiplicity one. In this case, the auxiliary vectors (x2, x3, . . .) and (y2, y3, . . .)

are unnecessary, and an eigenvector x1 for zero(I) z0 occurs when f(z) = A(z)x1 is zero-valued at

z0, and a pole vector y1 for pole(I) z0 occurs when g(z) = y1A(z)−1 is zero-valued at z0.

4.3 Finite-Dimensional Linear Quantum Stochastic Systems

(LQSS)

We provide a brief introduction here for (finite-dimensional) LQSS. Consider a system with a finite-

dimensional state x(t) driven by a bosonic input field bin(t) and generating a bosonic output field

bout(t). The most general form of a linear system preserving the commutation relations in the

input-output relationship has the form

d

dt
x = (A−x+A+x

#) + (B−bin +B+b
#
in) (4.9)

bout = (C−x+ C+x
#) + (D−bin +D+b

#
in). (4.10)

Using the notation M̆ = ∆(M−,M+) for matrices and v̆ = (v, v#)T for vectors (e.g. as used in [20]),

this can be written as

d

dt
x̆ = Ăx̆+ B̆b̆in (4.11)

b̆out = C̆x̆+ D̆b̆in. (4.12)

The matrices Ă, B̆, C̆, D̆ must satisfy special physical realizability constraints (e.g. Ref. [53]).

The input-output relationship may be characterized by the transfer function of the system. This

function is obtained by taking the Laplace transform of the equations of motion, defined by Y (z) =∫∞
0
e−zty(t)dt. Letting X(z), Bin(z), and Bout(z) be the Laplace transforms of x(t), bin(t), and

bout(t), respectively, and eliminating X(z) from the resulting equations, one obtains Bout(z) =

T (z)Bin(z), where T (z) = D̆+ C̆(zI − Ă)−1B̆. In Section 4.4 we will build upon finite-dimensional

LQSS, introducing time-delayed feedback. We will do so by considering the Laplace transform of

the newly constructed network including the time-delayed feedback.
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Theorem 4 in Ref. [53] states an equivalent condition for physical realizability in the frequency

domain when Ă, B̆, C̆, D̆ are doubled up in the sense of Eq. (4.1) and assuming the state space

realization is minimal and the eigenvalues of Ă satisfy λi(Ă) +λj(Ă) 6= 0 (a condition which always

holds for stable systems with A < 0). With these assumptions the system is physically realizable if

and only if

1. The transfer function T (z) is J-unitary.

2. The matrix D̆ has form D̆ = ∆(S, 0) for a unitary matrix S.

The first condition ensures the commutation relations are preserved, while the second condition

ensures there is no static (infinite-bandwidth) squeezing in the system (this would lead to energy

divergences and breaks the Hudson-Parthasarathy quantum stochastic calculus). We will show in

the following sections that the state space matrices being doubled-up and the first condition above

can be generalized for the cases when there is no finite-dimensional state-space. However, the

second condition has no clear analogue (see in particular the discussion in Section 4.8.4).

4.4 Linear Quantum Stochastic Systems with Delayed Feed-

back

We begin with an LQSS as described in Section 4.3 having 2(N+M) inputs and 2(N+M) outputs.

N +M of the input/output ports correspond to the input/output annihilation field, and the other

N +M of the input/output ports correspond to the input/output creation field. For convenience,

we permute the input and output ports, so that the odd-labeled ports correspond to the creation

fields and the even ports to the creation fields.

We assume this transfer function corresponds to a finite-dimensional (i.e. it is a proper rational

function) throughout (see Assumption 1). The transfer function of this system has form

T (z) =

(
T1(z) T2(z)

T3(z) T4(z)

)
, (4.13)

where the matrix has been partitioned into blocks of size 2N × 2N , 2N × 2M , 2M × 2N , and

2M × 2M .

Remark: A complex-valued function on the extended plane is a proper rational function if and only

if it is meromorphic on the extended complex plane and analytic at infinity. This applies to the
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components of T (z), and will be important throughout.

Next, we add delays with feedback to the system. In the case for linear quantum systems, we

use

E(z) = diag(e−T1z, e−T1z, ..., e−TMz, e−TMz). (4.14)

T̃ (z) = T1(z) + T2(z)E(z)(I − T4(z)E(z))−1T3(z) (4.15)

= T1(z) + T2(z)(E(−z)− T4(z))−1T3(z). (4.16)

Each time delay occurs in two terms of E(z), once for annihilation and once for the creation field.

Notice that E(−z) = E(z)−1 because of its special form. This notation will be used throughout.

Figure 4.1 shows conceptually how the blocks Ti(z) for i = 1, 2, 3, 4 are used to construct the new

transfer function T̃ (z). It can be shown E(z) is J-unitary. This is a similar setup to [19]. This

term can be derived from the Fourier transform on an linear quantum system with delayed input

ports.

Identity

Delays

T1(z)

T4(z)

T3(z)
T2(z)

Inputs Outputs

Figure 4.1: The setup of the network with delayed feedback constructed in Eq. (4.14). The arrows
in the left box indicate how the blocks Ti(z) for i = 1, 2, 3, 4 relate the inputs and outputs of T (z)
to the inputs and outputs of T̃ (z) with respect to the time delays.

4.4.1 Assumptions

These are assumptions we will make throughout.

61



1. The transfer function T (z) is a proper rational function. This means that each of its com-

ponents can be expressed as a ratio of polynomials, and that the degree of the numerator

is never greater than the denominator. Notice in particular this implies T (z) is analytic at

infinity.

2. The transfer function T (z) is doubled-up and J-unitary.

3. There is some C so that for {z : |z| > C}, T2(z), T3(z), T4(z) are invertible, and their singular

values are bounded away from zero by some positive constant. This generalizes the condition

in section 8.1 of reference ([55], i.e. Chapter 3) where the network components were static

and passive. Here, T4(z) replaces the static matrix M1. This condition on T4(z) excludes a

series product with delay B/A. For systems that do not satisfy this assumption, an approach

similar to that used in ([55], i.e. Chapter 3) may be used in order to separate out terms

corresponding to feedforward time delays. The condition on T2(z) and T3(z) allows us to

prove Lemma 4.6.1.

4. periods T1, ..., TN are commensurate. This suffices for practical purposes, and simplifies some

of the proofs.

5. Zeros(I) and poles(I) from Definition 4.2.8 do not occur in the same location.

6. For simplicity, suppose that whenever we find a zero or pole of a transfer function of interest,

there is up to a scalar only one eigenvector at the zero/pole (i.e. the multiplicity of each

zero/pole is one). Also, each zero/pole has order one in the sense of Definition 4.2.10.

There are additional specific non-degeneracy assumptions discussed in Section 4.7.2.

4.5 Properties of transfer functions

Claim 4.5.1

• If two transfer functions are J-unitary, then so is their product.

• If two transfer functions can be written in doubled-up notation, then so can their product.

• The inverse of a J-unitary function is J-unitary.

proofs: Direct computation.

Claim 4.5.2 If a rational transfer function is doubled-up, then so is its inverse.
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proof: This follows using a realization of the inverse of a transfer function, which is valid when D

is invertible (see e.g. reference [32]):

Denoting a transfer function by G(z) = D+C(zI −A)−1B by

(
A B

C D

)
(z), its inverse is

(
A B

C D

)−1

(z) =

(
A−BD−1C −BD−1

D−1C D−1

)
(z). (4.17)

From this one sees that the matrices for the state space representation of the inverse are also doubled

up. �

Claim 4.5.3 J-unitarity is preserved under concatenation, series, and feedback products.

proof: The case for the concatenation product is trivial:

[
T1(z) 0

0 T2(z)

]
J

[
T1(z) 0

0 T2(z)

]†
=

[
T1(z)J1T1(z)† 0

0 T2(z)J2T2(z)†

]
=

[
J1 0

0 J2

]
= J (4.18)

The series product follows from associativity:

(
T1(z)T2(z)

)
J
(
T1(z)T2(z)

)†
= T1(z)

(
T2(z)JT2(z)†

)
T1(z)† = T1(z)JT1(z)† = J (4.19)

The only nontrivial case is the feedback product. Here we start with a transfer function

T (z) =

[
T1(z) T2(z)

T3(z) T4(z)

]
(4.20)

J-unitarity implies:

T1JT
†
1 + T2JT

†
2 = J

T1JT
†
3 + T2JT

†
4 = 0

T3JT
†
1 + T4JT

†
2 = 0

T3JT
†
3 + T4JT

†
4 = J (4.21)

Expanding TJT † using T = T1 + T2(1 − T4)−1T3, and using the rules (4.21) to trade T1, T3 for
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T2, T4, we find:

T (z)JT (z)† = J + T2(1− T4)−1
[
−(1− T4)J(1− T †4 )− T4J(1− T †4 )

− (1− T4)JT †4 − T4JT
†
4 + J

]
(1− T †4 )−1T †2 (4.22)

The terms inside the square brackets vanish, leaving J , so T (z) is J-unitary. �

Claim 4.5.4 If T (z) is unitary (J-unitary), then so is T̃ (z) defined above.

proof: T̃ (z) is be obtained from T (z) and E(z) using concatenation, series and feedback operations.

Since these preserve J-unitarity, T̃ (z) must be J-unitary as well. �

4.5.1 Properties of the Roots and Poles of T̃ (z).

Claim 4.5.5 If a transfer function T (z) is J-unitary, its (complex) poles and zeros come in pairs

of the form z0,−z0. Furthermore, suppose x is an eigenvector of the zero z0 of T (z) in the sense

of [49]. Then x†J is an eigenvector of the pole −z0 at T (z) in the sense of [49].

proof: This follows from T (z)JT (−z)† = J . In particular, we can re-arrange to get

T−1(z) = JT †(−z)J. (4.23)

Since z0 is an eigenvalue of T (z) with eigenvector x, there are some vectors x2, x3, ... such that

T (z)[x + x2(z − z0) + ...] is analytic with a zero at z0. Multiplying on the left of Eq. (4.23) by

x†J + x†2J(z + z0) + ..., we find the expression is analytic with a zero at −z0. �

Claim 4.5.6 If a rational transfer function T (z) is doubled-up, then it satisfies

T (z) = ΣT (z)#Σ. (4.24)

proof: T (z) is doubled-up if and only if for each matrix R among A,B,C,D, ΣRΣ = R#. The rest

is straightforward algebra. �

The property T (z) = ΣT (z)#Σ generalizes the notion of a doubled-up transfer function for a finite

dimensional system to more general functions (i.e. T (z) is no longer required to be rational).
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Claim 4.5.7 Given a transfer function T (z) satisfying the property T (z) = ΣT (z)#Σ, if z0 is a

zero of T (z), then so is z0. If x is an eigenvector of T (z) at z0, then Σx# is an eigenvector of T (z)

at z0.

Similarly, if z0 is a pole of T (z), then so is z0. If x is an the eigenvector of T (z) at z0, then Σx#

is an eigenvector of T (z) at z0.

proof: Since z0 is a zero of T (z), there are some vectors x2, x3, ... such that T (z)[x+x2(z− z0) + ...]

is analytic with a zero at z0. Applying the property T (z) = ΣT (z)#Σ, and using the fact that f(z)

is analytic if and only if f(z) is analytic, we obtain the desired result.

The proof for the poles follows similarly. �

Corollary 4.5.1 If the zero z0 with eigenvector x is real, then y = Σx# is also an eigenvector at

z0.

Claim 4.5.8 Suppose T (z) is a rational transfer function that can be written in doubled-up form.

If z is a pole of T̃ (z), then so is z.

proof: This follows from the fact that ΣT̃ (z)#Σ = T̃ (z), proved using the identities ΣE(z)Σ =

E(z)# and ΣAΣ = A#, etc., below:

ΣT̃ (z)#Σ = Σ
[
D# + C#(zE(−z)# −A#)−1B#

]
Σ

= D + C(zE(−z)−A)−1B = T̃ (z) (4.25)

From here we use Claim 4.5.7 to show that z̄ is also a pole of T̃ (z). �

4.5.2 The poles of T̃ (z) have bounded real part

We begin by showing that if T4(z) has singular values bounded away from zero for all z ∈ {|z| > C}
for some C (Assumption 3), then the poles of T̃ (z) have bounded real part. We will also use that

T4(z) is a rational function (Assumption 1), and therefore its singular values are also bounded from

above.

The original transfer function T (z) is rational, so it has a finite number of poles. Therefore for the

purposes of showing a bound for the real part of the poles of T̃ (z), we can ignore the poles of T (z).

The remaining poles of T̃ (z) can only occur when (E(−z) − T4(z))−1 has a pole. We will obtain

our desired bounds using the following lemma:
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Lemma 4.5.1 Given matrices A,B with singular values satisfying σmin(A) − σmax(B) > ε, the

matrix A−B is invertible, and σmin(A−B) > ε.

proof: The key step employs the triangle inequality:

σmin(A−B) = inf
‖x‖=1

‖(A−B)x‖ ≥ inf
‖x‖=1

(‖Ax‖ − ‖Bx‖)

≥ inf
‖x‖=1

‖Ax‖ − sup
‖x‖=1

‖Bx‖ = σmin(A)− σmax(B) > ε. (4.26)

The matrix A−B is invertible since all of its singular values are positive. �

Lemma 4.5.2 If T4(z) has singular values bounded away from zero for all z ∈ {|z| > C} for some

C, then there is a strip S = {z : Clow < <(z) < Chigh} outside of which ‖T̃ (z)‖ is bounded from

above.

proof: We assumed that for all z ∈ {|z| > C} for some C, the smallest singular value σmin(T4(z))

is bounded away from zero. Notice when <(z) < 0, the greatest singular value of E(−z) is

exp(Tmin<(z)), where Tmin is the shortest delay. Thus when <(z) becomes sufficiently negative,

the greatest singular value of E(−z) is smaller than the smallest singular value of T4(z), which is

bounded from below. Hence, using Lemma 4.5.1, E(−z)−T4(z) is invertible for some <(z) < Clow,

and its smallest singular value is bounded from below. A bound can be computed explicitly in

terms of Tmin and the lower bound on σ(T4(z)).

Similarly, as <(z) grows in the positive direction, the smallest singular value of of E(−z) diverges.

Using the boundedness of the singular values of T4(z) for sufficiently large <(z) and applying

Lemma 4.5.1, we find E(−z)−T4(z) is invertible for some <(z) > Chigh, and that its singular value

is bounded from below.

Combining the two results above, we obtain a strip S = {z : Clow < <(z) < Chigh} such that all

the poles of T̃ (z) occur inside S, and the smallest singular value of E(−z)− T4(z) is bounded from

below outside the strip. Thus we can bound ‖(E(−z)−T4(z))−1‖ and therefore ‖T̃ (z)‖ from above

outside S. �

4.6 Approximation using a static component

We will construct a transfer function S̃(z), which behaves similarly to T̃ (z) for large |z| by replacing

T (z) with a constant S. This corresponds to replacing the internal components of the system with
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static counterparts. S̃(z) is simpler to analyze than T̃ (z), and will be useful for several of the

proofs.

4.6.1 Relation Between T̃ (z) and S̃(z)

Since we have assumed that T (z) is finite-dimensional, in the limit |z| → ∞ we have T (z) → S,

where S is a constant J-unitary, doubled-up matrix. We partition S in the same way as we did

T (z) into four blocks of the same sizes:

S = lim
|z|→∞

T (z) =

(
S1 S2

S3 S4

)
. (4.27)

Define

S̃(z) = S1 + S2E(z) (I − S4E(z))
−1
S3. (4.28)

Finding a convergent factorization for S̃(z) in terms of canonical factors will be a precursor to a

similar factorization for T̃ (z). The relationship between S̃ and T̃ (z) for large |z| is described in

Lemma 4.6.3 below.

It will be useful to introduce fT (z) = det(I − T4(z)E(z)) and fS(z) = det(I − S4E(z)).

Lemma 4.6.1 Restricted to sufficiently large |z|, the poles of T̃ (z) and S̃(z), respectively, are the

roots of the functions fT (z) and fS(z).

proof: This follows using Assumption 3 and that each Ti(z) is rational (i = 1, 2, 3, 4). Specifically,

the poles of Ti(z) are bounded, so when |z| is large enough T̃ (z) can only have poles when fT (z)

has zeros (and similarly for S̃(z)). By Assumption 3, when |z| is large enough, T2(z) and T3(z)

have singular values bounded away from zero, and hence S2 and S3 have no zero singular values.

Therefore, all of the zeros of fT (z) and fS(z) for large enough |z| are also poles of T̃ (z) and S̃(z),

respectively. �

Lemma 4.6.2 Rate of convergence.

(i) The rate of convergence of T4(z)→ S4 is O(1/|z|).

(ii) When <(z) is bounded, the rate of convergence of fT (z)→ fS(z) is O(1/|z|).

proof (i): From Assumption 1, T4(z) is analytic at infinity. Since T4(z) → S4 as |z| → ∞, the

Laurent series of each of the components of T4(z) at infinity has the form
∑∞
n=0

cn
zn . This implies
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the rate of convergence of T4(z)→ S4 is O(1/|z|). �

proof (ii): Expand the determinant as a polynomial function for fT (z) and fS(z). Notice for both

fT (z) and fS(z), the coefficients and the entries of E(z) are the same. The desired estimate follows

by subtracting the two expressions, using the triangle inequality, and noting each of the entries of

E(z) is bounded when <(z) is bounded. �

Lemma 4.6.3 When |z| is large, T̃ (z) approaches S̃(z) in the following sense. For sufficiently

large M , there exists εM = O(M−1) such that the following hold:

(i) For each zero (pole) w0 of S̃(z) satisfying |w0| > M , there is exactly one zero (pole) z0 of T̃ (z)

inside BεM (w0), and w0 is the only zero (pole) of S̃(z) in BεM (z0). Similarly, the statement holds

if we exchange S̃(z) and T̃ (z).

(ii) For z0 and w0 above, the orthogonal projectors PT , PS onto the span of the eigenvectors of T̃ (z)

at z0 and S̃(z) at w0, respectively, satisfy ‖PT − PS‖ = O(εM ).

(iii) Given arbitrary but fixed ε, if |z| > M and z /∈ Bε(w0), Bε(z0) for all poles w0 and z0 of S̃(z)

and T̃ (z), then we can estimate ‖T̃ (z)− S̃(z)‖ = O(1/M).

The proof is given in Appendix B.1.

4.7 Fundamental Factors of Quantum Linear Systems

In this section we will use the notation from Definitions 4.2.2 and 4.2.3.

Our goal will be to show that T̃ (z) can be factorized as B
∏
Pi(z) where Pi(z) are elementary

transfer functions of physically realizable components and B is a constant J-unitary and doubled-

up matrix. For the Pi(z) terms, we will use the transfer function of a generic physically realizable

linear system with only two root and pole pairs. Such a system can be described using the SLH

framework (see e.g. [6]) by

(S,L,H) =

(
I2×2,Λă,

1

2
ă∗Ωă

)
. (4.29)

Above in Eq. (4.29), ă = [a, a∗]T , Λ = [Λ−,Λ+], and Ω = ∆(ω, ε) is a Hermitian matrix. Specifically,

ă represents the internal field (creation / annihilation operators), Λ is related to the Lindblad terms

in the master equation (coupling to environment) and Ω is related to the system Hamiltonian.
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Defining Λ̆ = ∆(Λ−,Λ+), the state-space realization of this system is given by

A = −1

2
Λ̆[Λ̆− iΩJ, B = −Λ̆[, (4.30)

C = Λ̆, D = I. (4.31)

We can normalize Λ̆ using V = Λ̆/
√
κ with κ = |Λ−|2 − |Λ+|2. This results in the form

P (z) = I − V V [ + V
z − 1

2κ+ iΩJ

z + 1
2κ+ iΩJ

V [. (4.32)

In Eq. (4.32) above, notice V is a doubled-up matrix satisfying V [V = I, and Pv = V V [ is the

projector onto the subspace in which the input-output field interacts with the system.

4.7.1 Canonical form of the fundamental factors

There are two possibilities for the form of the transfer function, depending on whether its roots are

complex or purely real. If the roots of the transfer function are complex (|ω| > |ε|), they come in

pairs (z0, z0), and the transfer function can be rewritten as:

P (z) = I − V V [ + V

(
z−z0
z+z0

0

0 z−z0
z+z0

)
V [. (4.33)

If the roots (z1, z2) are purely real (|ω| < |ε|), the transfer function can be rewritten as:

P (z) = I − V V [ +
1

2
V

(
1 i

1 −i

)(
z−z1
z+z2

0

0 z−z2
z+z1

)(
1 1

−i i

)
V [. (4.34)

To derive this form, first write the form of the Hermitian matrix Ω =

(
a b eiφ

b e−iφ a

)
, where a, b > 0

without loss of generality (the a < 0 case is straightforward to transform into this form).

In the case when iΩJ has complex roots, we find a > b. Using η = tanh−1(b/a) and c =
√
a2 − b2,

we can write Ω = c

(
cosh(η) sinh(η)eiφ

sinh(η)e−iφ cosh(η)

)
= c

(
cosh(η/2) sinh(η/2)eiφ

sinh(η/2)e−iφ cosh(η/2)

)2

= cS2. Since

S is unitary and J-unitary, iΩJ = icS2J = icSJS−1. Finally, S is also doubled-up, so it can be
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absorbed into V in Eq. (4.32). This leads to Eq. (4.33) with z0 = − 1
2κ+ ic.

In the case when iΩJ has real roots, we find a < b. Using η = tanh−1(a/b) and c =
√
b2 − a2,

we can write Ω = c

(
sinh(η) cosh(η)eiφ

cosh(η)e−iφ sinh(η)

)
. Ω can then be transformed to its canonical form(

0 ic

−ic 0

)
using the Bogoliubov transformation Ω→ SΩS†, with

S =

(
cosh(η/2)ei(π/4−φ/2) − sinh(η/2)ei(π/4+φ/2)

− sinh(η/2)ei(−π/4−φ/2) cosh(η/2)ei(−π/4+φ/2)

)
(4.35)

as the J-unitary and doubled-up transformation matrix. Once we have transformed Ω to its canon-

ical form, we can diagonalize iΩJ = 1
2S
−1

(
1 i

1 −i

)(
c 0

0 −c

)(
1 1

−i i

)
S, from which Eq. (4.32)

can be used to derive the form Eq. (4.34) with z1 = 1
2κ− c, z2 = 1

2κ+ c.

For the real roots case, the new matrices

(
1 1

−i i

)
and

(
1 i

1 −i

)
are inserted explicitly instead

of being absorbed into V to preserve the properties of V . It can be checked that both transfer

functions Eq. (4.33) and Eq. (4.34) satisfy P (z)JP †(−z) = J and P (z) = ΣP (z)#Σ.

4.7.2 Constructing elementary factors to match a transfer function at a

zero or pole

In this section we discuss how to construct transfer functions of the forms in Eq. (4.33) and Eq. (4.34)

that match the zeros/poles and eigenvalues of a J-unitary and doubled-up transfer function F (z).

We also discuss the conditions under which it is not possible to construct terms of the desired

form.

In Section 4.7.4, we will show how a particular term P (z) with matching zeros/poles and eigen-

values can be detached from F (z). In Section 4.8 we will discuss how such terms can be detached

sequentially, giving the desired factorization.

For the case of a complex root z0 and its eigenvector v0, we use the term in Eq. (4.33) for P (z).

In this case another zero z0 and its eigenvector Σv#
0 , along with two poles −z0 and −z0 and

their eigenvectors, v†0J and ΣvT0 J , respectively, are all determined for both F (z) by Claims 4.5.5

and 4.5.7.
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Theorem 4.7.1 Given a rational J-unitary and doubled-up transfer function F (z) with a conjugate

pair of complex roots z0 and z0 with respective eigenvalues v0 and w0 with w0 = Σv#
0 and v†0Jv0 6= 0,

there exists a term of the form Eq. (4.33) with the same zeros and eigenvalues.

proof: The proof is constructive:

1. Normalize v0 so that v†0Jv0 = 1. Since w0 = Σv#
0 , it follows w†0Jv0 = 0. From this it follows

w†0Jw0 = −1.

2. Set V = [v0, w0] in Eq. (4.33). From the condition w0 = Σv#
0 it follows V is in doubled-up

form. Using the identities in the previous step, one can show v0 and w0 are eigenvectors of

T (z) in the sense:

T (z)v0 =
z − z0

z + z0
v0, T (z)w0 =

z − z0

z + z0
w0. (4.36)

The eigenvalues are analytic in z and have a zeros at z0 and z0, so v0 and w0 are their

respective eigenvectors in the sense of Definition 4.2.10.

Since the term Eq. (4.33) is also J-unitary and doubled-up, the term found by Theorem 4.7.1 also

has the same poles −z0 and −z0 and their eigenvectors (up to a scalar), v†0J and ΣvT0 J .

Next, we discuss the case of real roots. We will assume that the number of real roots is even, so

that they can be paired to form terms of the form Eq. (4.34). Suppose a pair of zeros z1 and z2

of F (z) is given, along with their corresponding eigenvectors v1 and v2. In this case the poles −z1

and −z2 and their eigenvectors v†1J and v†2J are determined by Claims 4.5.5.

Theorem 4.7.2 Given a rational J-unitary doubled-up transfer function F (z) with two real roots

z1 and z2 and corresponding eigenvectors v1 and v2 respectively, such that v†1Jv2 6= 0, there exists

a term P (z) of the form Eq. (4.34) with the same zeros and eigenvectors.

proof:

1. Using Corollary 4.5.1 and the assumption that each eigenspace is one dimensional (Assump-

tion 6), the phase of the eigenvectors can be chosen such that v1 = Σv#
1 and v2 = Σv#

2 . This

implies v†1Jv1 = v†2Jv2 = 0.

2. There are two remaining degrees of freedom for how the eigenvectors can be chosen, corre-

sponding to their norms. Notice the value v†1Jv2 is always imaginary due to the previous step.

We make one of the constraints v†1Jv2 = i/2 (we may have to switch the order to get the right

sign). The other constraint, corresponding to the relative norms of the two eigenvectors, can
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be chosen arbitrarily.

3. Set V by

V = (v1, v2)

(
1 1

−i i

)
. (4.37)

As a result of of vi = Σv#
i for i = 1, 2, the matrix V is doubled-up in the sense of Eq. (4.1).

T (z)v1 =
z − z1

z + z2
v1, T (z)v2 =

z − z2

z + z1
v2. (4.38)

The eigenvalues are analytic in z and have a zeros at z1 and z2, so v1 and v2 are their respective

eigenvectors in the sense of Definition 4.2.10.

Since the term Eq. (4.34) is also J-unitary and doubled-up, the term found by Theorem 4.7.2 also

has he same poles −z1 and −z2 as F (z) as well as the same eigenvalues at those poles.

4.7.3 Another form of the elementary factors

The elementary factors in Section 4.7.1 can be re-written in another form, which can be useful. We

will focus here on the terms resulting from a canonical factor with two complex roots, Eq. (4.33).

We can write this function as

P (z) = I − V V [ + V F (z)V [. (4.39)

Here V [V = I and F (z) = diag (a(z), a(z)∗) = diag
(
z−z0
z+z0

, z−z0z+z0

)
. With the substitution W = V J ,

we obtain

P (z) = I −WJW †J +WJF (z)W †J = (J −WJW † −WJF (z)W †)J. (4.40)

Also, W satisfies W †JW = J since V [V = I.

Next, we will complete the column space W of W , forming a J-unitary matrix M . Care must be

taken since we use the indefinite inner product given by [x, y] ≡ x†Jy, as opposed to the standard

inner product. In our situation, W is nondegenerate, meaning that if x ∈ W and [x, y] = 0 for all

y ∈ W then x = 0. Therefore, we can apply proposition 2.2.2 in [12], which implies the orthogonal

companion given by W [⊥] = {x ∈ Cn|[x, y] = 0 for all y ∈ W} is the direct complement of W.

This result can be used to construct an orthonormal basis [xi, xj ] = ±δi,j , as discussed in [12]
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following proposition 2.2.2. Further, proposition 2.2.3 in [12] implies we can pick our basis so that

[xi, xj ] = Jij . Stacking the columns M = [x1|...|x2n], we find M is a J-unitary matrix.

We can use M to write

P (z) = Mdiag (a(z),−a(z)∗, 1,−1, ..., 1,−1)M†J. (4.41)

This term is analogous to the Blachke-Potapov factors Eq. (13) in reference [17], albeit there are

some differences due to the indefinite inner product used in the construction.

4.7.4 Zero and Pole Matching

Suppose we are given a transfer function A(z) satisfying A(z)JA†(−z) = J and A(z) = ΣA(z)#Σ.

We wish to factorize it according to its roots and poles. By the claims in Section 4.5, we can relate

the eigenvector of the zero z0 to that of a pole at −z0. Further, if the zeros are purely complex,

there is another zero-pole pair z0,−z0, and the eigenvectors of all four points can be related.

Lemma 4.7.3 Given two transfer functions A(z) and P (z) both with a pole (zero) at w0 of partial

multiplicity 1 (for simplicity) with the same eigenvectors, and no other poles or zeros at w0. Then

the function A(z)P (z)−1 is analytic at w0 with no zeros or poles.

Proof: Let Q be the orthogonal projector onto the span of the eigenvectors, and W = Q/w0. As in

the proof of theorem 2.1 of [1], we can factorize a pole from both A(z) and P (z):

A(z)P (z)−1 = A(z)(I − zW )(I − zW )−1P (z)−1 (4.42)

= A(z)(I − zW )[P (z)(I − zW )]−1 = Ã(z)P̃ (z)−1,

where Ã(z) = A(z)(I − zW ) and P̃ (z) = P (z)(I − zW ). The partial pole multiplicities of Ã(z) and

P̃ (z) at w0 are all smaller than those of A(z) and P (z), respectively, by 1. The zero multiplicities of

A(z) and Ã(z) at w0 are the same (the same for tilde P (z) and P̃ (z)). Since we have assumed (for

simplicity) that the poles all have partial multiplicity 1, the functions Ã(z) and P̃ (z) are analytic

at w0, which has no poles or zeros. We conclude that Ã(z)P̃ (z)−1 is analytic at w0 and has no

zeros or poles at w0.

The proof is similar for the case of a zero instead of a pole. In this case, where Q is the orthogonal
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projector onto the span of the zero eigenvectors and W = Q/w0, we factorize:

A(z)P (z)−1 = A(z)(I − zW )−1(I − zW )P (z)−1 (4.43)

= A(z)(I − zW )−1[P (z)(I − zW )−1]−1 = Ã(z)P̃ (z)−1,

where Ã(z) = (I − zW )−1 and P̃ (z) = P (z)(I − zW )−1. The rest of the argument is similar to the

case where w0 is a pole. �

4.8 Factorization for quantum linear systems by physically

realizable components

Ultimately, we are interested in the setup given in Section 4.1. We wish to detach from T̃ (z) a

(possibly infinite) sequence of transfer functions of physically realizable terms, which have the form

of Eq. (4.33) or Eq. (4.34), so that the remaining function has no zeros or poles. Explicitly,

T̃ (z) =
∏
n

Pn(z)B(z), (4.44)

where B(z) has no zeros or poles. In order to obtain the product in Eq. (4.44), the appropriate terms

Pn(z) will be detached sequentially. We will also show B(z) is a constant given our assumptions. In

order to obtain a factorization of the above form, we will use for Pn(z) terms of the form Eq. (4.33)

or Eq. (4.34), depending whether two real roots or two complex roots are chosen. This is discussed

in Section 4.7.

Before we discuss systems with feedback, we will first discuss the factorization applied to systems

without feedback described by a transfer function T (z) in Section 4.8.1. This case is easier since

the product in Eq. (4.44) is finite.

When feedback is present, the product in Eq. (4.44) in general may be infinite. In this case, we

must show the product converges for some ordering of the factors Pn(z). To this end, we introduced

S̃(z) discussed in Section 4.6. S̃(z) behaves similarly to T̃ (z) for large |z|, and is easier to study.

Physically, this corresponds to replacing the components yielding the function T (z) with static

counterparts. We will construct our desired factorization for S̃(z) in Section 4.8.2. In Section 4.8.3

we will discuss the more general factorization of T̃ (z).
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4.8.1 Finite dimensional system with no feedback

In this section, we will discuss the factorization of the finite-dimensional system T (z). We make

the same assumptions stated above for T (z).

As discussed above, we can choose terms Pn(z) using terms of the form Eq. (4.33) or Eq. (4.34),

depending on whether each root is real or complex, with the caveat that the conditions discussed in

Section 4.7.2 must hold at each step of the factorization. This leads to a factorization of the form

T (z) =
∏N
n=1 Pn(z)B(z). Here N is a finite number since there are a finite number of zeros and

poles for T (z).

In the limit |z| → ∞, we find each of the Pn(z) and the T (z) converges to a constant matrix.

Therefore, B(z) is a constant matrix (call it B). It also satisfies the doubled-up and J-unitary

properties. Further, if T (z) is physically realizable, then each of the finite Pn(z) can be inverted

showing B is also physically realizable.

Notice the existence of a realization of a finite-dimensional state-space matrices A,B,C,D is au-

tomatically implied by the physical realization of a system with the appropriate transfer func-

tion.

4.8.2 Static System with Nonzero Time Delays

In the special case T (z) = S, we find T̃ (z) = S̃(z) for S̃(z) in Eq. (4.28).

We will show the following:

Theorem 4.8.1 Assume that each term Pn(z) can be constructed sequentially as discussed in Sec-

tion 4.7.2. Then there is a way to pick terms Pn(z) so that the product
∏
n Pn(z) converges uniformly

on compact sets, S̃(z) =
∏
n Pn(z)B, and B is a constant matrix.

The proof is given in Appendix B.2. After the proof we also discuss the rate of convergence of the

factorization. See in particular Theorem B.2.1.

4.8.3 Finite Dimensional System with Nonzero Time Delays

Next, we generalize to the case where T (z) replaces the static component S = limz→∞ T (z), to

obtain a factorization for T̃ (z) instead of S̃(z).

75



As in the case using a static component in Section 4.8.2, again we only need to consider terms

Pn(z) with complex roots for convergence, since the number of terms with real roots is finite. For

this reason we will again ignore the real roots.

Theorem 4.8.2 Suppose that the factorization for S̃(z) in Theorem 4.8.1 exists and converges

uniformly on compact sets. Assume that terms Pn(z) can be detached sequentially from T̃ (z) as

discussed in Section 4.7.2. Then there is a factorization T̃ (z) =
∏
n Pn(z)B that converges uni-

formly on compact sets, where B is a constant matrix.

The proof is given in Appendix B.3, along with a simplified sketch of the proof. We discuss rate of

convergence following the proof as well.

remark 4.8.1 Notice that B in Theorem 4.8.2 is J-unitary and doubled-up. This follows by notic-

ing the product
∏
n Pn(z) is J-unitary and doubled-up, and inverting it to get B = T̃ (z) (

∏
n Pn(z))

−1

and using Claims 4.5.1 and 4.5.2.

4.8.4 Limiting behavior of T̃ (z)

For finite-dimensional systems, one way to characterize systems with no static squeezing was to

examine the matrix D in the state-space realization, and ensure it had the form D = ∆(D̃, 0),

where D̃ is a Hermitian matrix. Since the transfer function had the form D + C(zI − A)−1B, we

could take |z| → ∞, and the direction along which the limit was taken did not matter. However,

as seen in Eq. (B.23), when delayed feedback is present the direction of the limit is important, and

can yield different results.

Notice that obtaining different limit values of T̃ (z) as |z| → ∞ is still consistent with the factoriza-

tion T̃ (z) =
∏
n Pn(z)B of Theorem 4.8.2, even though each term Pn(z) approaches I as |z| → ∞

(along any direction). This is because the convergence of the product is only uniform on compact

sets, and not the whole plane. Thus the limit and the product cannot be exchanged.

4.9 Examples

Below we construct several systems as examples. We show how our methodology can be used to

construct a reduced model for each. We also discuss applications of some of the examples and some

limitations of our methodology.
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For each example, we provide a diagram of the poles of the system, an illustration of the transfer

function of the original system versus the reduced system, and the squeezing spectrum of the original

system versus the reduced system. Below we discuss these further.

In each of the examples, we will see the poles satisfy Claim 4.5.7: If p is a pole of a physically

realizable system, then so is its complex conjugate p. The zeros (on the right side of the complex

plane) are not shown, but satisfy the property that z is a zero of a physically realizable transfer

function if and only if p is a pole.

In each diagram illustrating a transfer function, we show the real and imaginary components of

specific components along z = iω (real frequencies). Our examples focus on cases when there is a

single input/output port (carrying a creation and an annihilation bosonic field, labeled by indices

0 and 1 respectively). In this case, the transfer function has four complex-valued components,

mapping different input-output combinations between the input annihilation and creation fields

and their analogous output fields. In the diagrams we illustrate T [0, 0] (input annihilation to

output annihilation fields) and T [1, 0] (input creation to output annihilation fields). The remaining

components T [1, 1] and T [0, 1] are determined by the first two.

Below, we also refer to the squeezing spectrum (power spectral density), which is the amount of

output power from the system along a particular quadrature at each frequency. The squeezing

spectrum can be computed from the transfer function, using Eq. (28) in [20] (also Eq. (26) in [7]).

Explicitly, the output quadrature along angle θ is defined as

qout,i(t, θ) = eiθbout,i(t) + e−iθb†out,i(t), (4.45)

and we define the power spectrum at frequency ω to be given by

Pij(ω, θ) = lim
T→∞

1

T

〈∫ T

0

eiωt1qout,i(t1, θ)dt1

∫ T

0

e−iωt2qout,j(t2, θ)dt2

〉
. (4.46)

4.9.1 Example 1

In our first example, we have a squeezing component with a single channel, followed by a feedback

loop. The squeezing component can be realized by a non-detuned degenerate OPO. In the SLH

formalism, it can be represented by:

(S,L,H) =
(

1,
√
κa, iε

(
a†

2 − a2
))

. (4.47)
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To construct the feedback loop, we will require a beamsplitter with a reflectivity r and transmissivity

t =
√

1− t2, having two channels. A beamsplitter has trivial L and H components. We will use

the scattering matrix SBS for the beamsplitter,

SBS =

(
−
√

1− r2 r

r
√

1− r2

)
=

(
−t r

r t

)
. (4.48)

Next, we can use the SLH rules to combine the two components, resulting in a system we will denote

G below. We align them so that the squeezing component lies in ‘series’ on the first channel before

the input to the beamsplitter. This is analogous to the setup of Example VI.1 of [6]. Specifically,

we obtain the system described by Eq. (122) from [6]. The SLH model for system G is

(SG, LG, HG) =

((
−
√

1− r2 r

r
√

1− r2

)
,

(
−
√

1− r2
√
κa

r
√
κa

)
, iε(a†

2 − a2)

)
. (4.49)

Finally, to complete the feedback loop for this example, we would like to insert time-delayed co-

herent feedback from the output of the second channel to the input of the second channel of the

concatenated system 4.49. This is illustrated in Figure 4.2. To do this, we follow our procedure

discussed in Section 4.4. First we translate from the SLH formalism to the state-space formal-

ism in order to find the transfer function T (z) of the system G above. Then we add the time

delay term E(z) = diag(e−Tz, e−Tz) as discussed in Section 4.4. The feedback loop is inserted

from the second output to the second input. For our analysis below we set the parameters to be

T = 2.0, r = 0.6, κ = 1.0, ε = 0.2.

The poles of the system are shown in Figure 4.3. There are two non-degenerate poles (at − 1
2κ±ε =

−0.3,−0.7) resulting from the squeezer, and one degenerate real pole (at about −0.1) along with

an infinite set of complex poles resulting from the time delay. The two non-degenerate poles can

be thought of as coming from the squeezing component, while the rest are from the feedback loop.

The reason the poles of the composite system can be partitioned to those of each component is due

to how the composite system is set up. The two components (squeezing element and feedback loop)

essentially occur in series in this example, so the transfer function of the composed system can be

constructed using a product of two transfer functions, one belonging only to the squeezer and the

other to the feedback loop. The reason the poles due to the feedback loop are degenerate is because

we used the doubled-up notation, which becomes degenerate in the case of a passive system – the

transfer function for the annihilation and creation fields do not influence each other and can be
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determined from one another.

The complex poles were degenerate in the sense that their eigenvectors did not satisfy the condition

v†Jv 6= 0. Two ways to deal with this special case are (1) try to break the degeneracy by adding a

phase shift within the loop and (2) perturb the eigenvector and use a modified factor. When using

(1), each complex pole and the degenerate real pole split into two complex poles. To obtain the

factorization then, one would use the usual construction of complex poles, using every other pole

as ordered in the imaginary direction (since each term also includes the conjugate pole, we do not

include both nearly overlapping poles). When using (2), we use a modified factor, built of of two

separate terms:

P (z) =

(
I − V V [ + V

(
z−z0
z+z0

0

0 z−z0
z+z0

)
V [

)(
I − V V [ + V

(
z−z0
z+z0

0

0 z−z0
z+z0

)
V [

)
. (4.50)

Each term corresponds to one of the terms resulting from the poles being perturbed. To deal with

the degenerate real pole using approach (2), one can find the two-dimensional eigenspace at the

pole, and use both vectors to construct V in the usual way for real poles. For our example, we tried

both approach (1) with a phase shift δ = 10−3 as well as approach (2) where the first entry of v1

was increased by ε = 10−3. The resulting functions were visually indistinguishable when plotted

along z = iω for real values of ω. The original transfer function is shown against the approximated

transfer function with the real poles and a total of six complex poles (or eight if the degenerate real

pole is perturbed into two complex poles) in Figure 4.4. The code for the example is available on

Github at [54].

Finally, we computed the squeezing spectrum for this example, for both the original as well as

reduced system. Since the feedback loop in this example did not alter the squeezing properties, the

reduced model resulting from just the two non-degenerate poles (from the squeezing component)

was sufficient for capturing the squeezing effects of the system. The end result was that the reduced

model and the complete model led to exactly the same squeezing spectrum (see Figure 4.5).

4.9.2 Example 2

The next example is similar to Example 1, except that the feedback loop now includes it in the

squeezing component. The construction is similar, except both the input and output ports have

been permuted before the time delayed feedback was introduced (see Figure 4.6). The parameters

we used for this example were: κ = 1.0, r = 0.97, ε = 0.1, T = 5.0. The network in this example

is similar to the one introduced in [20] and experimentally implemented in [25]. In this network,
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Beam 
Splitter

Time Delay

OutputInput
Squeezer

Figure 4.2: An example of a time-delay network. The dashed box shows the system G discussed in
the text in Section 4.9.1, generated by concatenating the squeezer with the beamsplitter. Squeezed
light enters a feedback loop designed using the beamsplitter and delayed feedback.

placing the squeezer within the feedback loop results in enhanced squeezing. Our modification is

the incorporation of a positive time delay in the feedback loop.

The pole diagram (Figure 4.7) is substantially different than that of Example 1. The squeezer is

no longer being cascaded in series with the feedback loop, but is now inside of it. As a result, the

resulting poles are no longer the collective poles of the component systems. Instead, the effective

behavior we see is that of several individual squeezing components, some of which are detuned in

frequency. It can be shown that for a squeezing component with (S,L,H) = (1, a
√
κ,∆a†a+iε[a†

2−
a2]) the location of poles is given by p = −κ ±

√
ε2 −∆2. Thus when the detuning ∆ becomes

larger than the squeezing parameter ε, the poles become complex-valued. Intuitively, the feedback

loop generates a cavity with many modes, each having poles p and p with multiplicities 2. When

squeezing is introduced, each of the poles splits into two poles. Each resulting pair of conjugate

poles corresponds to an effective squeezer. As we examine poles with increasing imaginary part, we

see they approach a periodic pattern. This is a consequence of Lemma 4.6.3, where asymptotically

the system behaves as if the squeezing component became negligible, and the modes we see approach

those of an empty cavity.

We found there were two non-degenerate real poles of multiplicity 1, and each of the complex

poles also had multiplicity 1. However, the complex poles were degenerate in the sense that their

eigenvectors v had v†Jv = 0, thus making them non-normalizable. We resolved this issue by

perturbing the first component of each eigenvector. We included two product terms (four complex

poles) in this way. Finally, in Figure 4.9 we see good agreement between the squeezing spectrum

of the original system versus the reduced system.
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Figure 4.3: The poles of the transfer function of the system in Example 1. The complex poles
for this system have multiplicity 2. Two of the real poles result from the squeezing component
(−0.3,−0.7), and the rest are degenerate poles due to the feedback loop.

4.9.3 Example 3

This example is based on the system discussed in [39]. Here the squeezing component has two

channels, which are used to construct the feedback loop shown in Figure 4.10. Specifically, we

started with the SLH model for the squeezer:

(S,L,H) =

(
I,

(
a
√

2κb

a
√

2κc

)
,
iε

2
(a†

2 − a2)

)
(4.51)

We also allow in our model to have loss, which is modeled using an extra input-output channel

along with a beamsplitter. However, for the purposes of the analysis here we made the loss zero

(i.e. the beamsplitter has reflectivity r = 0.0). Finally, we introduce the delayed feedback as shown

in Figure 4.10 (permuting the channels as necessary). For the analysis here we set κb = 1.0, κc =

0.9, ε = 0.2 and T = 1.0.

In Figure 4.11 we demonstrate the poles for the system with out choice of ε. In Figure 4.13 we show

the poles using several other choices of ε. Similar to the previous example, we see the pole splitting

as ε becomes larger, with degenerate poles when ε = 0.0. Qualitatively, the pole behavior is different

than Example 2 as the imaginary part becomes large. Instead of the poles converging to a periodic

pattern, they instead lie on a transcendental equation (see the caption of Figure 4.13). The reason

this is possible is that Assumption 3 is not satisfied. In particular, one can show that T4(z) has
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Figure 4.4: The transfer function of the example system, and the transfer function of an approx-
imation generated using the canonical factors. A constant pre-factor was added so that the two
functions match at the origin. The real and imaginary parts of two components are shown along
z = iω for real values of ω.

asymptotically a zero singular value, and thus the transfer function T̃ (z) is not proper. Although

this seems concerning since our convergence theorem does not apply, in practice the factorization

seems to produce a well-behaved reduced system. Notice if a small change was made to the system

(for example by perturbing the scattering matrix S) it is possible to introduce a small positive lower

bound to singular values of T4(z) thus preventing any potential issues.

We remark the most interesting region for this example is where the power spectrum peaks (Fig-

ure 4.15. Indeed, this was the original reason the system was studied in [39]. This effect seemed to

be the result of the delayed feedback. Our decomposition suggests an interpretation of the system

based on the canonical factorization. The poles all move off the real axis after the feedback loop

is introduced (so the squeezing moves off resonance), and the resulting poles can be interpreted as

effectively detuned squeezers.
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Figure 4.5: The squeezing spectrum of the system in Example 1, along with its reduced counterpart.
In this case, the feedback loop has no effect on squeezing, and capturing the effect of the two non-
degenerate poles corresponding to the squeezing component is enough to capture the squeezing
effect of the system. We also remark in this case the squeezing spectrum was independent of the
time delay used.

As in Example 2, we faced a similar degeneracy issue (v†Jv = 0 for complex pole eigenvectors).

As before, this was handled by perturbing the first component of each eigenvector. This seemed

to work well for the first two pairs of complex poles, but seemed to cause numerical issues for

further terms. We anticipate there may be a more stable way to avoid this issue. Nevertheless, the

transfer function of the reduced model (Figure 4.14) and the power spectrum (Figure 4.15) seem

close to those of the original system. This was especially the case in the regime of interest, where

the squeezing peaks.

4.10 Conclusion

We have shown how a factorization theorem can be obtained for a linear quantum network with

delayed feedback under some stated assumptions. The conditions are fairly general, and allow

for a wide class of quantum linear systems which may be active. The factorization generates a

cascade of possibly infinitely many 2 × 2 quantum linear systems, with transfer functions Pi(z).

These canonical terms can also include squeezing. Our theorem states that the factorization has
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Beam 
Splitter

Squeezer

Time Delay

Input Output

Figure 4.6: An example of a time-delay network (Example 2). The dashed box shows the system G
discussed in the text in Section 4.9.1, generated by concatenating the squeezer with the beamsplitter.
In this example the squeezer is inside the feedback loop, given significantly different behavior than
the system in Example 1.

form T̃ (z) = B
∏
i Pi(z), where B is a constant matrix. We show that this product converges on

compact sets. The B matrix must be J-unitary and doubled-up as well.

One of our assumptions excludes cases with essentially feedforward delays, and other assumptions

are made for simplicity. To get each individual factor, we also require non-degeneracy conditions to

be met. However, as we showed in the examples in Section 4.9, it is possible to find good approxi-

mations even when the non-degeneracy conditions are not met by perturbing the system.

We have shown how our methodology can be applied in a number of examples. These have appli-

cations in enhancing squeezing and controlling its range, which has wider applicability in quantum

technology. Our procedure results in an effective system that has similar behavior in the desired

range, and hence can be easier to handle in the case of simulations, especially when the system is

integrated into a larger network. For isolated linear systems, simulation is not an issue since the

state-space formalism can be used in place of a full quantum simulation. However, if an encom-

passing network has nonlinear components then a full quantum simulation may be required. In this

case, other methods of capturing time delays may become prohibitive. However, using a reduced

system captured by our procedure, we utilize the minimal number of degrees of freedom to capture

the effective behavior of a particular linear coherent feedback network.
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(a)

(b)

Figure 4.7: The poles of the transfer function of the system in Example 2, for different parameters.
The complex poles are have multiplicity 1, but become asymptotically close to each other as the
imaginary component increases. This is because the effect of the squeezer become weaker and
thus the pole splitting due to the squeezer have a smaller effect. In the top diagram (Figure 4.7a)
we choose ε = 0.001 to illustrate the pole splitting when squeezing is introduced. In the bottom
diagram (Figure 4.7b) we show the pole diagram for ε = 0.1, the parameter we use for the remaining
analysis.
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Figure 4.8: The transfer function of Example 2, and the transfer function of an approximation
generated using the canonical factors. A constant pre-factor was added so that the two functions
match at the origin. The real and imaginary parts of two components are shown along z = iω for
real values of ω.
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Figure 4.9: The squeezing spectrum of the system in Example 2, along with its reduced counterpart.

Squeezer

Time Delay

Input Output

(optional) 
Vacuum 

input/loss

Figure 4.10: The setup of Example 3.
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Figure 4.11: The poles of the transfer function of the system in Example 3. The poles for this
system all had multiplicity 1.
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(a)

Figure 4.12

Figure 4.13: The poles of Example 3 with several different squeezing parameters ε. When ε = 0
there is no squeezing, and the poles become degenerate. As ε increases the distance between the
split poles increases. The solutions for the poles can be analytically found to be roots of the
transcendental equation k2e

−zT = z
2 ±

ε
2 +k where k = κb+κc and k2 = 2

√
κbκc. The curves along

which the poles lie are found by taking the absolute value of the equation.
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Figure 4.14: The transfer function of Example 3, and the transfer function of an approximation
generated using the canonical factors. A constant pre-factor was added so that the two functions
match at the origin. The real and imaginary parts of two components are shown along z = iω for
real values of ω.
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Figure 4.15: The squeezing spectrum of the system in Example 3, along with its reduced counter-
part.
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Appendix B

Appendix of active systems

B.1 Proof of Lemma 4.6.3

remark B.1.1 Because of the relationship we found between the zeros and poles for J-unitary

functions (along with the eigenvectors at the zeros and poles), the lemma holds for the roots if and

only if it holds for the poles. Therefore, it suffices to prove the lemma only for one or the other.

We will prove parts (i) and (iii) of the theorem for the poles and part (ii) for the zeros.

proof for (i):

We begin by showing that for sufficiently large M , for each zero w0 of fS(z) such that |w0| > M ,

there is a radius εM = O(1/M) such that exactly one zero z0 of fT (z) is within εM of w0. To show

this, we will use Rouché’s Theorem [52]. This theorem states that if |fT (z)−fS(z)| < |fT (z)|, |fS(z)|
for every z on the boundary of some Jordan curve Γ, then fT (z) and fS(z) will have the same number

of zeros in the interior of Γ.

We can ensure that for sufficiently large M , each εM is small enough so that it isolates a single

zero w0 of fS(z). To do this, first note that there is always a positive upper bound εmax > 0 for

the radii that isolate the zeros and poles of a not identically zero meromorphic function from other

zeros and poles on a bounded set. Using the periodicity of fS(z) and the boundedness of the real

part of the the zeros (Lemma 4.6.1), we can get the desired result. Given a relation εM = O(1/M)

for sufficiently large M , we can make εM as small as we like (in particular we can satisfy εM < εmax)

by requiring M to be sufficiently large.
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In order to pick the bounds for Rouché’s theorem, we expand fS(z) at w0. Explicitly, assuming

that leading order terms have order one (see Remark B.1.2), we can expand:

fS(z) = c
(S,w0)
1 (z − w0) + c

(S,w0)
2 (z − w0)2 + ... (B.1)

There is an error bound k(S,w0) > 0 such that if z ∈ Bε(w0), then

|fS(z)− c(S,w0)
1 (z − w0)| < k(S,w0)ε2. (B.2)

From this we obtain the bounds for z on ∂Bε(w0),

|fS(z)| > |c(S,w0)
1 |ε− k(S,w0)ε2, (B.3)

|fT (z)| > |c(S,w0)
1 |ε− δM − k(S,w0)ε2. (B.4)

Above in Eq. (B.4), we introduce δM = sup∂Bε(w0) |fS(z)− fT (z)|. Notice sufficient conditions for

Rouché’s theorem are now δM < |fS(z)|, |fT (z)|.

From Lemma 4.5.2, the poles of S̃(z) are contained in a strip of bounded <(z). This implies that

there is a bound on the real part of all zeros of fS(z). Using Lemma 4.6.2 (ii), we can bound

δM = O(1/M) for large enough M . We can also bound the coefficients c
(S,w0)
1 for all zeros w0 of

fS(z) from below by C > 0. This follows from the periodicity of fS(z) in the imaginary direction,

and noting that the bound on the real part of z for the zeros of fS(z) implies that in each period

there are a finite number of zeros. Similarly, we can bound all k(S,w0) from above by a constant

k. If we pick εM = 3δM
C = O(1/M) for sufficiently large M , the desired conditions for Rouché’s

theorem follow from the above inequalities.

For the case where fS(z) and fT (z) are exchanged, a small modification is needed to obtain the

desired εM , since fT (z) may not be periodic. First, we need to modify εmax to ensure the poles

z0 are isolated. This can be done by an application of the triangle inequality. Next, we are

interested in bounds for the constants c
(T,z0)
1 and k(T,z0) when expanding fT (z) at each of its zeros

z0, analogous to the constants used above in Eq. (B.1-B.2). Using Cauchy’s integral formula on the

ε-balls in the above arument, and the error estimate |fT (z)− fS(z)| < δM , we can obtain the same

bounds C and k above for the expansion coefficients c
(T,w0)
i and k(T,z0), respectively, up to an error

of δM = O(1/M). Therefore the desired result holds in this case as well. �

proof for (ii):

Suppose we are given a pair of roots from part (i), z0 for fT (z) and w0 for fS(z), along with a

93



radius εM such that z0 is the only root of fT (z) and w0 is the only root of fS(z) inside BεM (w0).

From z0 and w0 (which are poles of T̃ (z) and S̃(z)) we can find the corresponding roots of T̃ (z)

and S̃(z) (from Claim 4.5.5), which we label ẑ0 and ŵ0, respectively. Below we will consider all

such possible pairs ẑ0 and ŵ0.

We will show first that

‖T̃ (ẑ0)− S̃(ŵ0)‖ = O(εM ). (B.5)

To do this, write

‖T̃ (ẑ0)− S̃(ŵ0)‖ ≤ ‖T̃ (ẑ0)− S̃(ẑ0)‖+ ‖S̃(ẑ0)− S̃(ŵ0)‖. (B.6)

To find a bound for ‖T̃ (ẑ0)− S̃(ẑ0)‖ independent of the choice of ẑ0 for sufficiently large |z|, we can

use the bound κM = sup|z|>M ‖Ti(z)− Si‖ = O(1/M) for i = 1, 2, 3, 4.

We can bound

‖T̃ (z)− S̃(z)‖ ≤ ‖T1(z)− S1‖ (B.7)

+ ‖T2(z)− S2‖‖E(z)‖‖(I − T4(z)E(z))−1 − (I − S4E(z))−1‖‖T3(z)− S3‖

The E(z) term is bounded for all ẑ0, following Lemma 4.6.2 (ii). The term for which obtaining

the bound is not obvious is ‖(I − T4(z)E(z))−1 − (I − S4E(z))−1‖. We do this below. When |z|
is sufficiently large, we can use Lemma 4.6.2 to write T4(z) = S4 + νŵ0

Dŵ0
(z) on each BεM (ŵ0)

where all the functions Dŵ0 are bounded and matrix-valued, and νŵ0 = O(1/|ŵ0|). When z ∈
BεM (ŵ0),

(I − T4(z)E(z))−1 (B.8)

= (I − S4E(z)− νŵ0
Dŵ0

E(z))−1

= (I − νŵ0
(I − S4E(z))−1Dŵ0

E(z))−1(I − S4E(z))−1

= (I +O(νŵ0
))−1(I − S4E(z))−1.

In the final step of Eq. (B.8), we notice that since εM isolates the zero ŵ0 from other zeros and
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poles of S̃(z), the function (I − S4E(z))−1 is bounded on BεM (ŵ0). From this we find

(I − T4(z)E(z))−1 − (I − S4E(z))−1 (B.9)

= [(I +O(νŵ0
))−1 − I](I − S4E(z))−1

= (I +O(νŵ0
))−1O(νŵ0

)(I − S4E(z))−1 = O(νŵ0
).

Since ẑ0 is in BεM (ŵ0), This gives the desired bound

‖T̃ (ẑ0)− S̃(ẑ0)‖ = O(1/M). (B.10)

Further, by a periodicity argument similar to that in part (i), we can make the bound independent

of the choice of zeros ẑ0 and ŵ0.

Next, we obtain a similar bound for ‖S̃(ẑ0)− S̃(ŵ0)‖:

‖S̃(ẑ0)− S̃(ŵ0)‖ ≤ ‖S2‖‖E(z)‖‖(I − S4E(ẑ0))−1 − (I − S4E(ŵ0))−1‖‖S3‖. (B.11)

We notice that ‖E(ẑ0)− E(ŵ0)‖ = O(εM ), so using a similar argument as before,

(I − S4E(ẑ0))−1 = (I − S4E(ŵ0))−1(I +O(εM )). (B.12)

We thus obtain

‖S̃(ẑ0)− S̃(ŵ0)‖ = O(1/M) (B.13)

Using Eq. (B.10) and Eq. (B.13), we finally obtain Eq. (B.5).

Next, to relate our analysis to the projectors, we can use the formula [28]

P = − 1

2πi

∫
Γ

R(ζ,A)dζ, (B.14)

where R(ζ,A) = (A− ζ)−1 is the resolvent of a matrix A, and P is the sum of the eigenprojections

of all the eigenvalues of A inside the contour Γ.

We will use the second resolvent identity below. It states that for two matrices A and B, and ζ a

number not in the spectrum of either,

R(ζ,A)−R(ζ,B) = R(ζ,A)(B −A)R(ζ,B). (B.15)
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In particular, since ẑ0 and ŵ0 are roots of T̃ (z) and S̃(z), respectively, the matrices T̃ (ẑ0) and

S̃(ŵ0) both have the eigenvalue zero. For a sufficiently small contour Γ, the zero eigenvalue becomes

isolated for both T̃ (ẑ0) and S̃(ŵ0). The curve Γ can be made a small, but fixed size for all ŵ0 and

ẑ0. This will allow us to bound the resolvent R below to be bound by a constant. From the second

resolvent identity, we can obtain the bound:

‖PT − PS‖ ≤
|Γ|
2π

sup
ζ∈Γ

R(T̃ (ẑ0), ζ) sup
ζ∈Γ

R(S̃(ŵ0), ζ)‖T̃ (ẑ0)− S̃(ŵ0)‖ = O(1/M). (B.16)

Above, |Γ| indicates the length of the curve Γ. The bound is independent of the choice of ŵ0 and

ẑ0. This completes the proof.

�

proof (iii) The proof follows the first step used to prove (ii), using the poles instead of the zeros.

The boundedness of (I−S4E(z))−1 is obtained by the fixed bound ε away from the poles. �

remark B.1.2 Note on the rate of convergence: If the zeros have order p instead of 1, the scaling of

εM follows O(M−1/p). This can be seen from the order of the terms required in the series expansion

used to prove part (i).

B.2 Proof of Theorem 4.8.1

The roots come in conjugate pairs (Claim 4.5.7), so the set of roots can be partitioned into two

conjugate sets: Z = Z+ ∪ Z− where Z− = {z : z ∈ Z+}. Since we assumed the delays are

commensurate, the function S̃(z) is periodic along the imaginary axis with some period P . Thus

the roots in Z+ (and Z−) can be ordered as:

Z+ =
{
zm + iPn︸ ︷︷ ︸

zm,n

: m ∈ {1, ...,M}, n ∈ Z
}

(B.17)

where M is the number of roots (in Z+) per period; because roots come in conjugate pairs, in total

there are 2M roots per period. To satisfy the condition that all roots are simple (Assumption (6)

of Section 4.4.1), we require that the zn be unique, satisfying 0 < Im(zm) < P and Im(zm) 6= P/2.

Thus all roots are complex, and a decomposition of the form (4.33) will be possible. We choose the
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ordering:

S̃(z) =
( K∏
m=1

[ ∞∏
n=−∞

Pm,n(z)
])
B(z). (B.18)

Here, Pm,n(z) is the elementary factor with zeros (zm,n, zm,n) and poles (−zm,n,−zm,n) defined in

Eq. (4.33).

We first show that each infinite product in Eq. (B.18) converges uniformly on bounded sets. Start-

ing with m = 1, consider the terms P1,1, P1,2, . . . generated by detaching the zeros z1,1, z1,2, . . .

individually from S̃(z). Since S̃(z) is periodic with period P , so the projector of S̃(z) at zm,n is

independent of n. Thus the projectors in the terms used to detach the terms P1,1, P1,2, . . . are the

same, and these terms commute. Therefore, these terms can be used to sequentially detach the

roots of S̃(z), giving the expression:

∏
n

Pm,n(z) = I − VmV [m + Vm
∏
n

 z−zm,n
z+zm,n

0

0
(
z−zm,n
z+zm,n

)∗
V [m. (B.19)

where we have fixed m = 1 for the moment.

The above product converges because one can show [55, Appendix E] that the following series

converges uniformly on bounded sets:

Qm(z) ≡
∞∏

n=−∞

z − zm,n
z + zm,n

=
sinh

(
π
P (z − zm)

)
sinh

(
π
P (z + zm)

) (B.20)

After the zeros z1,1, z1,2, . . . are detached, we obtain a function
(∏

i P1,i(z)
)−1

S̃(z) which is again

periodic in the imaginary direction with period P , but has only 2(M − 1) zeros per period. We can

repeat the same procedure for the remaining sequences of zeros zm,1, zm,2, ... in Z+, finding:

S̃(z) =

K∏
m=1

[
1− VmV [m + Vm

∏
n

(
Qm(z) 0

0 Qm(z)∗

)
V [m

]
B(z). (B.21)

B(z) is an entire function that, like S̃(z) and Qm(z), is periodic along the imaginary axis with

period P . In the limits Re(z)→ ±∞, we can show that B(z) tends to a constant by examining the
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behavior of S̃(z) and Qm(z). For S̃(z), recall that it is given by (4.28):

S̃(z) = S1 + S2E(z) (I − S4E(z))
−1
S3

= S1 + S2 (E(−z)− S4)
−1
S3 (B.22)

Using the fact that S4 is invertible and E(z) → 0 for Re(z) → +∞, it is easy to find the limiting

behavior of S̃(z). The limits of Qm(z) for Re(z)→ ±∞ are found using (B.20) and the asymptotic

relation sinh(x+ iy)→ 1
2 sgn(x)e|x|+iy sgn(x):

S̃(z)→

S1 Re(z)→ +∞

S1 − S2S
−1
4 S3 Re(z)→ −∞

, (B.23)

Qm(z)→

e
−(2π/P )Re(zm) Re(z)→ +∞

e+(2π/P )Re(zm) Re(z)→ −∞
. (B.24)

These limits prove that B(z) tends to a constant for z → ±∞, when =(z). We also know that B(z)

is periodic in the imaginary direction, since it is the product of commensurate periodic functions.

Combining these two results, we determine that B(z) has bounded range on the entire plane. By

Liouville’s theorem, it must be a constant.

�

Rate of convergence

For the purposes of estimating the number of terms needed to maintain a specific maximum level

of error using a truncation of the products in Eq. (B.19), we discuss the rate of convergence. The

exact number of terms needed will depend on the system, as well as the chosen domain where the

approximation is desired. We will show that given specific conditions, the rate of convergence is

quadratic. To obtain the rate of convergence of the factorization of S̃(z), it suffices to consider each

of the terms Qm(z) in Eq. (B.20). Then the rate of convergence for estimating S̃(z) is determined

up to a constant depending on the projectors Vm using Eq. (B.19).

Theorem B.2.1 For each of the products Qm(z) in Eq. (B.20), on the domain where |z| < r and

z is bound away from the poles by δ > 0, the rate of convergence is quadratic with constant that is

determined by δ, the location of the poles, and their periodicity.

We drop the m index below. The zeros below refer to Z+ in Eq. (B.17), which correspond to

the terms used in the product expansion of Q(z) in Eq. (B.20). Suppose we are interested in the

approximation near the origin, and suppose we add terms in the product to the approximation
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ordered by the distance of their zeros from the origin. Below we will use the notation qn(z) = z−zn
z+zn

.

Let z0 by the closest zero to the origin from, and let us also suppose we add the terms in pairs with

zeros zn = z0 + ipn and z̃n = z0 − ipn, where p is the periodicity of the zeros. We denote these we

the qn(z) and q−n(z) terms. With this convention we have Q(z) =
∑∞
n=1 qn(z)q−n(z).

Denoting the truncated product Q(N)(z) =
∏N
n=1 qn(z)q−n(z) for an integer N , we can write the

error E(N)(z) term as

E(N)(z) = Q(z)−Q(N)(z) = Q(N)(z)

(
Q(z)

Q(N)(z)
− 1

)
. (B.25)

To find the rate of convergence the following claim will be useful:

Claim B.2.1 When |z| < r and z is bounded away from poles of S̃(z) by δ > 0, we have |Q(N)(z)| <
C1 for sufficiently large N . Here C1 may depend on δ.

Proof: We know Q(z) is a function periodic in the imaginary direction, and therefore we can bound

it from above on the domain where z is some fixed constant distance δ away from its poles. In the

special case when we interested in real frequency values (z constrained to have purely imaginary

values iω), this is automatically satisfied since the zeros and poles must lie away from the imaginary

axis for the system to be stable. On the domain where |z| < r and z is bounded away from the

poles by δ, we remark Q(N)(z) → Q(z) uniformly. Thus we can find a sequence εN → 0 such that

|Q(N)(z)| ≤ εN +Q(z), and therefore for sufficiently large N on this domain we can bound Q(N)(z)

by a constant C1. Notice C1 depends on δ, but also the specific parameters of Q(z) which are

determined by the periodicity of the poles P and the location of the poles. �

Proof of Theorem B.2.1 We can write the product Q(z) as

Q(z) =

∞∏
n=1

qn(z)q−n(z) =

∞∏
n=1

z − zn
z + zn

z − z̃n
z + z̃n

=

∞∏
n=1

(z − z0)2 + (pn)2

(z + z0)2 + (pn)2
. (B.26)

Assuming the range of approximation is |z| < r, we find as n becomes large each term in the product

can be bounded in the form

(z − z0)2 + (pn)2

(z + z0)2 + (pn)2
= 1 +O

((
z0

pn

)2
)

+O

(
z0r

(pn)2

)
+O

((
r

pn

)4
)
. (B.27)

Since we are interested in the limit as n becomes large with r and z0 fixed, we can write the above

bound as 1 + an = 1 + O( 1
(pn)2 ). When n becomes large we get log (1 + an) = O(an). Using this

estimate, we will determine the error bound of a truncated product.
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Remembering we paired the terms qn(z) and q−n(z) together, and using the upper bound 1 + an

for each such pair,

Q(z)

Q(N)(z)
=
∏
n≥N

qn(z)q−n(z) = exp
∑
n≥N

log(qn(z)q−n(z)) = exp
∑
n≥N

O(an). (B.28)

Since Q(N)(z) → Q(z) uniformly for |z| < r, we have
∑∞
n=N O(an) → 0 as N → ∞. Therefore we

can use the series expansion of the exponential and find

E(N) = Q(N)(z)

∞∑
n=N

O(an). (B.29)

We had that an = O( 1
(pn)2 ), so the rate of convergence is quadratic. The constant may be found

from the limiting upper bound of Q(N)(z) on the domain of interest. This concludes the proof of

the theorem. �

B.3 Proof of Theorem 4.8.2

Sketch of proof

The intuition for the proof of convergence will be to approximate the function T̃ (z) by S̃(z) for

large |z| using Lemma 4.6.3. We will also similarly approximate the detached terms from T̃ (z)

with those of S̃(z) using Eq. (B.41). This approximation and the convergence properties of the

factorization of S̃(z) will then be used to control the convergence of a truncation term T`(z) formed

by terms detached from T̃ (z) with zeros far away from the origin (Claim B.3.4). This will result in

the convergence result of the detached terms from T̃ (z).

Setup for proof

From Lemma 4.6.3, we intuitively have that the zeros (poles) of T̃ (z) and S̃(z) become arbitrarily

close to one another as |z| → ∞. More specifically, fixing ε > 0, we can use the lemma to find

a radius R with the following property: There is a one-to-one correspondence between the zeros

(poles) of T̃ (z) and S̃(z) outside BR(0), such that a zero (pole) z of T̃ (z) and a zero (pole) w of S̃(z)

correspond to each other if and only if |z−w| < ε = O(1/R). We denote the zeros of T̃ (z) and S̃(z)

outside BR(0) by Z T̃R and ZS̃R respectively, and the bijection between them by bR : Z T̃R → ZS̃R.

To obtain the factorization, we must determine an order for the canonical terms to be detached

from T̃ (z). The order we will use for our proof of convergence will be determined as follows. For
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terms with zeros inside BR(0), the order is not important for convergence, since there are a finite

number of zeros inside BR(0). For example, we can pick the zeros according to increasing norm.

For terms with zeros outside BR(0), the order is determined using the order of the corresponding

zeros of S̃(z) in Theorem 4.8.1. That is, we use the one-to-one correspondence bR between Z T̃R and

ZS̃R. The zeros of S̃(z) come in K sets, where each set contained zeros that were periodic in the

imaginary direction. We will denote the zeros of S̃(z) from each of the K sets and outside of BR(0)

by ZS̃,mR . Each of the m = 1, ...,K sets of zeros correspond to a converging product of terms we

will denote by
∏
n∈N P

S
m,n(z).

For each m = 1, ...,K, denote Z T̃ ,mR to be the set of zeros corresponding to S̃(z) via ZS̃,mR =

bR(Z T̃ ,mR ). We will detach the zeros one subset Z T̃ ,mR at a time. In the static case, the order of

zeros within one of the m = 1, ...,K subsets did not matter, since the corresponding projectors used

to construct the canonical terms were identical for a given m. However, for the non-static case this

is no longer true, and we will require the zeros to be sorted by their norm for each m (i.e. within

each subset Z T̃ ,mR ).

Our task is to show the products
∏
n∈N Pm,n(z) converge uniformly on compact sets for each m.

We will drop the m index and denote each product generated using the zeros Z T̃ ,mR as
∏
n Pn(z),

(i.e. restrict to a specific index m and drop the finite number of terms with zeros inside BR(0)).

Recall the products
∏
n∈N P

S
m,n(z) for S̃(z) converge for each m. If we restrict each such product

to ZS̃,mR (again dropping the finite number of terms with zeros inside BR(0)), we obtain another

converging product, which we will denote by
∏
n P

S
n (z) (again dropping the index m). Below, we

will say terms Pn(z) and PSn (z) correspond to each other if their zeros are related by the bijection

bR.

It will be convenient to use the form of the elementary factors introduced in Section 4.7.3. We can

write

PSn (z) = MFSn (z)M†J, FSn (z) = diag(awn(z),−awn(z∗)∗, 1,−1, ..., 1,−1), (B.30)

where az0(z) = z−z0
z+z∗0

and M is a fixed J-unitary. Here wn are the appropriate zeros of S̃(z). Above

in Eq. (B.30), M is fixed due to the periodicity argument used in Section 4.8.1. The terms Pn(z)

(with the zeros of T̃ (z)) an be written as

Pn(z) = M̃nFn(z)M̃†nJ, (B.31)

Fn(z) = diag(azn(z),−azn(z∗)∗, 1,−1, ..., 1,−1). (B.32)

Here zn are the appropriate zeros of T̃ (z), and M̃ = M + εRnNn is J-unitary. The Nn are
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matrices bounded for all n, and εRn = O(1/Rn) for a sequence of Rn with |zn|, |wn| > Rn. In

order to produce the M̃n related to M by error εRn , first apply Lemma 4.6.3(ii) to obtain the error

bound between the projectors of Pn(z) and PSn (z). Then, using the procedure in Section 4.7.3,

we produce the respective M matrices in Eq. (4.41) for Pn(z) and PSn (z). Care must be taken to

ensure this procedure maintains the error bound for the matrices M and M̃ . For example, we can

use Gram-Schmidt (with the indefinite basis), appending the same set of initial vectors in both

cases.

Since we are interested in the convergence of
∏
n Pn(z) on compact sets, fix r > 0. We will show∏

n Pn(z) converges uniformly on Br(0). We will approximate
∏
n Pn(z) on Br(0) using a sequence

of functions T`(z) =
(∏∞

n=`+1 Pn(z)
)

for ` = 0, 1, .... Notice that
∏
n Pn(z) =

(∏`
n=1 Pn(z)

)
T`(z).

Intuitively, we can think of the T`(z) as the truncation error. If the error can be controlled, then

we can obtain a convergence result. We will use the following results for our proof.

Claim B.3.1 Suppose z ∈ Br(0). For sufficiently large Rn, we find the estimate FSn (z) = J +

O(1/Rn).

Proof: For large enough Rn, we can use |awn(z) − 1| = O(1/Rn) for |wn| > Rn. By direct

computation, we find

FSn (z) = J +O(1/Rn). (B.33)

Claim B.3.2 Suppose z ∈ Br(0). For sufficiently large Rn, and corresponding terms Fn(z) and

FSn (z) having zeros outside BRn(0), we have ‖Fn(z)− FSn (z)‖ = O(1/R2
n).

Proof: First, we show an estimate of the same order for Fn(z) and FSn (z):

‖Fn(z)− FSn (z)‖ ≤ ‖FSn (z)‖‖FSn (z)
−1
Fn(z)− I‖ (B.34)

Here we use the rate of convergence result of Lemma 4.6.3. For estimating the term ‖FSn (z)
−1
Fn(z)−
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I‖, one can compute (using γn = wn − zn = O(1/Rn)):

awn(z)azn(z)−1 =
z − wn
z + w∗n

z + z∗n
z − zn

=
z − (zn + γn)

z + (zn + γn)∗
z + z∗n
z − zn

=
1− γn

z−zn

1 +
γ∗n
z+z∗n

(B.35)

=

(
1− γn

z − zn

)(
1− γ∗n

z + z∗n

)
+O(|γn|2)

= 1− γn
z − zn

− γ∗n
z + z∗n

+O(|γn|2)

= 1− γn
z − wn

− γ∗n
z + w∗n

+O(|γn|2).

For large enough Rn, the terms (z − zn)−1 = O(1/Rn) and (z + z∗n)−1 = O(1/Rn) since |zn| > Rn.

Thus we find

awn(z)azn(z)−1 = 1 +O(|1/R2
n|). (B.36)

Using Eq. (B.33) and Eq. (B.36) in Eq. (B.34), we find

‖Fn(z)− FSn (z)‖ = (1 +O(1/Rn))O(1/R2
n) = O(1/R2

n). (B.37)

�

Claim B.3.3 Suppose z ∈ Br(0). For sufficiently large Rn, and corresponding product terms Pn(z)

and PSn (z) having zeros outside BRn(0), we have ‖Pn(z)− PSn (z)‖ = O(1/R2
n).

Proof: We can compute using Eq. B.37,

‖Pn(z)− PSn (z)‖ = ‖(M + εRnNn)Fn(z)(M + εRnNn)†J −MFSn (z)M†J‖

= ‖(M + εRnNn)FSn (z)(M + εRnNn)†J −MFSn (z)M†J‖+O(1/R2)

= εRn‖NnFSn (z)M†J +MFSn (z)N†nJ‖+O(1/R2
n). (B.38)

Using that M and M̃ = M + εRnNn are J-unitary, we find

(M + εRnNn)J(M + εRnNn)† −MJM† = 0, (B.39)

from which we find

NnJM
† +MJN†n = O(1/R2

n). (B.40)
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Using Eq. (B.33), Eq. (B.38), and Eq. (B.40), we find

‖Pn(z)− PSn (z)‖ = O(1/R2
n). (B.41)

�

Claim B.3.4 T`(z) converges uniformly on Br(0) as `→∞, using the supremum norm.

Proof of Claim B.3.4

Claim B.3.3 gives us a bound on the estimate error between Pn(z) and PSn (z) inside Br(0) for some

sufficiently large Rn, which will be key in showing the convergence of T`(z). Notice that because

the zeros wn of S̃(z) are periodic, we can replace O(1/R2
n) by O(1/n2). Let q be the smallest index

of n for which the above estimates Eqs. (B.33, B.41) hold, and also that Rn > r.

The next step will be to show that ‖
∏p
n=q Pn(z)‖ is bounded in Br(0) for all p = q, q + 1, .... Our

estimate Eq. (B.41) produces∥∥∥∥∥
p∏

n=q

Pn(z)

∥∥∥∥∥ ≤
∥∥∥∥∥

p∏
n=q

PSn (z)

∥∥∥∥∥
p∏

n=q

(
1 +

c

n2‖PSn (z)‖

)
. (B.42)

The product
∏p
n=q P

S
n (z) is bounded on Br(0) over all p = q, q + 1, ... since it converges in the

limit p → ∞, and it has no poles in Br(0) (since we ensured Rn > r). Also, ‖PSn (z)‖ converges

to a constant as n → ∞ because awn(z) → 1 as |wn| → ∞. Finally we can obtain a bound for

Eq. (B.42) over all p = q, q + 1, ... since
∑∞
n=1

1
n2 converges.

Next, we are ready to show the sequence of functions T`(z) is Cauchy with the supremum norm on

Br(0). To see this, we can compute for z ∈ Br(0) and q ≤ ` < k,

‖T`(z)− Tk(z)‖ ≤

∥∥∥∥∥∏̀
n=q

Pn(z)

∥∥∥∥∥
∥∥∥∥∥

k∏
n=`+1

(Pn(z)− PSn (z))

∥∥∥∥∥
∥∥∥∥∥
∞∏
k+1

PSn (z)

∥∥∥∥∥ . (B.43)

We have shown the first term is bounded over all ` = q, q + 1, ..., and the last term is bounded

as discussed above. The middle term can be made arbitrarily small for sufficiently large ` and k

using the bound in Eq. (B.41). We conclude from this that T`(z) is uniformly Cauchy on Br(0),

and therefore converges uniformly. This completes the proof of Claim B.3.4. �

Proof of convergence for Theorem 4.8.2. Finally, we can show
∏∞
n=q Pn(z) =

(∏`
n=q Pn(z)

)
T`(z)

converges uniformly onBr(0) using the uniform convergence of T`(z) and the upper bound Eq. (B.42).
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Here q is the index used in the proof of Claim B.3.4, the smallest index of n for which the above

estimates Eqs. (B.33, B.41) hold, and also that Rn > r. Explicitly, supposing C(z) is the function

satisfying T`(z)→ C(z) as `→∞ uniformly on Br(0), we find∥∥∥∥∥
∞∏
n=q

Pn(z)−

(∏̀
n=q

Pn(z)

)
C(z)

∥∥∥∥∥ ≤
∥∥∥∥∥∏̀
n=q

Pn(z)

∥∥∥∥∥ ‖C(z)− T`(z)‖. (B.44)

Since q was just a finite integer and hence the finite product of terms Pn with n < q converges, we

conclude that
∏
n Pn(z) converges uniformly on Br(0).

Proof that B(z) is a constant in Theorem 4.8.2. To show B(z) is constant, it suffices to show it is a

bounded function, since it is entire (using Liouville’s theorem). Since T̃ (z) is not periodic like S̃(z),

we cannot use the same proof as for Theorem 4.8.1. We have B(z) =
(∏

n Pn(z)
)−1

T̃ (z), and let

BS(z) =
(∏

n P
S
n (z)

)−1
S̃(z). Since BS = BS(z) is constant as found in Theorem 4.8.1, it suffices

to show ‖BS −BT (z)‖ is bounded regardless of z.

We apply part (iii) of Lemma 4.6.3, in order to approximate T̃ (z) with S̃(z) away from their

poles zn and wn. For a small but fixed ε and sufficiently large M , if |z| > M and z /∈ Bε(wn),

z /∈ Bε(zn)

‖T̃ (z)− S̃(z)‖ = O(1/M). (B.45)

We will next find an estimate for ‖
(∏

n Pn(z)
)−1 −

(∏S
n Pn(z)

)−1‖ for sufficiently large |z| and

z /∈ Bε(wn), z /∈ Bε(zn), using the bounds found above. We will show the proof for ‖
∏
n Pn(z) −∏S

n Pn(z)‖ to simplify the notation, since each Pn(z) has the same form as Pn(z)−1 (same for PSn (z)).

To do this, we will start with the estimate Eq. (B.35). The terms (z − wn)−1 and (z + w∗n)−1 can

be uniformly bounded if we ensure that z is at least ε away from each wn, −w∗n. However, now we

cannot bound these terms by O(1/Rn) since z is not confined to Br(0). Instead we can propagate

error terms of the form O(1/|z−wn|) and O(1/|z+w∗n|) through the analysis, obtaining an estimate

similar to Eq. (B.41),

‖Pn(z)− PSn (z)‖ = O(1/R2
n) +O(1/(Rn|z − wn|)) +O(1/(Rn|z + w∗n|)). (B.46)

which holds when |wn|, |zn| > Rn for sufficiently large Rn.
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We can continue similarly to Eq. (B.42), finding a sufficiently large index q so that∥∥∥∥∥
∞∏
n=q

Pn(z)

∥∥∥∥∥ ≤
∥∥∥∥∥
∞∏
n=q

PSn (z)

∥∥∥∥∥
∞∏
n=q

(
1 + c

(
1

n2
+

1

n2|z/wn − 1|
+

1

n2|z/w∗n + 1|

)
1

‖PSn (z)‖

)
, (B.47)

for a constant c. Next we examine individual terms above in Eq. (B.47) and check they are all

bounded uniformly when z /∈ Bε(wn), z /∈ Bε(−w∗n). In this domain we can obtain a bound for∥∥∥∏∞n=q P
S
n (z)

∥∥∥ (which depends on our choice of ε). This can be done by considering
∏∞
n=1 P

S
n (z),

which is periodic in the imaginary direction. The product also converges as <(z) → ±∞, so we

conclude
∥∥∥∏∞n=q P

S
n (z)

∥∥∥ is bounded uniformly for z /∈ Bε(wn), z /∈ Bε(zn). We also have ‖PSn (z)‖
are uniformly bounded away from zero when z /∈ Bε(wn), z /∈ Bε(−w∗n). As before,

∑∞
n=1

1
n2

converges. The terms
∑∞
n=1

1
n2|z/wn−1| and

∑∞
n=1

1
n2|z/w∗n+1| are bounded uniformly when z is

bounded away by the fixed ε away from wn (and −w∗n). We can combine these observations to

show that
∥∥∏

n Pn(z)−
∏
n P

S
n (z)

∥∥ is bounded as long as z /∈ Bε(wn), z /∈ Bε(zn) (further, the

same holds for ‖ (
∏
n Pn(z))

−1−
(∏

n P
S
n (z)

)−1 ‖). With the same conditions on z, since
∏
n P

S
n (z)

is also bounded, we find that
∏
n Pn(z) is bounded as well.

Combining the above result with Eq. (B.45), and the boundedness of S̃(z), we find that for suffi-

ciently large |z| for which z /∈ Bε(wn), z /∈ Bε(−w∗n), z /∈ Bε(zn),

‖B(z)−BS(z)‖

≤
∥∥∥∥(∏

n

Pn(z)
)−1

∥∥∥∥∥∥∥T̃ (z)− S̃(z)
∥∥∥+

∥∥∥S̃(z)
∥∥∥ ∥∥∥∥(∏

n

Pn(z)
)−1

−
(∏
n

PSn (z)
)−1

∥∥∥∥. (B.48)

Since we can make ε as small as we wish, we can ensure it is small enough so that there is a sequence

of discs Brn(0) with rn → ∞ as n → ∞ such that none of the boundaries ∂Brn(0) contain points

in any of the ε neighborhoods of the balls Bε(wn), Bε(−w∗n), Bε(zn). By the maximum modulus

principle, the maximum value of ‖B(z)‖ on each Brn(0) is attained on the boundary. Further,

this value is bounded independently of z. This implies B(z) is everywhere bounded, and hence a

constant (call it B). �

Rate of convergence:

In practice, it will be useful to truncate an infinite product produced by Theorem 4.8.2 when

constructing a reduced model. Thus the rate of convergence of the reduced model as the number

of terms used for the approximation increases is useful in practice. In Theorem B.2.1 we discussed

the rate of convergence of a particular truncated product produced when the system used in our

construction was a static system with time-delayed feedback. In particular, we concluded the rate
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of convergence is quadratic under specific conditions. We will show below that when the procedure

for constructing the factorization of T̃ (z) is possible, the rate of convergence remains quadratic for

the non-static case as well (on the same domain).

In Theorem B.2.1 we required z to belong in a particular domain. Specifically, we require |z| < r for

a fixed radius r, and z must be bounded away from the poles by some minimum distance (fixed as

δ > 0). Given the same conditions on the domain of z, picking terms according to the construction

of Theorem 4.8.2 by detaching factors from T̃ (z) for sufficiently large n (assuming it is possible to

construct each individual term) will produce terms corresponding to those detached from S̃(z) in

its analogous procedure. Furthermore, we can apply Claim B.3.3 to obtain the bound in Eq. (B.41).

Finally, an application of the triangle inequality produces again a quadratic rate of convergence

with the number of terms (albeit with a larger constant).
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Chapter 5

Conclusions

I have shown in this dissertation how linear open quantum systems with coherent delayed feedback

can be represented as an infinite series product of canonical terms having a single degree of freedom.

First we considered passive linear systems, but later we showed how this can be extended to active

linear systems as well. The product can be truncated to obtain a finite approximation, which can

be used to obtain a simplified model of the given system with few degrees of freedom. The new

system is Markovian and has an SLH representation that can be used within the standard SLH

framework, making it useful in applications when combined with other components requiring a full

quantum simulation. Through several examples this dissertation also shows the intuition behind

the factorization, and the interpretation of each factorized term. We hope the methodology will be

useful for both simulations and a better understanding of the types of systems it applies to.
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