
PHOTONIC CIRCUITS AND PROBABILISTIC COMPUTING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF PHYSICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dmitri Serguei Pavlichin

March 2014



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/nh655cz4317

 

© 2014 by Dmitri Pavlichin. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://purl.stanford.edu/nh655cz4317


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Hideo Mabuchi, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Sebastian Doniach

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Itschak Weissman

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

This work explores computing in the noisy, stochastic, low-power setting, particularly

with photonic systems. Stochasticity and noisy operation has been with computing

since its earliest days, before the development of extremely reliable components (e.g.

CMOS) enabled reliable digital and analog operation and relegated noise to a low

level of abstraction. As the limits of current technologies are reached, as power

consumption becomes a bottleneck for computing, and as novel stochastic algorithms

are developed, a probabilistic approach extends usefully beyond the level of single

components: from stochastic encoding of information to entire circuit architectures.

Photonic systems - which can involve the interaction of a handful of photons with a

handful of internal degrees of freedom like atomic states - provide a natural platform

for consideration of noisy, low-power computing.

This is a work in two parts. In Part I I investigate applications of photonic circuits

for power-e�cient computation. I propose a circuit architecture for the decoding

of low density parity-check codes that uses only optical waveguides, noisy optical

switches, and is inherently tolerant of faults a�ecting its components; one of its most

appealing features is the graceful degradation of performance and computation time

as we lower the power in the laser that powers the device. I also introduce various

design motifs that I hope will be useful to future optical engineers. Part II has

a more information theoretic �avor. I consider several optics-inspired models for

encoding information stochastically � e.g., in the distribution of optical power over

multiple waveguides, or multiple frequency bands for a Gaussian channel, prove some

optimality results about some of the schemes I propose, and discuss energy-e�cient

communication for these setups.
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Outline

This thesis explores computing in the noisy, low-power setting. Our discussion is

grounded in and draws inspiration from photonic systems and circuits, but leads to

some questions that are reasonably natural without reference to a speci�c physical

setup.

This work is thus in two parts, each with a separate introduction. Part I investi-

gates applications of photonic circuits for information processing tasks in the noisy,

low-photon number regime. Part II presents an information theoretic perspective on

communication setups that are inspired by photonic circuits, but (I hope) are inter-

esting in their own right and arise in other practical settings, like �ash memory cells.

The parts can be read independently, but both spring from the desire to understand

noisy, power-e�cient computing.

1



Part I

Quantum optical devices

2



Introduction

Part I explores using optical circuits for information processing tasks. These systems,

which can involve the interaction of a handful of photons with a handful of internal

degrees of freedom like atomic states, provide a natural platform for [consideration]

implementation of noisy, low-power computing. �Computing� here broadly means

any kind of transformation of information represented in some way that is useful

to someone (e.g. computation of Boolean functions, decoding the outputs of noisy

communication channels). We will be more precise about the meaning of �noisy� and

�low-power� later, but observe that noise has been with computing since its early days,

before reliable components existed, requiring one to consider construction of reliable

devices from unreliable parts (von Neumann, 1956)1. As computers components im-

proved in reliability to the point of practical perfection, noise was banished to live in a

low level of computing abstraction for decades, but is in some ways coming back as the

limits of CMOS technology are reached, but also with the development of algorithms

that live in the statistical setting (e.g. message-passing algorithms like belief propa-

gation), are robust to noise, and can even bene�t from it (e.g. algorithms requiring

a source of randomness). These schemes �nd a ready home in stochastic computing

architectures (e.g., see the thesis (Vigoda, 2003) for an extended discussion of this

mapping for continuous-time analog circuits). We propose one such mapping between

optical circuits and these graph-based algorithms in this work. Finally, �low-power�

computing goes hand in hand with the noisy setting, but is another motivation for

this work.

1 These notes based on 1952 lectures by von Neumann established much of the theory of stochastic
and fault-tolerant computing.

3



4

Chapter 1 reviews the physical models for photonic circuits in su�cient detail for

someone to reproduce the simulations used in subsequent Chapters. I also present a

scheme for the e�cient simulation of certain kinds of optical circuits; this technique

enabled me to do the simulations of Chapter 2 in time to defend.

Chapter 2 describes a photonic circuit for a decoder for low density parity-

check (LDPC) codes and characterizes its performance through simulations, following

closely and elaborating upon our work (Pavlichin and Mabuchi, 2013). This circuit

uses all-optical components (waveguides, mirrors, noisy optical switches), is powered

by a coherent input �eld (a laser), and operates autonomously (independently of any

external (large and expensive) controller). The circuit is also a demonstration of an

optical device robust to noise a�ecting its components. Its performance in terms of

decoding probability and speed degrades smoothly as the input power is lowered.

Chapter 3 is a device bestiary of optical circuits and design motifs that I've come

up with over the years. Some of these have already found use in our work (Pavlichin

and Mabuchi, 2013) and I hope others will be useful to future optical engineers.



Chapter 1

Photonic systems and circuits for

programmers

In this Chapter I brie�y review photonic systems and circuits. This thesis does not

contribute to these ideas, but applies them in Chapters 2 and 3 to design photonic

circuits to e�ciently do certain kinds of computations. The goal here is to describe

the physical models for these systems in su�cient detail to enable someone other than

me to code up the same simulations and to extend them to other kinds of circuits.

We refer the reader to, e.g., (Wiseman, 2010) for a proper introduction.

This Chapter is organized as follows: I �rst state the �standard� physical model of

quantum systems coupled to light in terms of a master equation. I then describe how

to model circuits of such systems and how to simulate such circuits. I then propose

an idea for doing these simulations e�ciently for a certain kind of system1.

1.1 Open quantum systems

We work in the framework of (Gough, 2008) and (Gough, 2009) for modeling the

interactions of quantum systems with light. Their work was preceded by and built

upon the work of (Hudson and Parthasarathy, 1984), (Carmichael, 1993), (Gardiner,

1 This idea was applied in (Pavlichin and Mabuchi, 2013), but not described therein.

5
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Internal 
degrees of 
freedom 

External 
incoming 

fields 

External 
outgoing 

fields 

Figure 1.1: An open quantum system with internal degrees of freedom coupled to
external �elds.

1993), and (Barchielli, 2006). The mathematical foundations of this work lie in quan-

tum stochastic di�erential equations developed by (Hudson and Parthasarathy, 1984;

Gardiner, 1992; Parthasarathy, 1992).

1.1.1 SLH models

The basic model is shown in Figure 1.1. The system has some internal degrees of

freedom coupled to n incoming and outgoing �eld modes. There are three parts to a

physical description of the dynamics of this system:

• A system Hamiltonian H describing the time evolution of the internal degrees

of freedom.

• An n×1 coupling vector L that speci�es how external �eld modes interact with

the internal degrees of freedom.

• An n× n unitary2 scattering matrix S that speci�es how incoming �eld modes

�scatter� into outgoing �eld modes.

We refer to these three objects as an �SLH triplet.�

We shall state in a second how these objects are used in describing system dynam-

ics, but we �rst make some observations. There are always exactly as many outgoing

2 S is unitary because of its role in the quantum stochastic di�erential equation describing the
time propagator of a �eld annihilation operator; we defer the curious reader to (Kerckho�, 2011)
for an expository discussion. Roughly, time propagation operators must be unitary to preserve the
L2 norm of a wavefunction: |ψt〉 = Ut|ψ0〉, so 1 = 〈ψ0|ψ0〉 = 〈ψt|ψt〉 = 〈ψ0|U†t Ut|ψ0〉 ∀|ψ0〉, so
U†t = U−1t .
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as incoming �eld modes. This may seem counterintuitive - for the example of atomic

spontaneous emission there are photons coming out, but not in; the incoming mode

supports the time reverse process of an atom absorbing a photon to go to an excited

state. It's also possible that some outgoing mode carries only vacuum, but it is still

an available mode for photons emitted by whatever it is that makes up the internal

degrees of freedom.

There may be no optical modes at all (n = 0). In this case we call the system

�closed� and the time evolution of its wavefunction is governed by the Hamiltonian

according to the Schrödinger equation (and of its density matrix according to the von

Neumann equation). There may be n > 0 modes, but no internal degrees of freedom.

In this case we think of the system as �purely scattering,� with a trivial Hamiltonian

(H = 0), trivial coupling vector (L = 0n×1) and some scattering matrix. For example,

we treat the beamsplitter as a purely scattering device in Chapters 2 and 3 3. The

simplest purely scattering �device� is a single optical mode that undergoes a phase

shift of φ, in which case H = 0, L = 0, S = eiφ.

The time evolution of the internal degrees of freedom of our open quantum system

is governed by the master equation:

ρ̇t = −i[H, ρt] +
n∑
i=1

(
LiρtL

†
i −

1

2
{L†iLi, ρt}

)
(1.1)

where ρ is the density matrix for the internal degrees of freedom, Li is the i-th

component of the coupling vector L, and [A,B] ≡ AB − BA, {A,B} ≡ AB + BA

denote the commutator and anticommutator, respectively. Note that for n = 0 (i.e.

no external �elds), the master equation becomes the von Neumann equation. The

scattering matrix S is nowhere to be found in (1.1), but will appear once we describe

in Section 1.2 making circuits out of multiple open quantum systems and deriving an

overall master equation for the circuit.

3 The beamsplitter is a complicated physical object, but it has no degrees of freedom in our model,
as we assume all of those internal dynamics are very fast and lump their action into the scattering
matrix. For an example of a �slow� beamsplitter (made of cavities) where we can not ignore the
internal dynamics, see Section 3.2.2.
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1.1.2 Observable quantities

Recall that the density matrix ρ for a quantum system acts like a probability density

function (pdf) p. p satis�es
∫
p(x)dx = 1 and we compute expectation values of

random values by integrating against p, E[X] =
∫
X(x)p(x)dx; The density matrix

ρ satis�es Tr ρ = 1 and we compute the expectation values of operators by tracing

against ρ:

〈X〉 = Tr [Xρ] (1.2)

The density matrix thus tells us all there is to know about a quantum state in the same

way as a probability density function determines all expectation values. For example,

for a two-state system, the density matrix is a 2× 2 matrix and we can compute the

probability of �nding the system in state |1〉 by computing Tr Π1ρ, where Π1 = |1〉〈1|
is a projector4. We should remember that the X in (1.2) is an operator on a Hilbert

space, so if we �nd some other operator Y that does not commute with X, in general

〈XY 〉 6= 〈Y X〉, unlike the case of expectation values over pdf's5

Note that our density matrix ρ is only keeping track of the internal degrees of

freedom and not the external �eld modes. In a proper treatment of the subject, we

would start with a closed system consisting of the �internal� and the �bath� (of �eld

modes) degrees of freedom evolving according to the von Neumann equation, and

then �trace over the bath� to derive the master equation (1.1), where the tracing

corresponds to something like measuring the outgoing light at all times, but not the

internal degrees of freedom. We once again point the reader to the references at the

beginning of this section for a proper introduction.

In an actual experiment we are often interested in learning things about the in-

ternal degrees of freedom, but are not typically able to observe them directly - that

is, we can not actually compute Tr[Xρ] for an observable X. Instead we interrogate

them with an external �eld (e.g. a laser beam shining on an atom) and then let the

outgoing light hit a photodetector, which collects �clicks� at a rate proportional to

the light intensity and produces an electrical signal. We capture this by de�ning an

4 This is the projection postulate of quantum mechanics.
5 The generalization of probability theory to handle noncommutative random variables is given

by the theory of free probability.



CHAPTER 1. PHOTONIC CIRCUITS FOR PROGRAMMERS 9

observable6 L†iLi for each of the n optical channels and measuring its expectation

value:

〈L†iLi〉 = Tr[L†iLiρt] ∼ photodetection rate in i-th channel (1.3)

where ∼ means we are ignoring possible ine�ciency of the photodetector and stochas-

tic vacuum �uctuations (see (Gardiner and Collett, 1985) for a proper derivation of

this, or the book (Wiseman, 2010)). The expression (1.3) gives the instantaneous

photodetection rate at time t. Not all of the n �eld modes coupled to the system are

typically available for observation. For example, spontaneously emitted photons are

di�cult to collect, as they are not emitted into a particular direction. One must thus

engineer �eld-system interactions so that the photodetection rate in the channels one

does have access to are informative about the internal degrees of freedom of interest.

At the same time, coupling to external modes can be di�cult to avoid and can make

life more di�cult. The external modes could also be phonons (in an optomechanical

system these could correspond to vibrations of a mirror, say); the master equation

formalism handles this case as well (see (Botter et al., 2012; Hamerly and Mabuchi,

2012))

1.2 Photonic circuits

A powerful feature of the SLH formalism described in Section 1.1.1 is its ability to

describe open quantum systems interconnected to form circuits - letting the outgoing

�elds of one system form the incoming �elds for another. Given the SLH triplets

for a collection of quantum systems, one can use the Gough-James circuit algebra to

compute a single SLH triplet for the entire circuit viewed as a single open quantum

system. This is analogous to taking an arbitrary circuit of resistors, capacitors, and

inductors to compute an overall impedance.

In this Section we review the circuit composition rules for systems arranged in

series, in parallel, and with feedback. The circuit composition rules are roughly

intuitive-looking, and having them enables us to think about designing useful optical

6 This is manifestly Hermitian, so it is an observable.
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Figure 1.2: The three kinds of composition operations and their notation. Left to
right: series product, concatenation product, feedback of output port k to input port
l.

circuits, rather than studying individual systems. We apply the circuit composition

rules in Chapters 2 and 3 to describe photonic circuits that might be useful for

something.

The three kinds of compositions are shown in Figure 1.2 along with their cor-

responding notation. Let G1 = (S1,L1, H1) and G2 = (S2,L2, H2) be two open

quantum systems, both coupled to the same number n of external �eld modes. The

series product G2CG1 corresponds to a series connection of G1 and G2, where the n

output modes of G1 are the n input modes of G2:

G2 CG1 ≡
(
S2S1, S2L1 + L2, H1 +H2 + =

(
L†2S2L1

))
(1.4)

where =(X) = 1
2i

(X − X̄) denotes the imaginary part. Note that the scattering

matrix of G2 now enters the Hamiltonian of the overall system (while the scattering

matrix appears nowhere in the master equation (1.1) describing the dynamics of the

internal degrees of freedom for a single open quantum system). Some observations: if

L1 = 0 or L2 = 0, then the two systems are uncoupled, and the overall Hamiltonian

is the sum H1 +H2, which makes sense. Second, the overall scattering matrix is the

product S2S1, which is intuitive as well.

The concatenation product G2 � G1 corresponds to a parallel �connection� of G1

and G2, coupled to n1 and n2 external modes, respectively, so that the overall system
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is coupled to n1 + n2 external modes:

G1 �G2 ≡

((
S2 0

0 S1

)
,

(
L1

L2

)
, H1 +H2

)
(1.5)

The concatenation product treats two non-interacting systems as a single one.

The feedback operation [G]k→l, where G = (S,L, H) is coupled to n total modes,

is a unary operation that corresponds to feeding back the k-th output mode to the

l-th input mode, so that the overall system is coupled to n− 1 modes:

[G]k→l ≡ (Sfb,Lfb, Hfb) (1.6)

where

Sfb = S�
�[k,l] + S��

[k]
:,l (1− Sk,l)−1 S�

[l]
k,: (1.7)

Lfb = L��[k] + S��
[k]
:,l (1− Sk,l)−1 Lk (1.8)

Hfb = H + =

[(
n∑
j=1

L†jSj,l

)
(1− Sk,l)−1 Lk

]
(1.9)

where S��[k,l] (L��[k]) denotes the matrix (vector) formed by removing the k-th row and

l-th column (k-th element) of S (L), S:,l (Sk,:) denotes taking the l-th column (k-th

row) of S, and Sk,l (Lk) denotes the (k, l)-th element of S (k-th element of L).

We provide examples of these operations as they arise in Chapters 2 and 3.

1.2.1 Simulations

The master equation (1.1) is an ordinary di�erential equation (ODE), and so can be

integrated numerically using standard techniques. Widely-used specialized software

for doing this is available for Matlab (Tan, 1999) and for Python (Johansson et al.,

2012, 2013).
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This works OK for systems involving a few atomic state degrees of freedom and a

small typical photon number7, but can be impractical for even modest-sized quantum

systems because the dimension of the density matrix ρ grows exponentially with

the number of interacting components. This is because the Hilbert space H for two

interacting systems with Hilbert spacesH1 andH2 of dimensions n1 and n2 is obtained

via the tensor product H = H1 ⊗H2 and the dimension is n1n2. Things are actually

a bit worse: if the density matrix is n×n, then it has n2 components to keep track of,

so numerically integrating the master equation (1.1) requires us to compute a n2×n2

operator (the Liouvillian) corresponding to the right side of (1.1).

A common way of dealing with this issue is the same as the method for comput-

ing expectation values for complicated probabilistic models: somehow obtain many

samples from the probability distribution of interest and compute an average over

the samples. The samples are called quantum trajectories in this setting. Instead

of propagating the density matrix ρt, we can instead propagate a collection of k

wavefunctions {|ψi,t〉}i=1,...,k
8 and compute expectations values with respect to the

trajectories. That is, we approximate Tr[Xρ] by the sample average

〈Xt〉 = Tr[Xtρt] ≈
k∑
i=1

〈ψi,t|Xt|ψi,t〉 (1.10)

How do we obtain these trajectory samples? This is reviewed in Section 1.3 on e�cient

simulation techniques. How much easier is it to propagate trajectories than integrate

the density matrix? Each wavefunction is an n×1 vector, rather than an n×n matrix,

so it's that much easier, but is still exponentially hard in the number of interacting

components.

Sometimes one has good reason to believe that interactions between some compo-

nents in a circuit are negligible (in the sense that these systems never become much

entangled), in which case one can get away with propagating a smaller subset of the

7 In simulations, instead of using the in�nite-dimensional Fock space spanned by the photon
number states, we truncate the Fock space at some cuto�, chosen to be large enough to accommodate
typical system behavior. See Chapter 3 for examples of SLH models involving Fock spaces.

8We can simulate the propagation of the wavefunctions one by one or in parallel, as the trajectories
are independent of each other.
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entire density matrix. This is the basic idea of Section 1.3. Another approach to

e�cient simulations is model reduction. Although the density matrix for a circuit

may be large, it is often the case that only a few degrees of freedom really determine

the dynamics. The goal of a model reduction approach is to identify those degrees of

freedom and to construct an e�ective model that omits all of the non-important ones.

An example of this approach to produce an e�ective master equation for a quantum

optical system is found in (Tezak et al., 2012).

1.3 Data structures for e�cient trajectory simula-

tion

Suppose we would like to simulate a large photonic circuit with many interacting

components. A full master equation integration is out of the question, so we use

trajectory simulations. We may be independently interested in the trajectories, too,

to understand the typical behavior of our device. Trajectory simulation can be slow

for large optical systems, but we can sometimes make simplifying assumptions to make

things easier. In this Section I propose a data structure for the e�cient simulation

of quantum trajectories in a particular setting - that of little entanglement between

di�erent components and sparse circuit connectivity. The method enabled us to run

simulations involving tens of thousands of components in (Pavlichin and Mabuchi,

2013), which would have been a hopeless proposition for a more brute force approach.

A comprehensive review of quantum trajectory simulations is found in (Wiseman,

2010); here we provide a brief summary. Simulating a trajectory involves a contin-

uous time evolution of the wavefunction and a point process of �jumps� - collapse

operators acting on the wavefunction. Letting {La} be the set of collapse operators,
the instantaneous rate ra of jump a is given by

ra(t) = ‖Laψ(t)‖2 (1.11)

(and the instantaneous probability of jump a in time dt is ra(t)dt.) If jump a occurs

at time t, the wavefunction goes to



CHAPTER 1. PHOTONIC CIRCUITS FOR PROGRAMMERS 14

ψpost-jump(t) ∼ Laψpre-jump(t) (1.12)

where ∼ denotes equality up to normalization, and the normalization constant is√
ra(t)

The continuous time evolution is determined by the Schrödinger equation

i
dψ

dt
=

(
H − i

2

∑
a

L†aLa

)
ψ (1.13)

where the quantity in parentheses is the �e�ective� non-Hermitian Hamiltonian (in

the terminology of (Tan, 1999)).

This note describes a method for e�cient simulation in the following setting:

• The system Hilbert space decomposes into many subsystems (groups of com-

ponents) that tend not to get entangled in the course of a simulation. In the

absence of entanglement between subsystems, we can propagate a collection of

wavefunctions, one for each subsystem, rather than a single wavefunction over

the (much larger) system Hilbert space.

• The circuit wavefunction tends to remain an eigenstate of the overall Hamilto-

nian in the course of a simulation. In the absence of Hamiltonian dynamics, the

system time evolution is dominated by �jumps� � the L terms in the master

equation for the circuit � and the jump rates (eq. (1.11)) do not vary in time

between jumps (they must be updated only after each jump).

This nice setting seems hard to come by, but arises naturally when we consider

large circuits composed of many simple components9 coupled together via jump op-

erators corresponding to beams propagating around the circuit. This is the case for

the error-correcting circuits of our expander code decoding draft that are composed

wholly of latch components (aside from state-less beam splitters and coherent inputs)

9 e.g., components whose internal dynamics have been adiabatically eliminated into a nontrivial
scattering matrix S and trivial L and H, as for the �probe� cavities in (Kerckho� et al., 2010) and
the LDPC circuit of Chapter 2.
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that either switch or don't switch two beam paths via a scattering matrix, accept a

set and reset input via two coupling/collapse terms, and have trivial Hamiltonian (0).

Simulation in this setting is equivalent to propagation of a continuous time Markov

jump process. Where is the di�culty?

1.3.1 Where's the di�culty?

Consider the steps this simulation involves:

1. Evaluate the rate ra for each jump operator La (eq. (1.11)).

2. Randomly draw the next jump from the set {La} and randomly draw when it

occurs.

3. Apply the next jump operator La to the wavefunction (eq. (1.12)).

4. repeat

For a naive implementation, steps 1 and 2 above require an amount of work

proportional to the total number of collapse operators. This linear scaling can be

slow: In the case of the simulations used in our work on expander code decoding

draft (Pavlichin and Mabuchi, 2013), the circuits have a 60,000-dimensional Hilbert

space and involve 100,000 jump terms (when fan-in/fan-out is included, this is closer

to 1M jump terms).

1.3.2 We can do better

We can improve on this in two ways:

• Exploit the connectivity structure of the circuit to reduce the number of jump

rates that must be recomputed (via eq. (1.11)) after a jump is applied.

• Use a data structure that enables e�cient sampling of the next jump operator

and jump time.
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1.3.2.1 Updating jump rates on a graph

First, let's consider using a bipartite graph structure to reduce the number of recom-

puted rates at each jump. Consider the bipartite graph formed by associating the

jump operators with one set of vertices, the Hilbert spaces that they act on with the

other set of vertices, and where we add an edge between jump La and Hilbert space

Hi whenever La acts on Hi (see Figure 1.3). Now let the neighbors Na of the a-th

jump be the set of jumps that act on any of the Hilbert spaces that La acts on:

Na ≡ {b : Lb and La act on Hi} (1.14)

(note that a jump is its own neighbor. The set of neighbors is colored blue in Figure

1.3.)

ℋ𝑖  

𝐿𝑎 
next jump neighboring 

jumps 

Jump 
operators 

Hilbert 
spaces 

Figure 1.3: Bipartite graph connecting jump operators and the Hilbert spaces they
act on. The neighboring jumps of jump La are shown in blue. The rates for these
jumps are recomputed whenever jump operator La is applied.

This bipartite graph structure is reminiscent of message-passing algorithms on

factor graphs; here the �messages� are instructions to neighboring jumps to recompute

their rate.

Now when jump La is applied, the only jumps for which the rate needs to be

recomputed are indexed by the neighbor set Na, since the system wavefunction stays

constant (up to normalization) on all Hilbert spaces other than the ones La acts on.

This spares us from recomputing every jump rate after every jump, with the savings
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growing as the bipartite graph becomes more sparse. In the case of the expander code

circuit simulations of Chapter 2, there are 100,000 jump operators, but each has only

about 6 neighboring jumps on average, so the savings are large.

1.3.2.2 Sampling jumps and jump times

Second, let's consider sampling the jump index and jump time. One way of doing this

is to sample the time until the next jump for every jump and take the nearest jump

time. This can be ine�cient (linear in the total number of jumps) if we recompute

all the jump times each time a jump is selected.

One way of doing this e�ciently is to form a tree whose leaves are the jump rates

ra(t) (shown in Figure 1.4). The internal (non-leaf) nodes store the sum of the rates

of their child nodes. The root node thus stores the sum of all jump rates rTotal(t) -

this is the rate for any jump to occur at time t. This tree of sums enables us to both

sample a jump index proportional to its jump rate and to update a particular jump

rate in time logarithmic in the total number of jump operators.

To sample a jump index, sample u ∼ Unif(0, 1), multiply u by the current total

jump rate rTotal(t) and wander down the tree from the root to the leaf that contains

u·rTotal(t) - this leaf gives the index of the selected jump. We can sample the time until

the next jump by inverse transform sampling to obtain a quantity with an exponential

distribution with mean 1/rTotal(t):

tjump = − log u

rTotal(t)
(1.15)

Since the jump rates are occasionally recomputed in the course of a simulation,

our tree of sums of rates must change too. This can also be done in time logarithmic

in the total number of jumps: we start at the leaf corresponding to an updated jump

rate, and update the rate sums of the parent nodes until we reach the root and update

the total jump rate.
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Figure 1.4: Jump rates stored in tree of sums. (left) sampling the next jump by
sampling u ∈ (0, rTotal) uniformly, walking down tree. (right) updating a jump rate
and parent nodes up to the root.

1.3.2.3 The full algorithm

Figure 1.5 shows a complete iteration of our algorithm: a jump operator and jump

time is sampled, the jump operator is applied to the wavefunction, and the jump

rates for the neighboring jump operators are recomputed using the new, post-jump,

wavefunction (as is the total jump rate to maintain a valid sums of rates tree). We

make the jump rates participate simultaneously in two data structures to reap the

bene�ts of both: the bipartite jumps/Hilbert spaces graph lets us recompute only

those rates that change after a jump, and the tree of rate sums lets us sample jumps

and jump times e�ciently.

1.3.2.4 An improvement

We can do less work by classifying the jump terms into those that change the state and

those that only probe it10. For example, if a jump term involves an atomic lowering

operator L ∼ σ+− = |+〉〈−|, then acting with L on the wavefunction changes the

state and can result in recomputation of jump rates that touch the Hilbert space

for this atom. On the other hand, if L ∼ Π+ = |+〉〈+|, so that Π+ is a projection

operator, then, given our assumption in Section 1.3 that the wavefunction remains

an eigenstate of the e�ective Hamiltonian He� during the simulation, application of

10 This distinction makes sense for cases when the wavefunction is an eigenstate of the system
Hamiltonian at all times, so that the �probe� jump terms are proportional to projection operators.
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Figure 1.5: A complete iteration of our algorithm (clockwise from top-left).

L does not change the wavefunction (either this component of the wavefunction is

in the |+〉 state, or not, in which case L is applied with rate 0). Therefore, we can

exclude this jump term from the simulation entirely (by setting its rate to 0 at all

times) and obtain the same dynamics as when we include it. If a jump term involves

operators that both probe (project) and change the state, we need only use the probe

part to compute the for rate applying this jump term, and only use the non-probe

part when applying it.

1.3.3 Possible extensions

It would be nice to extend this to work with non-trivial Hamiltonian. This might

be possible if the Hamiltonian evolution is slow compared to the total jump rate, so

that the Hamiltonian contribution to the rates can be recomputed rarely. Perhaps we
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could propagate approximate time derivatives of the jump rates due to the Hamilto-

nian evolution and modify our jump sampling procedure for time-varying rates. The

possibly-sparse structure of terms in a non-trivial Hamiltonian is already exploited in

the time-integration routines we use; perhaps we could exploit it again somehow for

recomputing jump rates.

It would be nice, too, to relax our assumption that di�erent components do not

become entangled in the course of a simulation. Perhaps we can have a hybrid scheme

where some blocks become entangled, requiring more computation, while on some

larger scale in the circuit we ignore entanglement.



Chapter 2

A photonic LDPC decoder

This Chapter presents a photonic architecture for decoding of a class of low-density

parity-check (LDPC) codes and follows closely our work (Pavlichin and Mabuchi,

2013). This proposal was inspired by the following image:

Photonic circuits involve stateful components coupled via guided electromagnetic

�elds and their time evolution can be viewed as a stochastic process1 on a graph,

the nodes being the components and the edges corresponding to light-mediated in-

teractions between them. It feels like such circuits might be natural candidates for

native implementation of iterative stochastic algorithms based on propagation of in-

formation around a graph. Such algorithms, including variants of message-passing

schemes like belief propagation, have the �avor of nodes repeatedly exchanging in-

formation locally with their neighbors until global convergence. This picture invites

an analogy to the dynamics of a network of photonic components, each of which

has some internal degree of freedom (e.g., an �atomic� state), coupled via continuous

interaction with propagating coherent �elds. Thus photonic information processing

systems could provide a native hardware platform for the implementation of itera-

tive graph-based algorithms that are currently executed using electronic computers

with incommensurate (though universal) circuit architectures that simulate message

1 See Chapter 1 for a review of the dynamic models for optical circuits.

21
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passing ine�ciently. Conversely, this class of algorithms suggests novel circuit archi-

tectures for signal processing and computation that are well matched to nanophotonic

device physics.

Here we develop an instance of this direct mapping of a graph-based algorithm to

a photonic circuit design for a simple and practically useful task: iterative decoding of

expander codes, a class of low-density parity-check (LDPC) error-correcting codes for

communication over a noisy channel. We work in the setting of linear coding theory

in which every codeword is required to satisfy a set of parity check constraints, i.e.,

sums modulo 2 of subsets of its bits. The assignments (0 or 1) of the codeword bits

and the values of their parity check sums correspond to the states (|0〉 or |1〉) of a
collection of two-state systems. Here we have in mind that |0〉 and |1〉 ideally should

correspond to orthogonal quantum states of an atom-like elementary physical degree

of freedom, to facilitate ultra-low energy scales for switching, but our circuit does not

require coherent superpositions or entanglement. For decoding a possibly corrupted

channel output, we consider a simple iterative decoding procedure for the expander

LDPC codes (Sipser and Spielman, 1994, 1996): �ip any bit (i.e., 0↔ 1) that appears

in more unsatis�ed than satis�ed parity check constraints; repeat until no more �ips

occur. We map this decoding procedure onto a closed-loop feedback circuit: a simple

sub-circuit is engineered to encode parity check sum values in the state of an optical

�eld, and another sub-circuit is designed to route feedback optical �elds such that

the states of certain components are �ipped (i.e., |0〉 ↔ |1〉) at a rate that grows with
the number of unsatis�ed parity check constraints.

The proposed circuit is autonomous, continuous-time and asynchronous. No ex-

ternal controller, measurement system or clock signal is required, so the circuit can be

realized as a single photonic device whose only required inputs are stationary coher-

ent optical �elds that drive the computational dynamics (i.e., supply power) 2. This

follows the spirit of the systems we have designed in previous work on autonomous

quantum memories (Kerckho� et al., 2010, 2011). In contrast to our earlier work,

the decoding circuit in the present proposal is straightforwardly extensible to the

2Note that signal processing devices that require only optical forms of power may be of practical
interest for large-area �ber optic networks.
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long block lengths (thousands of bits) used in practical LDPC implementations, as it

involves a simpler feedback circuit architecture 3.

Our circuit requires a collection of two-state latch systems coupled to input and

output �eld modes. Here we consider designs based on the attojoule nanophotonic

relay proposed in (Mabuchi, 2009), which is based on ideas of cavity quantum electro-

dynamics (cavity QED), but any photonic system that functions as a latch potentially

could be used in our circuit, e.g., (Mabuchi, 2011). Moreover, our scheme tolerates

noisy components (e.g., spontaneous switching of a latch between the 0 and 1 states),

can compensate for this noise with increased input optical power, and actually per-

forms optimally (in terms of bits decoded per second) when the components �mis-

behave� at some nonzero rate. The graceful change in performance with increasing

component imperfection and with varying optical input power is important for the

practical usefulness of such a circuit. In our circuit design there is no real distinction

between power and signal, as the power carried by the optical signal �elds drives all

the computational dynamics of the components, and it is shown (see Figure 2.9) that

simply increasing the optical input power reduces the error correction latency with

�xed hardware. Our circuit tolerates a wide range of input powers with a constant

performance as measured by bits corrected per joule.

This Chapter is organized as follows (this mirrors the organization of (Pavlichin

and Mabuchi, 2013)): We �rst brie�y review linear error-correcting codes and an

iterative decoding scheme for expander LDPC codes. We then describe in an intuitive

way the operating principles of our photonic circuit implementation of an iterative

LDPC decoder. The subsequent Section gives a more detailed picture of our circuit

in terms of open quantum systems theory. We then present some numerical tests of

our system and conclude with a discussion.

3 The circuits in our earlier work implement maximum likelihood (ML) decoders for small codes
like the three-bit bit-�ip code. ML decoding is, however, impractical for larger block lengths, as
it requires either a circuit size or decoding time exponentially large in the block length. Iterative
decoding algorithms such as the one discussed in this work have a larger error rate than ML decoders,
but require only polynomial or even linear resources in the block length
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2.1 Linear Codes and Iterative Decoding

We brie�y review and set up notation for block binary linear error-correcting codes

and an iterative decoding procedure for expander LDPC codes.

2.1.1 Linear Codes

We work with binary bits transmitted in blocks of length n through the binary sym-

metric channel (BSC) that with some �xed probability independently �ips (i.e. 0→ 1,

1 → 0) the transmitted bits. To protect from errors, the sender restricts the possi-

ble channel inputs to the set of codewords�a subset of all 2n possible inputs. The

decoder attempts to �nd the nearest codeword to the possibly corrupted output of

the channel. Equivalently, the bits are stored in memory that accumulates errors

with time; the sender/decoder attempt to minimize losses through redundancy in the

encoded memory bits.

Linear codes require each codeword xn = (x1, . . . , xn) to satisfy m parity check

constraints. A parity check constraint c is a subset of the n message bits whose sum

is constrained to equal 0 modulo 2:

∑
j∈c

xj = 0 (mod 2) (2.1)

A vector xn is a codeword if and only if it satis�es every constraint. The rate R of

the code is the ratio of the number of non-redundant bits to the total number of bits

per transmission, R = (n−m)/n.

It is useful to think of a code as an undirected bipartite graph, the Tanner graph

(Tanner, 1981), whose n �variable� nodes correspond to the message bits and whose

m �check� nodes correspond to the constraints. Edges connect variable nodes and the

constraints that include them.
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Figure 2.1: Tanner graph for a (n = 8, l = 3, k = 4) LDPC code. Circles (squares)
indicate variable (check) nodes. The thick edges indicate that parity check constraint
1 is x1 +x3 +x4 +x6 = 0 (mod 2) (numbering the check and variable nodes from left
to right).

2.1.2 Linear ⊃ LDPC ⊃ expander codes

Low-density parity-check (LDPC) codes are linear codes introduced by Gallager in

1962 (Gallager, 1962, 1963) and are among the �rst known near capacity-achieving

e�ciently decodable codes. The parity checks of a (n, l, k) LDPC code all include k

bits, and each bit is included in l parity checks (in the Tanner graph, each variable

node has degree l and each check node has degree k). The codes are �low-density�

because the total number of variable-check pairs is ln, linear in the block length n

(rather than quadratic in n for a dense graph); the Tanner graph is sparse. The rate

of the code is R = (n−m)/n = (k − l)/k.
Figure 2.1 shows the Tanner graph for a particular (n = 8, l = 3, k = 4) LDPC

code, where variable (check) nodes are drawn as circles (squares), and we have high-

lighted a particular parity check constraint. This graph would look sparse for larger

n.

LDPC codes shine because they can be decoded e�ciently by iterative algorithms

that have good performance in practice and in theory. These schemes include those

in Gallager's original work (Gallager, 1963), as well as message-passing algorithms

and belief propagation; for a theoretical analysis of their performance see (Luby

et al., 2001; MacKay and Neal, 1997; MacKay, 1999; Richardson and Urbanke, 2001).

These schemes all have the �avor of variable and check nodes repeatedly exchanging

information about the most likely codeword given the observed channel output and

di�er from each other in how that information is represented (e.g. binary or real-

valued messages) and how new messages are computed from old.
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Expander codes are a class of LDPC codes, introduced by Sipser and Spielman

(Sipser and Spielman, 1994, 1996), for which a particularly simple iterative decoding

procedure exists and which are easy to make by using a random construction. Ex-

pander codes require the Tanner graph to be a good expander graph, meaning that

the number of check nodes neighboring any small enough subset V of the variable

nodes grows fast enough linearly with |V |. For our purposes it su�ces to note that

a randomly sampled bipartite graph with �xed variable and check node degree (a

regular LDPC code) probably makes a good expander code (Sipser and Spielman,

1996).

2.1.3 Iterative decoding of expander codes

The iterative decoding procedure that is our focus in this work is the sequential

decoder of Sipser and Spielman (Sipser and Spielman, 1996). The variable bits are

initially assigned to 0 or 1, equal to the observed output of the channel (we work with

a binary symmetric channel that �ips incoming bits with probability less than 1/2).

The initial assignment of the variables may fail to satisfy all parity check constraints

due to errors. The decoding procedure is as follows:

• Flip (i.e. 0↔ 1) any variable that is included in more unsatis�ed than satis�ed

constraints.

• Repeat until no more variables are �ipped.

Each iteration reduces the total number of unsatis�ed constraints, so the procedure

terminates when either there are 0 unsatis�ed constraints (successfully outputting a

codeword) or it gets stuck and declares failure to decode. While this procedure could

be applied to any binary linear code, (Sipser and Spielman, 1996) prove that for

expander codes this procedure removes a constant fraction of errors and, if the initial

fraction of errors is low enough, is guaranteed to succeed. For the expander LDPC

codes, each variable participates in k constraints, so we �ip the variable's assignment

if the number of unsatis�ed constraints is greater than k/2.
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Importantly for our work, in (Sipser and Spielman, 1996)'s numerical experi-

ments, it was found that permitting the algorithm to make some amount of backwards

progress (sometimes increasing the total number of unsatis�ed constraints) increased

the probability of success. This suggests the procedure is robust to noise a�ecting

the computation. In our approximate implementation of this iterative algorithm, de-

scribed below, backwards progress is unavoidable and the hardware itself is noisy, so

this robustness of the decoding procedure to noise is desirable.

This procedure is not technically a message-passing algorithm in the sense of

(Burshtein and Miller, 2001), in that information �ow from a check to a variable node

(a possible ��ip� instruction) does not exclude information received by the check node

from that variable node (the bit state). Nonetheless it is convenient to discuss the

error-correcting dynamics, as (Sipser and Spielman, 1996) do, in terms of variable

nodes receiving ��ip messages� from check nodes.

2.2 A photonic decoding circuit: Overview

We give an intuitive description of the operation of our expander code decoder circuit

before giving a more precise description in terms of open quantum systems in the

Section that follows.

2.2.1 The idea

Our circuit consists of a collection of two-state (|0〉 or |1〉) systems, one for each

of n variable and m check nodes in the Tanner graph for an error-correcting code.

Information exchange between the variable and check systems is mediated by coherent

�elds interacting with these systems (e.g. a beam scattering from one atom-cavity

system into another). There are two crucial interactions:

• Fields outgoing from a system can encode that system's state (perform a mea-

surement)

• Fields incoming to a system can drive that system into a desired state (apply a

control)
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These two interactions allow us to construct a closed-loop, autonomous measurement

and feedback circuit that achieves:

• Parity checks/Measurements: A �eld scattered (e.g. a beam re�ected)

from the set of all variable bit systems included in some parity check constraint

encodes their sum modulo 2. This �eld then drives the check system into the

|satis�ed〉 or |unsatis�ed〉 states (|0〉 or |1〉, respectively).

• Error correction/Feedback: A �eld scattered from the set of all check sys-

tems that include a particular variable has an amplitude that increases with the

number of unsatis�ed checks involving that variable. This �eld then drives the

variable system to �ip between the |0〉 and |1〉 state at a rate proportional to

the magnitude of the �eld amplitude. The more unsatis�ed parity checks, the

faster the �ipping occurs.

The time evolution of this circuit is modeled as a continuous time Markov jump

process 4. The jumps are changes in state (|0〉 ↔ |1〉) and the jump rates depend on

amplitudes of �elds interacting with the two-state systems. The circuit is autonomous

and asynchronous in that there is no external clock signal or external controller to

process the parity measurement outcomes and to create an appropriate feedback �eld.

We note that the iterative decoding algorithm of (Sipser and Spielman, 1996) that

our circuit emulates, summarized in Section 2.1.3, can be cast in terms of a continuous

time Markov jump process as well: if a variable is included in more unsatis�ed than

satis�ed constraints, set the rate for ��ipping� it toR�ip > 0, otherwise setR�ip = 0. In

our implementation, the value of R�ip scales with the number of unsatis�ed constraints

in a di�erent way (and is never 0; see Section 2.3.2.2), but we attain comparable

empirical performance in simulation.

Finally, we note that our circuit is essentially classical in its operation, even though

we utilize quantum stochastic di�erential equations (QSDEs) to describe the dynamics

of the components and their interactions in order to obtain a circuit model that is valid

in the ultra-low power regime of signi�cant quantum �uctuations (photon shot noise).

4 This description follows from the open quantum systems dynamics treatment of our circuit. See
Section 1.3 for details
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Entanglement between di�erent subsystems is insigni�cant and is not exploited, and

thus does not need to be protected from interactions with the outside environment.

2.3 A photonic decoding circuit - construction

In this Chapter we describe the photonic component subsystems that make up our

circuit, specify their interconnections, and give an intuitive description of our circuit's

dynamics. We work in the framework developed by Gough and James (Gough, 2008,

2009) for modeling open quantum systems interacting via coherent �elds (Hudson and

Parthasarathy, 1984; Carmichael, 1993; Gardiner, 1993; Barchielli, 2006). Chapter

1 brie�y reviews this framework in enough detail for the reader to reproduce our

simulations.

2.3.1 Photonic circuit components

The basic component of our circuit - used to represent both variable and check node

assignments (|0〉 and |1〉) - is a photonic latch, shown in Figure 2.2, that behaves

like the set-reset latch in electronics. There are several proposals for implementing

latching behavior in nanophotonic circuits (Mabuchi, 2009, 2011; Majumdar et al.,

2012; Faraon et al., 2008; Nielsen and Kerckho�, 2011). One such system, a coupled

atom-cavity system (Mabuchi, 2009), is shown in Figure 2.2 (panel (b)). Our circuit

construction is de�ned without reference to a particular physical system and assumes

that the latch system that is used implements the following protocol.

The latch has a discrete internal degree of freedom (e.g. an atomic state) coupled

to two external �eld modes, labeled �set� and �reset.� A signal incoming to the �set�

(�reset�) input drives the latch into the |1〉 (|0〉) state. When neither the set nor reset

input is powered, the latch maintains its current state. Usefully for us, driving both

the set and reset inputs simultaneously - an unde�ned condition for the electronic

set-reset latch - results in astable behavior, with the latch state repeatedly jumping

between the |0〉 and the |1〉 state with exponentially-distributed jump times.
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Figure 2.2: Latch component from (Mabuchi, 2009). (a) Input-output connections
(re�ected set and reset outputs not shown). (b) Input �eld couplings to internal
states. (c) The latch approximated as a two-state continuous time Markov jump
process after adiabatically eliminating the excited states |e〉 and |s〉 (see (Mabuchi,
2009) for this derivation). (d) The latch routes the input �elds into output �elds,
switching them if its internal state is driven to |1〉.
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The latch routes two input channels (in1 and in2) into two output channels (out1

and out2). When the latch is in the |0〉 state, the outputs match the inputs (out1,2 =

in1,2); when the latch is in the |1〉 state, the outputs are switched (out1,2 = in2,1).

In addition to the latch, our circuit uses beamsplitters with some �xed transmis-

sion and re�ection coe�cient. Proposals for integrated nanophotonic beamsplitting

devices include (Bayindir et al., 2000; Liu et al., 2005). The Gough-James (S,L, H)

description of these components connected to each other and driven by coherent �elds

is provided in Appendix 2.A.

2.3.2 Circuit construction

We describe how the latches, beamsplitters, and coherent inputs are used to form our

expander code decoding circuit. There are two kinds of interactions to implement

between the variable and check systems: parity check sums and feedback to ��ip� the

variable nodes.

2.3.2.1 Parity checks

Figure 2.3 shows our parity check sum construction. For each parity check c cor-

responding to the k-variable constraint
⊕k

i=1 xc(i) = 0, there are k variable latch

systems, Qvar
c(1), . . . , Q

var
c(k), and one check latch system Qcheck

c (here ⊕ denotes addition

modulo 2). The current assignment (0 or 1) of the variables included in c is repre-

sented by the states (|0〉 or |1〉) of the variable latches; the check latch's state is meant

to represent the sum of these assignments modulo 2. As shown in Figure 2.3(b), the

variable latches share two common optical paths for their in1 and in2 inputs and

outputs. An input �eld with amplitude α is incident to input port in1 of check latch

Qvar
c(1). Subsequently, the two output ports of Qvar

c(i) connect to the two input ports of

Qvar
c(i+1) for i < k. The outputs of the �nal variable latch Qvar

c(k) connect to the set and

reset ports of check latch Qcheck
c .

Each time a |1〉 state is encountered at a variable latch along the beam path, the

latch switches the beam path between the upper and lower branches. If the output

power of the �nal latch is in the upper (lower) branch, then the parity of the variable
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(a) 
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variable latches parity constraint 
latch 
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Figure 2.3: Photonic circuit implementing a parity check computation. (a) The
parity check sum operation for a fragment of the Tanner graph for a linear code (rest
of graph in gray). The check node c is assigned the sum modulo 2 of the variable
nodes. (b) The photonic circuit implementation of the check sum using variable
latches Qvar

c(1), . . . , Q
var
c(k) and check latch Qcheck

c . Power is routed into either the SET
or RESET ports of the check latch conditional on the parity of the variable latches'
states.

assignment is odd (even), and the SET (RESET) port of the check latch receives

power, driving the check latch into the |unsatis�ed〉 = |1〉 (|satis�ed〉 = |0〉) state.
The rate at which the check latch is driven to the appropriate state is proportional

to the input �eld power |α|2 in units of photons per second.

The check latch Qcheck
c in turn routes �elds that participate in the feedback circuit

described in the next Section.

2.3.2.2 Feedback to variables

Figure 2.4 shows our feedback to variables construction. For a variable v, let v

denote the l parity check constraints that include v: v = {c : v ∈ c}. The current
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value (parity - 0 or 1) of the each check in v is represented by the state (|0〉 or |1〉)
of latches Qcheck

v(1) , . . . , Q
check
v(l) . As shown in Figure 2.4(c), the check latches share a

common optical path. An input �eld with amplitude β is incident to input port in1 of

latch Qcheck
v(1) . Subsequently, for each check latch Qcheck

v(i) , 1 ≤ i ≤ l, the second output is

fed back into the second input of the same latch after passing through an attenuator

(e.g. a beamsplitter) that dumps (e.g. re�ects out of the beam path) a fraction γ < 1

of incident power and transmits a fraction 1 − γ of the power back into the beam

path.

Each time an unsatis�ed parity check constraint state (|1〉 state) is encountered
at a check latch along the beam path, the power reaching the next check latch in the

path is attenuated by a factor of γ. The output of the �nal check latch in the path

Qcheck
v(l) is routed to drive both the SET and RESET inputs of the variable latch Qvar

v ,

causing it to ��ip� between the |0〉 and |1〉 states.
Once a �ip of variable v occurs, the parity check system discussed in the previous

Section updates the states of the check systems that include this variable, resulting in

an updated value of the �ipping rate for variable v. If the power in the measurement

circuit used to perform the parity check computation is low enough, the feedback

circuit may induce multiple �ips of the same variable before the measurement system

reacts. We consider this situation in the numerical results Section below.

The rate at which the variable latch Qvar
v �ips is proportional to the attenuated

power outgoing from the �nal latch in the beam path:

R�ip ∼ γ(l−#unsat. checks) |β|2 = γ#sat. checks |β|2 (2.2)

If all l parity constraints that include a variable v are unsatis�ed, the state of

variable latchQvar �ips with the maximum rate proportional to |β|2. If all l constraints
are satis�ed, the variable is �ipped with non-zero rate proportional to γl|β|2. Thus

our circuit can induce errors. For γ � 1, a single induced error should be quickly

corrected since the rate for correcting it is a factor of 1/γl � 1 larger than the rate

for inducing it.
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Figure 2.4: Photonic circuit implementing feedback to variables. (a) The ��ip� op-
eration for a fragment of the Tanner graph of a linear error-correcting code (rest of
graph in gray). If a majority of the parity check constraints that include variable v
are unsatis�ed, the assignment of variable v is �ipped (Sipser and Spielman, 1996).
(b) For our photonic circuit implementation, the rate of ��ipping� the variable sys-
tem state scales exponentially with the number of satis�ed parity check constraints.
(c) The photonic circuit implementation of the error-correcting feedback using check
latch systems Qcheck

v(1) , . . . , Q
check
v(l) and variable latch system Qvar

v . Power driving the
variable system Qvar

v to �ip is attenuated by a factor of γ for every satis�ed parity
check constraint.
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Figure 2.5: Measurement and feedback circuit fragment (right) corresponding to frag-
ment of Tanner graph (left).

Our circuit corrects errors that are involved in i parity check violations on a

timescale proportional to 1/γi. The smaller we make the attenuation factor γ, the

fewer induced errors there are, but the longer the decoding takes to complete. We

derive some bounds on the maximum value of γ in terms of the code parameters such

that our procedure is likely to succeed in Appendix 2.B. We guess that the attenuation

factor γ should not be too small, since the decoding probability may increase when

some induced errors are permitted, as observed in (Sipser and Spielman, 1996). This

intuition is consistent with our observations in the numerical results Section (2.4).

2.3.3 Complete circuit summary plots

Figure 2.5 shows both the measurement and feedback subcircuits for a fragment of

our decoder circuit corresponding to a fragment of the Tanner graph of an error-

correcting code. There is one such fragment for each of nl edges in the Tanner graph

of the code.
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Figure 2.6: Part of a trajectory of the decoding circuit for a fragment of an error-
correcting code. (top panel, blue line) state of a latch corresponding to a variable bit.
(top panel, dark red lines) states of latches corresponding to parity check constraints
that include the blue variable bit. (bottom panel) the feedback power applied to
the variable bit, inducing it to ��ip� state. On a log scale, this feedback power is
proportional to the number of satis�ed parity check constraints that include this
variable bit. See text for trajectory narration.
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Figure 2.6 shows a portion of a simulated trajectory for a fragment of the code.

The top panel shows the state (|0〉 or |1〉) of a latch corresponding to a variable bit

(blue) and the three latches corresponding to the three parity checks that include

this bit (dark red). At time 0, an error causes the variable bit latch (blue) to �ip

state (perhaps the component malfunctioned or the feedback system induced the

error). The three check latches corresponding to this bit then turn on (enter the

unsatis�ed, |1〉 state) after some exponentially-distributed waiting time (the mean of

the waiting time is set by the input probe power used to perform the parity check

sum computation). For each check latch that enters the unsatis�ed |1〉 state, the
feedback power reaching the variable bit grows by a factor of 1/γ, where γ is the

attenuation constant. Around time 1.25, the feedback induces the bit to �ip back to

the |1〉 state. After an additional random waiting time, the three latch systems return

to the satis�ed |0〉 state. Note that the feedback power reaching the bit is never 0,

but reaches a minimum when all parity check constraints are satis�ed.

2.3.4 Fan-out

Our decoder circuit requires each variable latch component to participate in multiple

(l) parity check constraints, and requires each parity constraint latch component to

feed back to multiple (k) variables. Since the latch described in Section 2.3.1 (and

in greater detail in Appendix 2.A.3) can switch only a single pair of signal inputs,

it is not on its own su�cient for our needs. We can augment our latch to achieve

the desired fan-out (and avoid the di�culty of having multiple beam paths access a

single structure in a planar circuit) by breaking up each latch into a set of subsystems,

each responsible for routing a single in/out signal pair. The subsystems are yet more

latches, but each routes only a single pair of in/out signals, corresponding to the latch

description of Section 2.3.1.

Figure 2.11 (in Appendix 2.C) shows the circuit for the augmented latch that

routes multiple in/out signal pairs. This augmented latch is used implicitly in our

circuit description above and is described in detail in Appendix 2.C. The idea is that

a single �master� latch receives the two set/reset inputs and then routes power to
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drive the �slave� latches into a matching state. Distributing the master latch state to

the slave latches requires another optical input with amplitude αf-o (for fan-out).

The numerical results presented below in Section 2.4 are done at in�nite fan-out

power (power in the yellow optical line in Figure 2.11) so that the e�ects of the extra

fan-out components on decoding performance can be ignored. We consider the e�ect

of �nite fan-out power in Section 2.4.5.

2.4 Numerical Experiments

Table 2.1 lists the parameters used in our simulations. The spontaneous �ip rate η

models component noise during the computation�all latches in our circuit indepen-

dently �ip (|0〉 ↔ |1〉) with rate η.

parameter symbol notes
block length n

checks per variable l m = nl/k parity checks
variables per check k
probe amplitude

feedback amplitude
fan-out amplitude

αpr
αfb
αf-o

power ∼ |α|2

feedback power
attenuation

0 < γ < 1
rate to �ip variable

= |αfb|2γ#satis�ed checks

spontaneous �ip rate η
all latches independently
�ip state with rate η

Table 2.1: Simulation parameters

2.4.1 Simulating quantum trajectories

Our circuit evolves according to the master equation (1.1). Rather than solve this

equation for the density matrix ρ for our system, we sample multiple trajectories of

the system wavefunction |ψ〉 and average observed quantities over these trajectories,

as described in Section 1.2.1. Simulation of quantum trajectories given a master

equation in the form of (1.1) is computationally easier than integrating the master
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equation and is discussed in detail in (Wiseman, 1996, 2010). One way to perform

such simulations is to sample exponentially-distributed jump times for each compo-

nent of the system L vector (rate for i-th component is ∼ |〈ψ|L†iLi|ψ〉|2), apply the

nearest-in-time jump to the system wavefunction, and resample all of the jump times

given the new wavefunction. In general, there is a smooth Hamiltonian evolution

occurring between jumps as well, but our decoder circuit's Hamiltonian is diagonal

in the {|0〉, |1〉} state basis, and this basis is �xed by the components of L (the jump

terms) so we can ignore the smooth evolution and treat the system as a continuous

time Markov jump process.

We prefer the trajectory approach in part because we want to average over di�erent

random instances of the expander code (with di�erent network connectivities each

time) and because it is useful to examine the time evolution of individual trajectories

for an intuitive view of the circuit.

2.4.2 Trajectories

We uniformly randomly sample 30 bits to corrupt from the initial all-0 codeword

of length n = 1000 for a randomly sampled LDPC code with l = 5, k = 10, and

track the remaining number of errors in time. The code is generated by randomly

sampling a bipartite graph with 1000 variable nodes each with degree 5, 500 check

nodes each with degree 10. We take the feedback attenuation parameter γ = 0.01, set

the feedback power to 1 (arbitrary units), the probe power to something much larger

(105), set the rate for spontaneous component �ips η = 0, and the fan-out power

|αf-o|2 to ∞ (thus ignoring the e�ects of fan-out; see Section 2.3.4 for explanation).

Figure 2.7 shows the number of errors remaining as a function of time averaged over

999 trajectories, and for three individual trajectories. 999 of 1000 trajectories decoded

successfully (converged the all-0 codeword). The one that did not is not included in

the average.

We point out two features of the trajectory simulations. One is that (e.g. the

red trajectory in Figure 2.7) the number of errors remaining sometimes increases

in the course of a simulation. As discussed in our circuit description in Section
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Figure 2.7: Trajectory simulation of the iterative photonic decoder for a (n = 1000, l =
5, k = 10) expander code, 30 initial errors, circuit parameters γ = 0.01, |αfb|2 = 1,
|αprobe|2 = 105, η = 0, |αf-o|2 = 0. (black) the mean number of errors remaining vs.
time averaged over 999 trajectories. (red, green, blue) the number of errors remaining
vs. time for three individual trajectories.
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2.3.2.2, the circuit induces errors at some non-zero rate and then corrects the induced

errors. Errors are most likely to be induced for variables that are involved in some,

but not a majority of parity check violations. When the attenuation constant γ is

too high (too little attenuation), the circuit may induce errors faster than they are

corrected, resulting in a failure to decode. On the other hand, as γ is decreased, the

circuit corrects errors at a lower rate, suggesting an optimal value of γ in terms of

a performance vs. decoding time tradeo�. This tradeo� is considered in the next

Section.

Second, the empirical mean of 999 trajectories (black trace in Figure 2.7 exhibits

three shoulders (alternates between being locally convex and concave) in its decay

toward 0. The shoulders are spaced approximately 1/γ = 100 logarithmic time units

apart, corresponding to the correction of errors that are involved in 5, 4, and 3

parity check violations, respectively. The mean number of errors remaining �rst

declines signi�cantly at time t ∼ 100, consistent with feedback at maximal rate (no

attenuation) |αfb|2 = 1 �ipping variables all l = 5 of whose corresponding parity check

constraints are initially unsatis�ed.

2.4.3 Performance vs. initial number of errors

We simulate our decoding circuit using the same code parameters as (Sipser and

Spielman, 1996): a (n = 40000, l = 5, k = 10) expander code, generated by randomly

sampling a bipartite graph with 40000 variable nodes, 20000 check nodes, and degree

5 and 10 at the variable and check nodes, respectively. The performance of our

decoder in simulation for these parameters is shown in Figure 2.8. This performance

(top panel) is somewhat better than that of (Sipser and Spielman, 1996)'s scheme

and somewhat worse than their version of the scheme permitting some backwards

progress - occasionally allowing the total number of parity constraint violations to

increase.

We see in Figure 2.8 (top) that the decoder's performance in terms of block error

rate appears to saturate as the attenuation parameter γ decreases. At the same time,
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the median time 5 to successfully decode grows as γ decreases (bottom), since the

rate to �ip bits scales exponentially in γ (eq. (2.2)). Thus we could set γ to the

highest achievable value for a given channel error probability, desired mean decoding

time, and probability to decode successfully.

2.4.4 Performance vs. input power with noisy circuit compo-

nents

We consider the decoder's performance as a function of applied input power in terms

of probability to decode, decoding rate (bits/s), and decoding energy (bits/J). Ad-

ditionally, we set some non-zero rate η at which the circuit components undergo

spontaneous �ips (|0〉 ↔ |1〉). This noise a�ects both the variable and the check

latches and in turn both the measurement and feedback parts of the circuit. Figure

2.9 shows our numerical results for �xed component noise rate η, LDPC code parame-

ters, initial number of errors, and attenuation parameter γ (see caption for parameter

values).

We see (top panel of Figure 2.9) that to decode successfully most of the time,

the feedback power needs to be large enough to overcome the errors induced by noise

in the circuit components, but not much larger than the probe power. When the

feedback power is much larger than the probe power, the probe circuit is too slow to

turn o� the feedback once an error is corrected and too slow to turn on the feedback

for new errors (induced by either the feedback or spontaneous �ips), so the feedback

system may induce more errors than it corrects.

For the bottom panel of Figure 2.9 we �xed the probe to feedback power ratio at

1 and plotted the mean decoding rate and energy versus input power in bit/s, bit/J,

respectively 6. We de�ned the decoding rate as the reciprocal of the mean decoding

5We use the median, rather than the mean, time because as the probability to successfully decode
drops sharply around 1800 initial errors, the distribution of decoding times spreads out over orders
of magnitude (see Figure 2.8, bottom), with the mean dominated by the few longest trajectories.
We imagine in actual use, we would operate some distance (in number of initial errors) below the
point at which the decoder breaks down.

6 These are in arbitrary time and energy units proportional to s and J, since we did not give
physical values for our simulation parameters. To compute a �ducial time and energy to decode, we
reference the latch switching time estimated in (Mabuchi, 2009) using the parameters of (Barclay
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Figure 2.8: Decoder performance with varying feedback power attenuation parameter
γ. (top) Probability to successfully decode vs. initial number of errors for several
values of attenuation parameter γ (see legend box). (bottom, points) median time
to decode conditioned on successfully decoding all errors. (bottom, solid lines) 90%
interval for time to decode successfully. We did not track these quantities past 1875
initial errors due to low succesful decoding probability. The code parameters are
the same as in (Sipser and Spielman, 1996): (n = 40000, l = 5, k = 10). We set
αprobe = 103, αfb = 10, η = 10−80, αf-o = ∞. We sampled 3000 trajectories for each
data point.
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time, conditioned on successfully decoding, and the decoding power as the decoding

rate divided by the input power.

We see that for large enough input power, the decoding rate is proportional to the

input power, while the energy cost per decoded bit is constant.

2.4.5 Performance vs. fan-out power

The previous numerical results were obtained for in�nite fan-out amplitude αf-o, al-

lowing us to ignore the impact on decoding performance of the extra fan-out latches

described in Section 2.3.4. Here we consider varying the fan-out amplitude αf-o. Fig-

ure 2.10 shows our numerical results for �xed LDPC code parameters (same as for

Figure 2.8 and Figure 2.9), �xed attenuation parameter γ, varying initial number of

errors, and equal probe and feedback amplitudes αpr = αfb (see caption for parameter

values).

We see that for high fan-out power (|αf-o/αfb|2 ≥ 10) the decoder's performance in

terms of block error rate vs. initial number of errors appears to saturate to the in�nite

fan-out power curve in Figure 2.8 7. For the case |αf-o/αfb|2 = 1 (= |αf-o/αpr|2) there
is a moderate reduction in performance (about 3%) in terms of maximum number

of errors decoded with given block error probability. Decoder performance degrades

dramatically for |αf-o/αfb|2 < 10−1.

et al., 2009) for a gallium phosphide photonic resonator and diamond nitrogen-vacancy system:
τsw ≈ 7µs per switch at 1pW set/reset input power. For 1700 initial errors in Figure 2.8, we
see (bottom panel) the time to decode scales as 1/γ2, suggesting that the time to correct errors
that satisfy 2 out of 5 parity check constraints dominates the total decoding time. The feedback
power to correct these errors is attenuated by a factor of γ2, so the mean time for switching them
is τsw/γ

2. Setting the feedback power to 1pW, γ = 10−2 (this is the highest value of γ shown
in Figure 2.8 such that the decoder succeeds for most trajectories with 1700 initial errors), we
estimate the time to decode to be ∼ τsw/γ

2 = 7µs/(10−2)2 = 70ms, the energy to decode to be
(time to decode) ·(input power) = 70ms ·1pW = 70fJ per latch; The set/reset inputs of each latch in
the circuit receive 1pW input power, so this estimate gives the energy to decode per latch. There are
60,000 total latches in the decoder circuit for the parameters in Figure 2.8 (40,000 variables, 20,000
checks), so the total energy to decode is ∼ (energy per latch) · (number of latches) ≈ 70fJ · 60, 000 ≈
4nJ.

7We refer to the red curve in Figure 2.8, corresponding to the attenuation parameter γ = 10−2.
The simulations for Figure 2.8 used a higher probe amplitude (αpr = 103) than the �nite fan-out
power simulations for Figure 2.10 (αpr = 10), leading to slightly better performance in this metric.
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Figure 2.9: Decoder performance with varying probe and feedback power in the
presence of component noise. (top, grayscale) Fraction of trials that decoded all
of the initial errors succesfully vs. probe and feedback power. (top, red dashed
line) �xed probe to feedback power ratio (ratio value 1). (bottom) Section of top
plot (marked by red dashed line) corresponding to a �xed probe to feedbak power
ratio. (bottom, magenta) mean decoding rate in bits/unit time. (bottom, blue) mean
decoding energy (ratio of mean decoding rate and input power). Both performance
measures are conditioned on successfully decoding all errors. Component spontaneous
�ip rate η = 10−8. γ = 0.01. Fan-out amplitude αf-o = ∞. Expander LDPC code
parameters: block length 40000, l = 5, k = 10, 1700 initial errors. We sampled 3000
trajectories per grayscale point.
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Given the above observations, it is reasonable to set αf-o = αfb = αpr in computing

a energy budget for our circuit using actual physical components. This choice of αf-o

doubles the �ducial energy budget computed in Footnote 6 for a gallium phosphide

photonic resonator and diamond nitrogen-vacancy system.

2.5 Discussion

We have described a photonic circuit that implements an iterative decoding scheme

for expander LDPC codes. This circuit consists of a collection of optical latching

relays, whose interactions via coherent �elds map naturally onto the subroutines of

the iterative decoder.

This circuit is autonomous�it is powered by the same optical signals that it acts

upon to implement the decoding procedure, and it requires no external controller,

measurement system, or clock signal. It operates robustly in the low-power limit in

which quantum �uctuations of the optical �elds are signi�cant. The feedback-induced

latch state �uctuations provide a natural source of randomness to drive the decoding

algorithm. Crucially for the feasibility of such a system, our circuit's performance,

as measured by decoding time and error rate, can be tuned smoothly by varying the

optical input power. Tuning the input power can be done without loss in e�ciency,

as our circuit decodes a constant number of bits per Joule at a rate linear in the input

power. Thus, noise that acts on the circuit components and potentially disrupts the

computation can be overcome by increasing input power until the circuit works.

Our construction highlights the computational utility of cavity QED-based

nanophotonic components for ultra-low power classical information processing, and

points to the utility of the probabilistic graphical model framework in engineering

autonomous optical systems that operate robustly in the quantum noise regime.

2.A Components

We describe the components we need for our decoder circuit in terms of a (S,L, H)

triplet, focusing on an intuitive input-output picture.
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Figure 2.10: Decoder performance with varying fan-out amplitude αf-o. (colors) Prob-
ability to successfully decode vs. initial number of errors for several values of fan-out
amplitude αf-o (see legend box). The code parameters are the same as in (Sipser and
Spielman, 1996): (n = 40000, l = 5, k = 10). We set αprobe = αfb = 10, η = 10−80,
and varied αf-o. We sampled 3000 trajectories for each data point.
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2.A.1 Beamsplitter

To give an intuition for these systems and to specify a components we need, we �rst

describe the beamsplitter as an open Markov quantum system. A 50/50 beamsplitter

has two input and two output ports and is parametrized by:

B =

(
S =

1√
2

(
1 1

−1 1

)
, L =

(
0

0

)
, H = 0

)
(2.3)

By examining the scattering matrix, we see that for a �eld incident into input port

1, half the power is transmitted into output port 1 and half is re�ected into output

port 2 with a π phase shift. The beamsplitter has no internal degrees of freedom that

concern us here, so L = 0 and H = 0. The scattering matrix for a beamsplitter that

transmits a fraction γ < 1 of incident power - our attenuation component - is a 2 by

2 rotation matrix with angle arccos
√
γ.

2.A.2 Coherent input �eld

A coherent �eld input is modeled as a Weyl operator W~α, which displaces n vacuum

inputs into coherent states |α1〉, . . . , |αn〉 with amplitudes α1, . . . , αn:

W~α =

S = 1n×n, L =


α1

...

αn

 , H = 0

 (2.4)

For example, driving the beam splitter above with |α〉 in the �rst input and |β〉
in the second input results in the series connection:

B CW(α,β) =(
S = 1√

2

(
1 1

−1 1

)
, L = 1√

2

(
α + β

−α + β

)
, H = 0

)
(2.5)

resulting in the mixing of the two inputs in the two outputs, as we expect.
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2.A.3 Latch

In terms of an (S,L,H) triplet, the latch is given by the concatenation (parallel

product) of two systems: Qset-reset accepts the set and reset inputs and drives the

latch into the |0〉 or |1〉 state, and Qin-out routes the input �elds in1,2 into the output

�elds out1,2. We have Q = Qset-reset �Qin-out, where

Qset-reset =

(
Sset-reset =

(
Π0 −σ10

−σ01 Π1

)
, (2.6)

L =

(
0

0

)
, H = 0

)

Qin-out =

(
Sin-out =

(
Π0 −Π1

−Π1 Π0

)
,L =

(
0

0

)
, H = 0

)
(2.7)

where Π0 = |0〉〈0| and Π1 = |1〉〈1| are projection operators onto the |0〉 and |1〉 states
and σ01 = |0〉〈1|, σ10 = |1〉〈0| switch |0〉 and |1〉. Conditional on the state of the

latch, either Sin-out =

(
1 0

0 1

)
or Sin-out =

(
0 −1

−1 0

)
, thus either switching or

not switching the input �elds. This is the same latch model as that used in our earlier

work (Kerckho� et al., 2010).

A possible physical system that achieves this desired behavior is shown in Figure

2.2 and was �rst proposed in (Mabuchi, 2009). The |0〉 and |1〉 states are degenerate
ground states of an atom in a cavity. Set, reset, and input �elds are resonant with

transitions to one of two excited states (|e〉 and |s〉), from which the atom then decays

back into one of the ground states. In a regime of strong atom-cavity coupling,

the limiting behavior of the switch system is obtained by using the QSDE limit

theorem (Bouten et al., 2008) to adiabatically eliminate the excited state dynamics.

An alternate proposal for such a switch using a Kerr cavity is found in (Mabuchi,

2011).
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2.B Bounds on nonlinearity of feedback

Consider a (n, l, k) LDPC code, and suppose there is only one variable v that needs

to be �ipped to return to a codeword. This variable participates in l parity check

constraints, all of which are violated, so it �ips at some maximal rate r. These l

parity check constraints together include at most l(k − 1) variables other than v (at

most because they may have some in common), each of which is involved in least one

parity constraint violation, and so �ips with rate at least rγl−1. The total rate for

erroneously �ipping any variable other than v is then

Rerr = l(k − 1) r γl−1

In order to �ip v before errors accumulate, we set r > Rerr and �nd

γ <

(
1

l(k − 1)

) 1
l−1

In our numerical tests we have used l = 5, k = 10, yielding γ < 0.38. Numerically

we found that our decoder mostly fails to decode already for γ = 0.1 (see Figure 2.8),

but this is an upper bound assuming only one total error.

2.C Fan-in/Fan-out

As discussed in Section 2.3.2, our circuit requires a latch component Qvar
v

correspond-

ing to variable bit v to participate in multiple (l) parity check constraints, and a latch

Qcheck
c

corresponding to parity check c to feed back to multiple (k) variables. Since

the latch described in Section 2.3.1 and Appendix 2.A routes only two input and two

output ports (in/out1,2), it is insu�cient for our needs: we need a latch that routes

multiple in/out1,2 signal pairs - switching each pair if and only if the latch state is |1〉
(see upper panel of Figure 2.11). We can augment our latch to achieve the desired

fan-in/fan-out in two ways.
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2.C.1 Routing multiple signals

One way is to simply add extra input/output ports to the latch system depicted in

Figure 2.2: we could have input pairs in
(i)
1,2 for i ∈ {1, . . . , N} and the corresponding

outputs (in addition to the two set/reset ports) for some integer N , all coupled to

the same latch state. This would be di�cult to achieve in a nanophotonic system,

if only due to constraints of geometry - it would be di�cult to have multiple beam

paths access a single structure in a planar circuit.

An alternate scheme is depicted in Figure 2.11. The idea is to break up each latch

into a set of N subsystems Q
(1)
route, . . . , Q

(N)
route, each responsible for routing a single

in/out signal pair, and a single subsystem Qsr responsible for accepting the set/reset

inputs (see Figure 2.11). Each of the N + 1 subsystems is another latch, but one that

routes only a single in/out signal pair and �ts the description of Section 2.3.1. The

set/reset subsystem Qsr routes power (in orange path in Figure 2.11) to the set/reset

ports of the N routing subsystems Q
(i)
route, driving the state of each routing subsystem

to match the state of the set/reset subsystem. Thus the N routing subsystems Q
(i)
route

all mirror the overall system state, de�ned as the state of the set/reset subsystem

Qsr.

This construction introduces a delay in distributing the state of the set/reset

subsystem to the N routing subsystems - due to both the waiting time for a routing

subsystem to switch and to the time for a signal to propagate around a circuit (we do

not model the latter source of delay for this circuit). The construction also introduces

extra circuit components that could be subject to noise (e.g. spontaneously changing

their state). We thus need to use high-enough fanout power (proportional to |αf-o|2,
in orange path in Figure 2.11) to make this construction useful.

2.C.2 Accepting multiple set/reset inputs

We note that we can use a similar construction to make a latch system that accepts

multiple set/reset inputs in addition to routing multiple in/out signal pairs; though

such a system does not appear in our decoder circuit, it may be useful for other

purposes. When there are multiple set/reset input pairs for a device, these inputs
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lose their interpretation as �set� and �reset� for the elecronic latch. We can instead

associate each set/reset pair with an internal state and de�ne an overall state as the

sum modulo 2 of these internal states, so that changing any of the internal states

changes the overall state. This behavior could be useful if we are interested in having

a circuit component with multiple ��ip� control inputs.

The idea is to break up the set/reset latch subsystem described above into a set

of M subsystems Q
(j)
sr , j ∈ {1, . . . ,M}, each of which accepts only a single set of

set/reset inputs. The overall system state is then de�ned as the sum modulo 2 of the

set/reset subsystems, so �ipping the state of any of them changes the overall state.

The sum modulo 2 is performed as for the parity check circuit described in Section

2.3.2.1 and shown in Figure 2.3 (b). The probe beam path (black path in Figure 2.3

(b)) would now access each of the Q
(i)
sr subsystems in sequence before driving the set

or reset port of each of the Q
(j)
route subsystems, as described in the previous Subsection

(orange path in Figure 2.11).
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Figure 2.11: (top left inset) A latch that routes multiple in/out signal pairs, as needed
by our decoder circuit. (main �gure) implementation of latch in inset using only the

single in/out signal pair latches described in Section 2.3.1. The routing latches Q
(i)
route

are each responsible for routing a single in/out signal pair. The set/reset latch Qsr

accepts external set/reset inputs and is responsible for distributing its state - the
overall latch state - to the routing latches.



Chapter 3

Device Bestiary

In this Chapter I describe some photonic devices that are describable in the photonic

circuit framework summarized in Chapter 1 and are not implausible using current

technology. I provide examples where some of these may be useful for some compu-

tational tasks.

3.1 Stateless components

In this section I consider components that have no internal degrees of freedom � at

least none that we dare to simulate. Everything here is built of mirrors, phase shifts,

and beamsplitters. When we introduce feedback, the circuits acquire internal state

(the circulating fed back mode). The SLH formalism does not easily handle this case;

so long as the photon number in these fed back modes is small, our models should be

ok.

3.1.1 The Mach-Zehnder interferometer

The humble Mach-Zehnder interferometer is the most ubiquitous and useful com-

ponent in the fancier circuits that follow. This isn't surprising, since we seek to

exploit the resource of coherence for computing and the interferometer routes signals

conditional on their well-de�ned phase.

54
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Figure 3.1: Mach-Zehnder interferometer with a phase of φ in one leg relative to the
other. (a) Circuit schematic showing beam paths. 50/50 beamsplitters in gray. (b)
�Music score� notation, where B denotes a 50/50 beamsplitter.

Figure 3.1 shows the Mach-Zehnder interferometer beam paths and the circuit in

�music score� notation. The interferometer accepts two coherent input �elds in1 and

in2, mixes them on a beamsplitter, imparts a phase of φ in one of its legs relative to

the other leg, and mixes the two legs on a second beamsplitter to produce the coherent

output �elds out1 and out2. We shall use a 50/50 beamsplitter in the following sections

unless stated otherwise.

The SLH model (1.1.1) for this circuit is:

GMZ = B C (φ� I1)CB = (SMZ, LMZ, HMZ) (3.1)

where

SMZ =
1

2

(
1 1

−1 1

)
·

(
eiφ

1

)
·

(
1 1

−1 1

)
=

1

2

(
−1 + eiφ 1 + eiφ

−1− eiφ 1− eiφ

)
(3.2)

and LMZ =
(

0 0
)†

andHMZ = 0 are trivial since our Mach-Zehnder has no internal

degrees of freedom (the latch of Chapter 2 is a MZ with internal degrees of freedom).
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Figure 3.2: Inteferometer with feedback loop. Note the extra phase shift of π in
one of the legs. (a) Circuit schematic. Note the π phase shift in the lower leg. (b)
Equivalent short-hand circuit (π phase shift implied) (c) Music score notation.

Note that for the special case φ ∈ {0, π} we have

SMZ|φ=0 =

(
0 1

−1 0

)
SMZ|φ=π =

(
−1 0

0 1

)
(3.3)

so that the interferometer either switches or does not switch the two input signals (and

applies a phase of π to the �rst input). We exploited this observation to construct a

programmable latch in Chapter 2.

3.1.1.1 Feedback extensions

Let's consider feeding back to one of the interferometer ports. We do this because

interesting things often happen when one considers adding feedback, and we describe

this because we end up with a possibly useful cavity-like device.

Let's consider feeding back as shown in Figure 3.2. Here the second output out2 is

fed back into the second input in1. Additionally, in contrast to the interferometer of

Section 3.1.1, we add a phase shift of π in one of the legs. This change is not crucial

to the results, and we could obtain the same result by omitting the π phase shift, but

instead feeding back the out2 to in1 instead. This way we avoid wire crossings and

the pictures look nicer. The π phase shift can be added by inserting an extra mirror

in one leg of the interferometer.
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Figure 3.3: Iterated feedback operation starting from a single line imparting a phase
shift of φ, to the single feedback line circuit of Figure 3.2, to the object with the
trivial (identity) φ-independent scattering matrix (far right).

We compute the scattering matrix1 for this device by taking the scattering matrix

for the Mach-Zehnder we computed in (3.2) (taking care to add the additional π phase

shift in one leg) and applying the feedback from out2 to in2. The circuit is given by:

GFB = [B C (φ� (−1))CB]2→2 (3.4)

And the scattering matrix is:

SFB =

[
1

2

(
1 1

−1 1

)
·

(
eiφ

−1

)
·

(
1 1

−1 1

)]
2→2

(3.5)

=

[
1

2

(
1 + eiφ −1 + eiφ

1− eiφ −1− eiφ

)]
2→2

(3.6)

=
1

2

(
1 + eiφ

)
+

1

2

(
−1 + eiφ

)( 1

1− 1
2

(−1− eiφ)

)
1

2

(
1− eiφ

)
(3.7)

=
1 + 3eiφ

3 + eiφ
(3.8)

where the feedback operation in (3.7) is computed as given in Section 1.2.
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Iterated feedback

What happens if we iterate this feedback operation? Why should we care? We shall

see an application to construct a kind of cavity below.

The iterated feedback operation is shown in Figure 3.3. Denote by G
(n)
FB the circuit

obtained by iterating the feedback operation n times:

G
(0)
FB = φ (3.9)

G
(n)
FB =

[
B C

(
G

(n−1)
FB � (−1)

)
CB

]
2→2

(3.10)

then with some work we can show that the scattering matrix obtained by applying

the feedback operation n times (see Section 1.2) is the 1 by 1 matrix:

S
(n)
FB =

(2n − 1) + (2n + 1)eiφ

(2n + 1) + (2n − 1)eiφ
n ≥ 0 (3.11)

The limiting scattering matrix as the number of feedback iterations increases n→∞
is

S
(∞)
FB = lim

n→∞
S

(n)
FB = 1 (3.12)

Some kind of cavity

This limit conceals, however, the dependence of argS
(n)
FB on the phase φ. This de-

pendence is what makes this device potentially useful. Let's plot the argument of

the (1 by 1) scattering matrix versus the phase φ. Figure 3.4 shows this. We see

that the �output� phase (argS) depends increasingly strongly on the �input� phase

(φ) for φ near a certain value (π) as the number of feedback iterations n increases.

This is similar to the behavior of a cavity and makes sense for the present device: the

feedback loop creates an optical mode that can circulate in the device, so a photon

in the circulating mode can �see� the phase of φ multiple times, so the device thus

imparts an overall phase di�erent from φ.

1 The scattering matrix is again the only nontrivial part of this SLH model since there are no
internal degrees of freedom, so that L and H are trivial (0).
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Figure 3.4: Phase of scattering matrix S
(n)
FB obtained by applying the feedback oper-

ation n times (3.11) versus the no-feedback phase argS
(0)
FB = arg eiφ = φ.

Since S
(n)
FB has period of 2π in φ, argS

(n)
FB must change by 2π as φ varies from 0

to 2π. On the other hand, since S
(∞)
FB = 1, we must have argS

(∞)
FB → 0 wherever the

arg function is continuous in its argument. Thus we expect to �nd an increasingly

sharp kink near φ = π in argS
(n)
FB as n grows, and a discontinuity for n→∞. This is

consistent with what we see in Figure 3.4. We lose sensitivity to the innermost phase

φ for most values of φ, but gain sensitivity for φ near π.

We measure the sharpness of the kink in argS
(n)
FB by its derivative. With some

work we can show this to be

argS
(n)
FB = arctan

(
2n+1 sinφ

22n(cosφ+ 1) + cosφ− 1

)
(3.13)

⇓
d

dφ
argS

(n)
FB =

2n+1

22n(cosφ+ 1)− cosφ+ 1
(3.14)

With some more work we can show that the quantity in (3.14) is maximized for

φ = π:
d

dφ
argS

(n)
FB

∣∣∣∣
φ=π

= 2n (3.15)
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Figure 3.5: Feedback loop to a 50/50 beamsplitter through a φ phase shift. (a)
Circuit schematic. (b) Music-score notation, rearranged slightly to emphasize the
controller-plant analogy.

so the sharpness of the kink grows exponentially in the number of feedback iterations

n and the device acts like a cavity.

3.1.2 Poor man's cavity

Let's consider the feedback with phase shift setup shown in Figure 3.5. This device is

similar to the feedback with phase shift scheme in Section 3.1.1.1, but has one fewer

beamsplitter and thus has fewer optical paths. It is also a canonical device in the

sense that it is the simplest example of a feedback device; alternately, we can think

of the beamsplitter as a controller for the plant, which in this case has no degrees

of freedom and applies a phase shift of φ to an incoming signal. The control theory

perspective on this device is presented in (Gough and James, 2009) (see Figure 5 in

that paper).

Let's compute the SLH model for this device. Denoting the circuit by G we have

G = [(I1 � φ)CB]2→2 (3.16)
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Figure 3.6: Iterated feedback operation for the poor man's cavity of Figure 3.5. (a)
Iterations n = 1 and n = 2 in music score notation. (b) Iterations n = 0, 1, 2, . . . ,∞.
Gray lines denote 50/50 beampslitters. The scattering matrix for the n→∞ case is
trivial (identity).

so the scattering matrix is (since there are no internal degrees of freedom, the coupling

vector L and the Hamiltonian H are trivial for this device)

S =

[(
1

eiφ

)
· 1√

2

(
1 1

−1 1

)]
2→2

=

[
1√
2

(
1 1

−eiφ eiφ

)]
2→2

(3.17)

=
1√
2

+
1√
2

(
1

1− eiφ/
√

2

)
−eiφ√

2
(3.18)

=

√
2− 2eiφ

2−
√

2eiφ
(3.19)

where the feedback operation in (3.18) is computed as given in Section 1.2.

Iterated feedback

As in the previous Section, let's consider what happens when we iterate the feedback

operation, using the above device to stand in for the inner phase shift. The iterated

feedback operation is shown in Figure 3.6. Reasoning as in the previous Section, we
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might expect the iterated feedback device to boost sensitivity to the inner phase φ

for some values of φ and depress sensitivity elsewhere, thus acting as a cavity.

Denote by G
(n)
FB the circuit obtained by iterating the feedback operation n times:

G
(0)
FB = φ (3.20)

G
(n)
FB =

[(
I1 �G

(n−1)
FB

)
CB

]
2→2

(3.21)

then with some work we can show that the scattering matrix obtained by applying

the feedback operation n times is the 1 by 1 matrix:

S
(n)
FB =

bn
√

2 + ane
iφ

an
√

2 + bneiφ
n ≥ 0 (3.22)

where an and bn for n ≥ 1 are the sequences of the numerators and denominators to the

upper principal and intermediate convergents to
√

2, OEIS A143609 and A084068,

respectively (Kimberling, 1997). The �rst few values are (extending the formulas

for an and bn to the n = 0 case) (an, bn) = (1, 0), (2, 1), (3, 2), (10, 7), (17, 12) for

n = 0, 1, 2, 3, 4.

The limiting scattering matrix as the number of feedback iterations increases

n→∞ is

S
(∞)
FB = lim

n→∞
S

(n)
FB = 1 (3.23)

As for the Mach-Zehnder with feedback Section 3.1.1.1, let's consider the depen-

dence of argS
(n)
FB on the phase φ, since this yields the overall phase imparted by the

device. We plot in Figure 3.7 the argument of the scattering matrix versus the phase

φ. As in Section 3.1.1.1, we see that the �output� phase (argS) depends increasingly

strongly on the �input� phase (φ) for φ ≈ π as the number of feedback iterations n

increases.

We might expect that the extra feedback loops somehow hide the innermost phase

φ from an interrogating input �eld; on the other hand, any light that does leak all the

way to the innermost phase bounces around many times before it leaks back out, and

so �sees� the phase φ many times. Since the overall scattering matrix is periodic in
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Figure 3.7: Phase of scattering matrix S
(n)
FB obtained by applying the feedback oper-

ation n times (3.22) versus the no-feedback phase argS
(0)
FB = arg eiφ = φ.

φ, sensitivity of argS to φ (measured by its derivative) that we lose for some values

of φ we must gain for other values of φ.

Let's compute the derivative of argS
(n)
FB to measure the sharpness of the kink near

φ ≈ π. With some work we can show this to be

argS
(n)
FB = arctan

(
2 sinφ

cosφ (p+m) + p−m

)
(3.24)

where p = (
√

2 + 1)2n and m = (
√

2− 1)2n, and

d

dφ
argS

(n)
FB =

2(cosφ(p−m) + p+m)

(cosφ(p+m) + p−m)2
(3.25)

The quantity in (3.25) is maximized for φ = π:

d

dφ
argS

(n)
FB

∣∣∣∣
φ=π

=
(

3 + 2
√

2
)n

(3.26)

so the sharpness of the kink grows exponentially in the number of feedback iterations

n, and somewhat faster than for the Mach-Zehnder with feedback (3.15).
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How can we use such a device? We can imagine using it to enhance the sensitivity

of a measurement of a small phase, just like a cavity.

3.2 Components with state

We now turn to optical circuits components that have an internal state that interacts

with incoming and outgoing optical �elds2. We would like to have such devices at

our disposal in order to make circuits whose time evolution depends on past circuit

states, rather than only upon the instantaneous inputs to the circuit, thus enabling,

e.g., a device that acts as a memory. In SLH terms (see Section 1.1.1 for de�nitions),

we would like components with a nontrivial coupling vector L and Hamiltonian H.

Stateful optical circuits also enable two useful things that are not immediately

obvious: nonlinearity and the interaction of optical �elds with each other. First, by

nonlinearity I mean the nonlinear dependence of power in outgoing versus incoming

optical �elds. The dynamics of systems with no internal state (trivial L and H)

are determined completely by their scattering matrix S (see Section 1.1.1). Since

S is unitary, the norm (proportional to power) of a vector of optical �eld inputs is

preserved at all times. For a nonlinear circuit, that power power has to go somewhere,

and that could be the internal degrees of freedom of a stateful object (e.g., in an

optomechanical system, light excites phonon modes, which are in turn dissipatively

coupled to an environment). Even an empty cavity can temporarily violate input-

output power conservation while the �eld inside the cavity builds to a steady-state

value.

Second, since optical �elds do not directly interact with each other, an intermedi-

ary system is necessary for the state of one mode to impact another. The evolution

of a stateless system is determined completely by the action of the unitary scattering

matrix S on a vector of optical inputs (see Section 1.1.1); thus the only �interaction�

permitted in a stateless system is the addition of optical �elds. More complicated in-

teractions require an internal state to store information from one �eld mode and pass

it on to another, thus requiring our system to have a nontrivial (non-zero) coupling L

2 BS already has internal state, but we do not model it
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vector. A nontrivial system Hamiltonian could enable more useful dynamics for the

stateful component (e.g., in an atom-in-a-cavity system, external �elds are coupled to

the cavity mode (via the L vector), which is coupled to the atomic degrees of freedom

(via the Hamiltonian)).

Further motivation: Nonlinearity and the interaction of di�erent �eld modes are

necessarry features for the implementation of universal logic. Suppose we think of

the phase of our coherent �elds as encoding a binary value (e.g., 0 ↔ 0, π ↔ 1).

Then we can implement a NOT gate by bouncing a beam o� a mirror (φ→ φ+π, so

x→ x⊕ 1). We could implement an OR gate by mixing two coherent �elds of equal

power on a 50/50 beamsplitter (all of the light will leave from one port if the two

phases add to 0 modulo π, and from the other port otherwise). But NOT and OR

are insu�cient for universal logic. We could ask for an AND gate to make a universal

set of gates, but this is a nonlinear device - the output is only high when both inputs

are high, and 0 otherwise. A proposal for a NAND gate su�cient for universal logic)

using stateful, nonlinear devices (Kerr cavities) is found in (Mabuchi, 2011).

We further observe that there is a tradeo� between the nonlinearity of a device

and the latency associated with its operation. When we wed the function of a de-

vice to its internal dynamics and interactions with external �elds, we are limited by

the timescales of those internal dynamics internal-�eld interaction dynamics. Purely

scattering/linear/passive devices (like beamsplitters or phase shifts) operate instan-

taneously in our framework. Of course, even a mirror has internal degrees of freedom

(conducting electrons that radiate a re�ected �eld), but we do not model these or

treat them as very fast compared to other degrees of freedom in our circuits (like

atomic states coupled to cavity modes).

In this Section we present the simplest stateful components - empty optical cav-

ities, atoms coupled to optical modes - these we combined to form a latch device

in Chapter 2. Along the way we illustrate some uses for these circuits for some

computational tasks.
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Figure 3.8: (a) Circuit schematic for a single-port cavity with cavity �eld decay rate κ
driven by coherent �eld with amplitude β. (b) A cartoon showing a silicon microring
resonator coupled to a waveguide. (c) Music-score notation for a single-port cavity.

3.2.1 Empty cavities

A basic component that will recur below is the empty cavity coupled to an external

coherent driving �eld. Figure 3.8 shows the common setup of a single coherent optical

mode with amplitude β coupled to a single-port cavity. The state space for the cavity

is a Fock space, and the states (density matrices over this Fock space) correspond

roughly to probability distributions for the number of photons in the cavity3. The

incoming �eld mode contributes photons to the cavity mode, and photons from the

cavity mode contribute to the outgoing �eld. A physical realization would be a free

space laser beam bouncing o� a cavity formed by two mirrors or, as shown in the

cartoon in Figure 3.8 (b), a microring resonator coupled to a nearby waveguide.

The geometry of a cavity, say, the distance between the two opposing mirrors in

a Fabry-Pérot cavity, establishes the set of resonant frequencies for the cavity, since

only wavelengths that divide the cavity length a half integer number of times can

form standing waves in the cavity. In what follows we shall mostly be interested in

only a single one of these supported frequencies and refer to the corresponding cavity

mode as �the cavity mode.�

3 �Roughly� in the sense of the Q-function, Q(α) = 1
π 〈α|ρ|α〉, where |α〉 is a coherent state.



CHAPTER 3. DEVICE BESTIARY 67

The SLH model for the undriven empty cavity is given by:

S = 11×1 (3.27)

L =
√

2κ a (3.28)

H = ∆ a†a (3.29)

where a is the annihilation operator for the cavity Fock space, a† is the adjoint of a,

κ is the cavity �eld decay rate, and ∆ = ωc−ωp is the detuning between the resonant

cavity frequency and incoming probe �eld frequency. The L term corresponds to

the process of a photon leaking out of the cavity into the outgoing �eld, and L†

corresponds to an incoming photon leaking into the cavity.

When the empty cavity is driven by a coherent �eld with amplitude β, the driven

circuit expression is given by:

Qdriven = QCWβ (3.30)

where Wβ is the Weyl operator. We compute the driven SLH model:

S = 11×1 (3.31)

L =
√

2κ a+ β (3.32)

H = ∆ a†a+ i
√
κ/2

(
aβ∗ − a†β

)
(3.33)

where β∗ is the complex conjugate of β. Note that the second term in the Hamiltonian

corresponds to the exchange of photons between the cavity mode and the external

�eld mode.

In the Sections below I present several devices that use only the empty cavity

driven by coherent inputs as their sole building block and are useful for something.

3.2.2 Cavity beampsplitter

A single empty cavity can be useful as a beamsplitter. Consider the arrangement

shown in Figure 3.9. Here a single cavity is coupled to two waveguides, cavity decay
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Figure 3.9: (a) Circuit schematic for a two-port cavity with cavity �eld decay rates
κ1, κ2 driven by coherent �elds with amplitudes β1, β2. (b) For time-invariant coher-
ent input �elds, the circuit in (a) is equivalent to a beamsplitter with mixing angle
θ(κ1/κ2) given by (3.45) followed by a switch of the outgoing �elds. For time-varying
�elds, there is a transient behavior on a timescale of max(1/κ1, 1/κ2). (c) Music-score
notation.

rates κ1 and κ2. We shall see that this arrangement can act as a beamsplitter of

arbitrary mixing angle.

One may wonder why one would ever use a cavity instead of a beamsplitter given

that: 1) a beamsplitter works for a range of optical frequencies, while our cavity

requires that the incoming �elds be resonant with the cavity and 2) a beamsplitter

works �instantaneously� while with cavities we must wait for a transient behavior to

disappear. On the other hand, it may be natural to work only a single frequency in an

optical setup, and beamsplitting materials might be hard to come by or manufacture.

Let's work out the SLH model for this device, then the Heisenberg equations of

motion for the output �elds, and then the steady-state transfer matrix from input to

output �elds. Denote by G the circuit obtained by driving the two-sided cavity with

coherent input �elds with amplitudes β1, β2:

G = Q2-port C (Wβ1 �Wβ2) (3.34)
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The SLH model is

S = 12×2 (3.35)

L =

( √
2κ1 a+ β

√
2κ2 a

† + β∗

)
(3.36)

H = i
√
κ1/2

(
aβ∗1 − a†β1

)
+ i
√
κ2/2

(
aβ∗2 − a†β2

)
(3.37)

where we have chosen ∆ = 0 (see (3.29)). With some work4 we can show the Heisen-

berg equation of motion for the cavity �eld annihilation operator a is given by:

˙〈a〉 = Tr [aρ̇] = Tr

[
a

(
−i[H, ρ] +

2∑
i=1

(
LiρL

†
i −

1

2

{
L†iLi, ρ

}))]
(3.38)

= −
(
(κ1 + κ2) 〈a〉+

(√
2κ1 β1 +

√
2κ2 β2

))
(3.39)

where we substituted the master equation (1.1) for ρ̇ and 〈〉 denotes expectation with

respect to the density matrix ρ.

In steady state, we set ˙〈a〉 = 0 to obtain the steady state cavity �eld:

〈a〉 = −
√

2κ1 β1 +
√

2κ2 β2

κ1 + κ2

(3.40)

The output from the i-th port is given by 〈L†iLi〉, where Li is given in (3.36). Be-

cause 1) the two input �elds are both coherent states |β1〉, |β2〉, 2) the Hamiltonian

consists only of terms proportional to the cavity mode annihilation operator a or its

adjoint, and 3) coherent states are eigenstates of the annihilation operator, the output

�elds must be coherent states as well, and therefore satisfy 〈L†iLi〉 = 〈L†i〉〈Li〉 5. We

4 This takes some work by hand; I used the QNET package developed by Nikolas Tezak and others
(Tezak et al., 2012) to do the computation.

5 〈a†a〉 = Tr
[
a†aρ

]
= Tr

[
a|α〉〈α|a†

]
= |α|2 Tr [ρ] = |α|2 = 〈a†〉〈a〉.
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compute these quantities using (3.36) and (3.40):

〈L1〉 =
β1 (κ2 − κ1)− 2β2

√
κ1κ2

κ1 + κ2

(3.41)

〈L2〉 =
β2 (κ1 − κ2)− 2β1

√
κ1κ2

κ1 + κ2

(3.42)

Using the above equations we �nd that in steady state:〈(
L1

L2

)〉
=

(
κ2−κ1
κ1+κ2

−2
√
κ1κ2

κ1+κ2

−2
√
κ1κ2

κ1+κ2

κ1−κ2
κ1+κ2

)(
β1

β2

)
(3.43)

=

(
−1−r

1+r
−2

√
r

1+r

−2
√
r

1+r
1−r
1+r

)(
β1

β2

)
(3.44)

where r = κ2/κ1. Now setting

θ ≡ arcsin

(
−1 + r

1 + r

)
⇔ r =

1 + sin θ

1− sin θ
for θ ∈ (−π/2, π/2) (3.45)

we can rewrite the relation in (3.44) as

〈L〉 =

(
0 1

1 0

)(
cos θ − sin θ

sin θ cos θ

)
~β (3.46)

This is the product of a re�ection and a rotation matrix. Thus the steady state

output amplitudes are obtained by rotating the inputs by θ(r = κ2/κ1) and then

swapping the two outputs with each other, thus justifying the picture in Figure 3.9

of a beampsplitter followed by a swap.

Note that while the scattering matrix of a beamsplitter is a rotation matrix,

the scattering matrix of this empty cavity device is trivial (identity) (3.35). On

the other hand, a beamsplitter has a trivial Hamiltonian, while the cavity device

does not (3.37). It turns out that the L vector (which determines the output �elds)

of a beamsplitter driven by coherent inputs matches the expected value of the L

vector of our cavity device. This equality only holds in the steady state condition
˙〈a〉 = 0; if the amplitudes of the coherent inputs to the cavity device switch suddenly,
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Figure 3.10: (solid line) The ratio r = κ2/κ1 vs mixing angle θ ∈ (−π/2, π/2), given
in (3.45). The dot shows the value of r = (3 + 2

√
2)−1 at which θ = −π/4 and the

device acts like a 50/50 beamsplitter followed by a switch of the two outputs. The
other (orthogonal) 50/50 beamsplitter corresponds to θ = π/4, r = (3 + 2

√
2) (not

shown).

there is a transient behavior violating the beamsplitter similarity on a timescale of

max(1/κ1, 1/κ2). We may thus want to engineer large values of κ1, κ2 to reduce the

time that the device �misbehaves.� Larger values of κ require, in the case of microring

resonators, closer placement of the cavity to a waveguide, which may be di�cult to

accomplish reliably.

Let's plot the dependence of the cavity �eld decay ratio r = κ2/κ1 and the mixing

angle θ ∈ (−π/2, π/2) in Figure 3.10. We see that any value of the mixing angle θ is

attainable by an appropriate choice of κ2/κ1. Two values are of special interest:

• A 50/50 beamsplitter corresponds to θ = −π/4⇒ 1/r = κ1/κ2 = 3 + 2
√

2. It's

fun to note that this is the same constant as the maximum sensitivity of the

beamsplitter with feedback �poor man's cavity� (c.f. Section 3.1.2) to an inner

phase. For a nanophotonic circuit, we could control κ2/κ1 by controlling the

distance from two waveguides to a microring resonator.
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Figure 3.11: Two nanophotonic waveguides (black) approach a microring resonator
(gray) and come apart having swapped states via the cavity. The empty cavity device
with κ1 = κ2 ⇒ θ = 0 corresponds to switching the two input �elds for coherent input
�elds in steady state.

• Setting κ1 = κ2 ⇒ θ = 0 corresponds to no rotation followed by a switch of

the two outputs. This can be useful to implement a waveguide crossing in a

nanophotonic circuit; instead of crossing two waveguides we would instead make

the two waveguides come near a microring resonator and then come apart again

as shown in Figure 3.11. It could be di�cult to engineer κ1 = κ2 within a

given tolerance, however. Again, higher κ is desirable due to a shorter transient

behavior duration.
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Introduction

In this part I consider encoding information in the realization of a random signal in

several photodection-inspired settings. Why? The search was initially motivated by

the desire to use optical circuits in ways beyond emulating the digital logic devices

pervasive today. Of course, even getting to the point of reliably emulating a single

logical gate in an optical device optically is hard, but on the other hand we could try

something else. Optical signals present a new resource, giving us an opportunity to

think about what kind of computing is natural in this setting.

Another motivation is to design noise-tolerant systems. In the early days of com-

puting, before reliable components could allow us to forget the noisy nature of com-

ponents at a higher level of abstraction, fault-tolerant computing was a hotter topic6.

These days noise is reappearing as power consumption is becoming an ever larger con-

straint on computing. Optical signals at low photon number are unavoidably noisy

for reasons of quantum mechanics. It would be nice to represent information in a

way that deals gracefully with the kind of noise we encounter in optical systems and

has noise-tolerance built in, allowing us to trade the energy, speed, and correctness

of computations7.

Finally, this part is here because some of the questions I present have neat

information-theoretic answers, and are fun on their own. Some of these results also

have applications for things other than photonic circuits; e.g. the distribution coding

schemes of Chapter 4, the scheme of Chapter 5 for the additive white Gaussian noise

6 In particular, a foundational set of lecture notes by von Neumann established a theoretical
framework for robust, noisy computation (von Neumann, 1956).

7 �Correctness� could stand for, say, the probability to successfully correct the output of a noise
channel, as for the LDPC decoder circuit of Chapter 2.
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(AWGN) channel in the low signal to noise regime, and the random linear constraints

coding scheme of Chapter 6 could be useful in storing memories in �ash cells e�ciently

with respect to energy. I discuss these connections as they arise.

I begin in Chapter 4 with a toy model that captures the counting noise involved

in photon detection and not much else. I present this as a problem in channel coding8

and look for schemes that come close to capacity. Even this setup turns out to be too

hard for me, so I consider a quantized version of this model that is more tractable (the

quantization amounts to ranking the optical �elds by their intensities - permutation

quantization). I provide some results of a large deviations �avor for this toy model

and suggest some natural, physically realizable extensions.

In Chapter 5 I consider energy-e�cient communication. The idea is that some

commonly used channel models have a parameter that acts like a power constraint

(like a mean power constraint for the AWGN or peak rate constraint for the Pois-

son channel). How can we use a given power budget most e�ciently over multiple

transmissions? Suppose we give ourselves the freedom to either �split� the power

available to a single channel into multiple noisier channels, or to do the reverse thing,

�aggregate� identical noisy channels into a single less noisy channel. In some settings

this is a natural operation (e.g., splitting optical power into di�erent waveguides or

frequency bands, or increasing the number of �ash memory cells while holding the

total charge �xed); is it worth doing? In terms of channel capacity the answer can be

positive. We �nd that it is reasonable to say a channel is �power-e�cient� at power

P ∗ when its capacity scales linearly for values of the power near P ∗, motivating the

search for these e�cient points and splitting and aggregation as a way of getting to

them. We further investigate this question in the �nite block length regime. Finally,

Chapter 5 presents a capacity-achieving distribution for the AWGN at low power that

might seem counterintuitive - the distribution is a �spike train,� where the sender ei-

ther sends 0 power most of the time or a lot of power rarely. These observations

lead to a proposal of a communication scheme where the sender communicates by

encoding a message in the location of the spikes.

8 Storing information in a computer memory can be cast as a channel coding problem: the sender
writes to memory and the receiver later reads out a possibly corrupted version, possibly with mea-
surement noise.
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Finally, in Chapter 6 I consider information representation schemes inspired by

random constructions in graphical models and error correcting codes. The idea is

to use objects with many degrees of freedom, encode message in binary string of

properties of those objects, and then measure those binary properties at the output.

Hopefully, an ill-understood channel for these objects turns into a binary symmetric

channel on the strings of properties.



Chapter 4

Distribution coding

I consider a toy model that attempts to generalize a common setup in stochastic

computing and to capture the counting statistics arising in setups involving photon

detection. Let's start with the physical representation of a bit in a computer � a

voltage level that takes on one of two values. For the sake of symmetry, niceness of the

equations, and energy conservation, let's suppose instead that each bit is represented

by two �wires� or �bins� 1 exactly one of which is high at a given time and the other

is low.

What are natural perturbations to this picture? One can imagine that the bits are

noisy: perhaps the voltage �uctuates in time so that a �1� sometimes looks more like

a �0.� Alternately, perhaps the one attempts to encode more information in the bit

by using more voltage levels than {high,low}. One could also have more wires than

two. We are also interested in power-limited information representation. Perhaps the

mean energy per wire must decrease as the number of wires grows to conserve total

energy. Let's summarize the picture so far:

• We have a collection of wires that each carries some amount of stu� (like elec-

trons or photons).

• The total amount of stu� is constrained somehow (per unit of time, say).

1 I'm going to call them �wires� or �bins� (to emphasize the counting statistics to come) from now
on; this could refer to optical beam paths, frequency bands, or cells in a �ash memory, depending
on the setting.

77
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• We measure the amount of stu� in each wire in a noisy way.

4.1 The multinomial channel

Let's choose a concrete model with the above features that has something to do with

photon detection. When a photodetector is exposed to light, we do not get a direct

measurement of the light's power; instead we get a stream of �clicks� - photodetection

events - at a rate proportional to the power. The longer one waits for the clicks to

accumulate, the better an estimate one has of the power.

Let's suppose that we have some total amount of power split between k wires. We

think of the particular way in which the power is split (a probability mass function)

as the channel input. We wait a while and tally the clicks received in each wire, so

the channel output is a histogram that counts the clicks per wire.

How long do we wait before terminating observation of the wires? We could wait

until we have collected a �xed number n of clicks - this is the setting we choose

below. If we model the stream of clicks in each wire as a Poisson process with a

rate proportional to the power, then the time until we have collected exactly n clicks

is a random variable. We could instead wait a �xed amount of time, in which case

the total number of clicks would not be constant, and the number of clicks per wire

would have a Poisson distribution2. We could also do something sequential or have

some more complicated termination criterion. We work in the ��xed counts� setting

for its tractability. In the ��xed counts� setting, we can also pretend that time is

discrete and exactly one click arrives from exactly one wire per unit of time. The

the large deviations results of Section 4.3 are relevant when the number of counts

is large, in which case the expected time to collect them should concentrate about

its expectation. We expect ��xed time� to not be too di�erent from ��xed counts,�

though we have not done a careful analysis in ��xed time.�

2 The joint distribution for the number of clicks in each wire would factor into a product of Poisson
pmf's for each wire; this is nice, but our results in Section 4.3 need the di�erent kind of nice a�orded
by a �xed sample size.
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Note that when we wait until we collect exactly n clicks, there is no need to

set a total power parameter in the problem. Increasing the total power means we

wait a shorter time on average to collect n photodetection events. We can thus �x n

without specifying a relationship between the power in the signal and the distribution

of photodetection event times, so the parameter n stands in for the total power.

Let's formalize this and set up some notation. Denote the channel input and

output by X, Y , respectively. Let ∆k−1 denote the standard (k − 1)-simplex of

k-component probability mass functions:

∆k−1 =

{
(p1, . . . , pk) : pi ≥ 0 ∀i,

k∑
i=1

pi = 1

}
(4.1)

The channel input is a distribution of the available power over the k wires, corre-

sponding to a point on the k − 1-simplex:

x = (p1, . . . , pk) ∈ ∆k−1 (4.2)

The channel outputs are samples of size n from the input distribution. Since we

assume the clicks are sampled independently, identically from the same distribution,

we can summarize the output by counting the number of clicks in each wire to produce

a histogram. It is convenient to rescale this histogram by dividing the click counts by

n, the total number of clicks. Let ∆k−1
n denote the set of pmf's with k components

such that every component's denominator divides n - this is the set of types as de�ned

in (Cover and Thomas, 2006)3.

∆k−1
n = ∆k−1 ∩

{(n1

n
, . . . ,

nk
n

)
: ni ∈ {0, 1, . . . , n}∀i

}
(4.3)

Then the channel output corresponds to a point on the set of types:

y = (p̂1, . . . , p̂k) ∈ ∆k−1
n (4.4)

3 Each element T in the set of types ∆k−1
n corresponds to the set of all n independent draws from

a k-component pmf that have the same histogram T ; for example, the sequence 11122 and 12121
both have the type T = (3/5, 2/5) ∈ ∆1

5.
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where p̂i = (# clicks in i-th wire)/n. The reader can check that the total number of

possible outputs (types) is

|∆k−1
n | =

(
n+ k − 1

k − 1

)
≤ min(nk, kn) (4.5)

with limiting expressions

|∆k−1
n | →

{
nk−1/(k − 1)! : n→∞
kn/n! : k →∞

(4.6)

The number of outputs (types) is polynomial in both n and k, holding k or n

�xed, respectively.

A note on notation: For the reader unhappy with our choice of notation, see

this footnote4.

The output histogram is a sample of size n from the input distribution. That is,

the probability of a particular output y given an input x is then given by:

P (y|x) = MultinomialPMF(np̂1, . . . , np̂k; p1, . . . , pk) (4.7)

=

(
n

np̂1, . . . , np̂k

)
k∏
i=1

pnp̂ii (4.8)

where the prefactor is a multinomial coe�cient.

Figure 4.1 shows an example use of this channel for k = 3 wires and n = 15

samples. Figure 4.2 reminds readers of the geometry of a simplex as the set of

probability mass functions. Figure 4.3 plots the input and output pmf's on the 2-

simplex. The sample size n is varied by subplot and multiple output samples are

drawn from the same input. See the caption for details.

4We have used the usual notation of X and Y to refer to the channel inputs and outputs,
respectively. Also as is typical, a lowercase x or y refers to a value of the input or output, while
the upper case refers to the random variable. Perhaps confusingly, we are using x = (p1, . . . , pk),
y = (p̂1, . . . , p̂k). This choice emphasizes that the input and output are both probability mass
functions, and that the output is a sample from the input and can be used as an estimator for the
components of the input distribution (hence p̂).
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Output 

𝑝 1 

𝑝 2 

𝑝 3 

9/15 
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𝑝2 

𝑝3 

Input 

1/2 

1/6 

1/3 

Figure 4.1: Sample use of the multinomial channel for k = 3 wires, n = 15 samples,
input power distribution (red text) x = (1

2
, 1

6
, 1

3
). The output histogram (black text)

happens to be y = ( 9
15
, 2

15
, 4

15
). The vertical black ticks along the wires stand for

photodetection events (�clicks�).

𝑝1 

𝑝2 

𝑝3 
1 

1 

1 

1 

2 

3 

Figure 4.2: (left) The 2-simplex ∆2 = {(p1, p2, p3) :
∑

i pi = 1, pi ≥ 0 ∀i}). A point
p ∈ ∆2 is shown in gray. (right) The 2-simplex viewed from the (1, 1, 1)T direction.
The corresponding pmf p from the left subplot is plotted in gray. This is the projection
we use throughout this thesis.
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n = 250
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Figure 4.3: Multiple uses of the multinomial channel plotted on the 2-simplex (see
Figure 4.2). In each subplot the input distribution is x = (1

2
, 1

6
, 1

3
). The sample size n

varies from subplot to subplot (see text in �gure). We drew n samples 20 times from
the input pmf in each subplot and plotted a black dot for each output pmf. Larger
black dots indicate more occurrences of the same output pmf. The red contours
are iso-Kullback-Leibler divergence contours: each point z along the contour satis�es
D(z||x) = 2/n (see Sections 4.3.2 and 4.3.5 for a discussion of why we consider these
contours).
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We have thus speci�ed the �multinomial channel� and can ask two canonical ques-

tions:

• What is the capacity of this channel?

• Are there practical schemes that come close to achieving capacity, or at least

do reasonably well?

The answers to these questions are roughly unknown. �Roughly� means that

much work has been done in related settings, in the asymptotic n → ∞ regime

in the statistics literature in the work on reference priors by Bernardo and others

(Bernardo, 1979; Berger et al., 2009), and in the information theory literature in

the work on the minimal description length by Rissanen and others (Rissanen, 1978;

Hansen and Yu, 2001). This thesis does not add to this work, but we can make some

observations: We can obtain a crude upper bound on the capacity by observing that

there are at most (n + 1)k possible channel outputs (types), so that the capacity is

at most k log(n + 1) ∼ k log n. Waving our hands in the air, we can say something

about sample standard deviations scaling like
√
n to obtain a sharper upper bound

of (k/2) log n; we do not provide more than this heuristic in this work.

4.2 Permutation quantization and the single shot

setting

The multinomial channel turns out to be too hard for me to work with, but let's

consider instead a related setting for which I propose a practical scheme and prove

some large deviations-�avored optimality results.

A common way of dealing with noise is through quantization: incoming values are

binned to the nearest quantized value (say, by keeping only the �rst few signi�cant

digits) possibly at the cost of reduced information about the inputs. Voltages in

electronics are typically quantized into �0� and �1.� What is a natural extension of

quantization to multiple wires? A poor idea is to let only one wire of k be �high�

and all the others low; this is poor because then the maximum number of outputs
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grows only as log k, and we can do much better. A better �idea� is to use the k wires

independently for a total of 2k possible outputs (note that if power is measured by

the fraction of �1�s, then power is not conserved in this case).

A better idea in terms of output alphabet size is to rank the wires in order of

increasing power carried for a total of k!� 2k outputs. This ranking is ill-de�ned if

each wire carries one of only two values for the power, but we will give ourselves the

freedom to load an arbitrary fraction of the total power in each wire; For example,

if we wait until we receive n = 10 clicks, then the outputs ( 3
10
, 5

10
, 2

10
) and ( 4

10
, 6

10
, 0)

both correspond to the ranking (2, 3, 1). Even so, the number of arriving clicks may

happen to match for two wires, in which case we will have to �ip a coin or resolve

the ambiguity somehow else. Power conservation is potentially enforceable for this

scheme, since we could make sure all possible inputs are obtained by permuting some

distribution of the power in each wire.

Of course, an even better idea in terms of a larger output alphabet is to use an

arbitrary quantization scheme, possibly let the quantization depend on the sample

size n, or use no quantization at all. Any of the types in ∆k−1
n is a possible channel

output, and since the number of types is polynomially large in the sample size n for

a �xed number of wires k (see (4.6)), for n growing fast enough with k (at least fast

enough to resolve all k! permutations) this can be many more outputs than the k!

permutations (which does not even depend on n). At this point we are back to the

original, unquantized multinomial channel.

We could ask for the optimal quantization with respect to some criterion balancing

performance in terms of error protection and complexity of the scheme5, but we

proceed with the permutation setting because it seems like an intuitive thing to try

and because there is a nice answer. The resulting scheme might also be reasonably

practical6 and its analysis provides a fun example of large deviations and hypothesis

testing.

Finally, we will be interested in the single shot setting rather than the channel

coding setting. �Single shot� means that we will seek a scheme that performs well

5 Thanks to Surya Ganguli for suggesting this question.
6 e.g., there exist proposals for permutation-valued �ash memory cells. See references in Section

4.5.1.
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over one use of the channel, rather than allowing the sender and receiver to exploit

dependence between successive uses of the channel (as in channel coding, where some

received bits can protect other bits from noise by redundancy). This is a restriction

over all possible communication schemes, but a scheme that works well in the single

shot setting is appealing for its possible practicality: decoder and encoder complexity

can be lower, since successive channel uses need not be stored. Perhaps coding across

multiple shots is di�cult for an optical or electronic implementation if, say, we are

using a computer whose �bits� are permutations thus represented. Second, this is the

setting in which I made some progress, so I present it.

The next Section formally states the problem and our results.

4.3 A permutation-resistant distribution

Let's consider the setting where instead of reliably communicating the entire pmf, we

attempt to reliably communicate only the permutation corresponding to that pmf.

We shall work below in the single channel use setting (�single shot�).

4.3.1 Notation, de�nitions

Given a k-component pmf p = (p1, . . . , pk) ∈ ∆k−1 and a permutation on k elements

σ ∈ Sk, where Sk is the symmetric group on k elements, we say that σ corresponds

to p if pi ≤ pj ⇒ σ(i) < σ(j) ∀i, j, where σ(i) ∈ {1, . . . , k} denotes the rank of

element i in permutation σ. If p is totally ordered (that is, pi 6= pj ∀i 6= j), then a

unique permutation corresponds to p and we call this permutation σp. Note that in

our notation more probable elements have higher rank.

We call Rσ ⊂ ∆k−1 the sector corresponding to permutation σ:

Rσ = {pmf p ∈ ∆k−1 : p is totally ordered and σp = σ} (4.9)

The sectors are open sets in the subspace topology on ∆k−1 ⊂ Rk. The closure of

Rσ in the standard topology is R̄σ = {pmf p : σ corresponds to p} ⊂ ∆k−1. The k!
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𝑝(231) 

1 

2 

3 

𝑅(312) 

Figure 4.4: The 2-simplex ∆2, showing the 3! sectors corresponding to each element of
the symmetric group on 3 elements S3 (see text). The sector R(312) is shaded. Every
pmf in this sector corresponds to the permutation (312). We attempt to �nd 3! pmfs
(black dots; p(231) is labeled), one per sector, to minimize error in communicating the
permutations corresponding to these points (see text).

sectors are disjoint and almost partition ∆k−1 (the only missing points are the pmfs

that are not totally ordered, which form a set of measure 0).

Figure 4.4 shows the 3! sectors of ∆2.

4.3.2 PMF channel

The channel is the multinomial channel from Section 4.1: inputs are distributions

(pmfs) on k elements, outputs are �nite samples (histograms) from those distributions.

Recall that n denotes the number of samples, p ∈ ∆k−1 the true (input) pmf from

which the samples are drawn, and p̂ ∈ ∆k−1
n the type (output; histogram) of the n

samples (that is, p̂i = (# samples in i-th wire)/n). The channel transition probability

matrix is given by the multinomial distribution pmf with parameter vector p, which
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we approximate to leading exponential order in preparation for the large-deviations

discussion below7 :

P (p̂|p) =

(
n

np̂1, . . . , np̂k

)
k∏
i=1

pnp̂ii (4.10)

.
= e−nD(p̂||p) (4.11)

where
.
= denotes8 equality to leading exponential order in n and D(p̂||p) denotes9 the

K-L divergence between pmfs p̂ and p.

Let σ = σp, σ̂ = σp̂ denote the permutations corresponding to the channel input

and output, respectively. We assume that p and p̂ are both uniquely ordered; since

p̂ is a histogram of a �nite sample, this condition can be violated, in which case our

communication scheme declares an error (see Section 4.3.4 for a discussion of this

case).

4.3.3 Input restrictions

Our goal is to communicate permutations by sending distributions that correspond

to them into the channel. We make several simplifying restrictions. The latter two

of these amount to guesses about the form of �the answer� (to the question posed in

Section 4.3.5):

• As stated earlier, the channel is single-use: we must guess the permutation on

the basis of a single received histogram, so that σ̂ = f(p̂) for some function f .

• There is only one possible channel input pmf per permutation σ ∈ Sn. Call this
input pσ.

7Note that in this Section we forgo the usual notation of x and y denoting the channel input and
output, respectively, in favor of p and p̂ to emphasize the input as a pmf and the output as a sample
from the input. We will �remember� that the pmf's are used in a communication scheme later.

8 am
.
=m bm ⇔ limm→∞

1
m log(am/bm) = 0 denotes equality to leading exponential order.

9D(q||p) =
∑
i qi log(qi/pi), setting 0 log 0 = 0 log(0/0) = 0.
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Take 𝑛 
samples 

Encoder 
Quantize by 
permutation 

𝜎 
∈ 𝑆𝑘 

𝑝 
∈ ∆𝑘−1 

𝑝  
∈ ∆𝑛

𝑘−1 

𝜎 = 𝜎𝑝  
∈ 𝑆𝑘 

Figure 4.5: A channel between permutations, where an encoder maps permutations
to pmfs, samples are drawn from the pmfs, and the output permutation is obtained
by quantizing (sorting) the sample histogram.

• The input pmfs pσ are all permutations of each other (abusing notation):

σ = σ′′ ◦ σ′ ⇒ pσ = pσ′′◦σ′ = σ′′(pσ′)

The third restriction implies that the maximum likelihood decoder sets σ̂ = σp̂. We

may want to assume a uniform prior on the permutations, in which case the maximum

a posteriori (MAP) decision rule for guessing the permutation is σ̂ = σp̂. We will

be interested in the large deviation properties of our communication scheme, where

assumptions about the prior on permutations will not impact our �nal results.

4.3.4 Induced permutation channel

The above restrictions thus induce a channel where both inputs and outputs are per-

mutations, as shown in Figure 4.5. The channel consists of an encoder p(σ) that

maps permutations to pmfs to which they correspond: p(σ) satis�es σp(σ) = σ. The

encoder is followed by drawing a sample of size n from the pmf, followed by quantiza-

tion of the sample histogram (i.e., sorting) to produce the output permutation (ties

in the sample histogram are resolved arbitrarily). Figure 4.6 plots the sampling and

quantization step on a 2-simplex. The sample size n is varied by subplot and multiple

output samples are drawn from the same input. See the caption for details.

The channel transition matrix for this channel is (treating σ and σ′ as the input

and output permutations, respectively):

P (σ′|σ) =
∑

p̂∈Rσ′∩∆k−1
n

P (p̂|p(σ)) (4.12)
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Figure 4.6: Multiple uses of the permutation channel plotted on the 2-simplex (see
Figure 4.2). In each subplot the input permutation is σ = (231), which the encoder
chooses to map to the pmf p = (1

2
, 1

6
, 1

3
). The sample size n varies from subplot to

subplot (see text in �gure). We drew n samples 200 times from the input pmf in each
subplot and plotted a dot for each sampled pmf (histogram). Larger dots indicate
more occurrences of the same sampled pmf. Magenta dots indicate mismatching input
and output permutations (or if there is an ambiguity for cases when the sampled pmf
is on the boundary of two sectors). Black dots indicate matching input and output
permutations. The red contours are iso-Kullback-Leibler divergence contours as in
Figure 4.3.
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where P (p̂|p(σ)) is the multinomial pmf (4.11), Rσ′ is the sector corresponding to

permutation σ′ (see Section 4.3.1), and ∆k−1
n is the set of types with k components

with denominator n (see Section 4.1). This is an incomplete characterization of the

channel matrix pending a resolution of the case that a sampled pmf is on the boundary

of two sectors10. We can treat this case as a separate �boundary error� output11, call

it E, in which case

P (E|σ) = 1−
∑
σ′∈Sk

P (σ′|σ) (4.13)

We shall be interested in the large sample size n limit, in which case the probability

of �boundary error� turns out to be (see next Sections) the dominant source of error.

(4.12) and (4.13) are complicated expressions to use in computations, but we shall

only work out the large sample size n limits and large deviations results below, which

don't require us to compute them exactly.

Once we identify an encoder function from permutations to pmfs, we can treat

this permutation channel as a symmetric discrete memoryless channel (DMC) and

obtain its capacity12. The meat of this work is in identifying the �best� encoder

function in terms of minimizing the associated DMC crossover probabilities (4.12) for

the single-shot communication scheme setting.

4.3.5 A permutation-resistant distribution

The restrictions above lead us to state an optimization problem: �nd p∗ ∈ ∆n−1 that

minimizes the probability of error (guessing an incorrect permutation)

10 This happens when two or more components of the sampled pmf (histogram) p̂ have the same
value, so that multiple permutations correspond to p̂; e.g. both permutations (1, 2, 3) and (2, 1, 3)
correspond to p̂ = ( 1

10 ,
1
10 ,

8
10 ).

11We could be less conservative and �ip a coin to resolve the ambiguity, but this won't make our
communication scheme much more reliable.
12 The capacity achieving distribution is uniform on the k! input permutations by symmery. The

capacity is then C = (1−P (E))(log k!−H(P (·|1))), where P (E) is the �boundary error� case treated
as an erasure and P (·|1) is a row of the channel transition matrix (here the row corresponding to 1,
the identity permutation).
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Pe ≡ P (input and output permutations don't match) (4.14)

= P (σ̂ 6= σp∗) (4.15)

where we are using the maximum likelihood rule σ̂ = σp̂.

Since the input pmf's are restricted to be permutations of each other, let's assume

without loss of generality that p∗ is sorted:

i < j ⇒ p∗i < p∗j (4.16)

We can compute the error probability exactly, assuming a uniform prior on input

permutations and choosing an arbitrary σ ∈ Sk−1:

Pe =
∑
σ′ 6=σ

P (σ′|σ) + P (E|σ) (4.17)

where the terms can be evaluated using (4.12) and (4.13). This is something compli-

cated, and this is the point where results from large deviations theory come to our

aid.

In the large sample size n limit, the probability of error is dominated by the case

when two adjacent bins in the received histogram p̂ are out of order or equal (recall

that we assumed that p∗ is sorted. The probability of multiple errors is exponentially

smaller than a single one). Call such events Ei for i ∈ {1, . . . , n− 1}:

Ei = {p̂ ∈ ∆k−1 : p̂i ≥ p̂i+1} (4.18)

Note that we let p̂ take on values in the simplex ∆k−1, rather than the set of types

∆k−1
n , since we will apply the Conditional Limit Theorem where the limit is n→∞.

Now applying Sanov's theorem (Sanov, 1958) in the notation of (Cover and

Thomas, 2006) we can compute their probabilities to �rst order in the exponent:

P (Ei)
.
= e−nD(pEi ||p∗) (4.19)
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where pEi denotes the I-projection onto the events Ei:

pEi ≡ arg min
p̂∈Ei

D(p̂||p∗) (4.20)

pEi is the conditional limit distribution of i for the conditional limit theorem (see

(Cover and Thomas, 2006)):

P (i|p̂ ∈ Ei)→ pEii as n→∞ (4.21)

so if we happen to observe an error of type Ei, the sampled pmf p̂ is close to pEi .

The intuition for this is that P (Ei) is obtained by summing over all types in Ei

weighted by their probabilities. There are only polynomially many types (4.6) and

the probability of each is exponentially small in n (4.11), so the single largest term

dominates the sum, and the sum is equal to it to leading exponential order.

The error probability and error exponent are

Pe
.
= max

i
P (Ei)

.
= max

i
e−nD(pEi ||p∗) (4.22)

− 1

n
logPe → min

i
D(pEi ||p∗) (4.23)

In our setup, we can guess the pEi : our channel communication setup is equiva-

lent to a hypothesis-testing setup, where we are deciding between hypothesis p∗ and

the hypothesis formed by swapping adjacent entries of p∗, denoted for notational

convenience as σi(p∗) for 1 ≤ i ≤ k − 1:

σi(p∗j) = p∗σi(j) (4.24)

where σi is the permutation that swaps elements i and i + 1 and �xes all other

elements:

σi(j) =


i+ 1 : j = i

i : j = i+ 1

j : otherwise

(4.25)
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Now the conditional limit distribution is given by (see, e.g., (Cover and Thomas,

2006) section on hypothesis testing, (11.7), equation (11.200)):

pEi ∼ (σi(p∗))λ � (p∗)1−λ (4.26)

for some λ, where the exponentiation is done point-wise, � denotes the Schur (point-

wise) product of two vectors, and ∼ denotes equality of vectors up to normalization.

To minimize the error exponent over the choice of k! input distributions, we set

λ = 1/2, so that

pEi =
1

Zi

√
σi(p∗)� p∗ (4.27)

where Zi is a normalization constant.

We can now state our optimization problem for p∗:

p∗ = arg max
p∈R1

min
i∈{1,...,k−1}

D(pEi ||p∗) (4.28)

where R1 denotes the sector corresponding to the identity permutation � this imposes

the constraint that p∗ must be sorted. Figure 4.7 shows this setup on the 2-simplex.

4.3.6 Solving for p∗: some observations

For a sector Rσ of ∆n−1 (de�ned in (4.9)), we denote the exterior face of Rσ by

EF(Rσ) = R̄σ ∩ {p : p(σ(1)) = 0} (4.29)

where R̄σ is the topological closure of Rσ (see Section 4.3.1). Since σ(1) corresponds

to the element with lowest rank, EF(Rσ) is the set of all pmfs to which σ corresponds

and whose smallest entry is 0. EF(Rσ) is homeomorphic to ∆k−2. Abusing our

notation, EF(EF(Rσ)) is the set of all pmfs to which σ corresponds and whose two

smallest entries are 0. EF(k−1)(Rσ) is homeomorphic to a point � in ∆k−1, this point

is pi = δi,σ(k). EF
(k)(Rσ) = ∅.



CHAPTER 4. DISTRIBUTION CODING 94

p*

σ1(p*)

σ2(p*)

pE
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1
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2

1

(123)

(132)

(213)

(321)

(312)

(231)

Figure 4.7: The setup for our optimization problem on the 2-simplex. Sectors are
labeled by the permutation they correspond to. We seek p∗ that maximizes the KL
divergence D(pEi ||p∗) to the nearest sector (in this case R(213) or R(132)) neighboring

the sorted sector R(123) = R1 (gray �ll). (gray lines) geodesics: ∼ (σi(p∗))
λ� (p∗)1−λ,

with λ ∈ [0, 1]. (open circles) the conditional limit distributions pEi corresponding to
a swap of entries i and i + 1 in the permutation that corresponds to the histogram
channel output, obtained by setting λ = 1/2 along the geodesics. Note that we
relabeled vertices 1 and 3 relative to Figure 4.4.
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• We expect p∗1 = 0, so that p∗ ∈ EF(R1). Recall that we require p∗ to be sorted,

so that σ(i) = i, so σ(1) has lowest rank and p∗1 is the smallest component of p∗.

We can always reduce the probability of error by taking any probability mass

in the smallest (�rst) bin and putting it in, say, the biggest (last) bin.

• We expect p∗ /∈ EF(EF(S1)). Otherwise, p∗i = 0 for some i > 1. This violates

our requirement that p∗ is uniquely ordered.

• We expect p∗ to satisfy:

Di ≡ D(pEi ||p∗) = c ∀i (4.30)

for some constant c. Otherwise, suppose that Di = D(pEi ||p∗) is the min of

{Dm}m∈{1,...,k}, Dj is the next-min, and Dj > Di. Since the divergences are

continuous functions of p∗, we can always decrease the probability of error by

increasing Di (and do this without decreasing Dj below the value of Di) by set-

ting p∗∗i+1 = p∗i+1 + ε, p∗∗j+1 = p∗j+1− ε for some small enough |ε|, contradicting the
optimality of p∗. This argument would fail if p∗i+1 = 0 for some i ∈ {1, . . . , k−1},
but from the above remark p∗ /∈ EF(EF(S1)).

It might be natural to have a positive �oor on the min value of p∗. We shall

see that our solution for p∗ below extends to this case, and we will use this case to

deal with a version of our permutation coding setup that has an extra noise input in

Section 4.4.

4.3.7 Solving for p∗: intuitive argument

The number of counts in the i-th bin of the received histogram for n samples drawn

from p∗ is binomially-distributed:

np̂i ∼ Bino (n, p∗i ) (4.31)

By the above observations, we want to have Di = Di+1∀i ≤ k − 1, so we want p∗

to satisfy approximately:
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E[np̂i] +
√
Var[np̂i] = E[np̂i+1]−

√
Var[np̂i+1] ∀i ≤ k − 1 (4.32)

so that the fraction of probability mass overlapping between adjacent bins is approx-

imately equal for all bins.

For the binomial distribution, E[np̂i] = np∗i and Var[np̂i] = np∗i (1 − p∗i ) ≈
np∗i for p

∗
i � 1 (we expect most values of p∗i to be in this regime for large k since oth-

erwise the probabilities couldn't add up to 1). Substituting these values into (4.32)

we obtain the recurrence relation:

p∗i +

√
p∗i
n

= p∗i+1 −
√
p∗i+1

n
(4.33)

Solving the recurrence relation (4.33) for p∗i we �nd:

p∗i ∼ (i+ κ)2 (4.34)

where κ is a free parameter determined by p∗1. By the �rst observation in Section

4.3.6, p∗1 = 0, so we guess that κ = −1 and

p∗i =
1

Z
(i− 1)2 for i ∈ {1, . . . , k} (4.35)

where Z =
∑k

i=1(i− 1)2. It turns out that this guess is exactly right.

4.3.8 Solving for p∗: exact solution

Problem statement

Let's solve the optimization problem (4.28) for p∗. Recall that we have de�ned

pEi =
1

Zi

√
σi(p∗)� p∗ with Zi =

k∑
i=1

√
σi(p∗i ) p

∗
i (4.36)

and

Di = D(pEi ||p∗) (4.37)
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where σi(p∗) is obtained by swapping p∗i and p
∗
i+1. We are seeking p∗ that satis�es

Di = Dj = c ∀i, j (4.38)

and is uniquely ordered:

p∗i < p∗i+1 ∀i (4.39)

and maximizes c = Di ∀i.

Computation

See Appendix 4.A.

Results

Let's summarize what we have found. The solution to the optimization problem (4.28)

for any number of wires k � the permutation-resistant pmf � is (up to permutation

of the entries):

p∗i =
1

Zκ
(i+ κ)2 (4.40)

for i ∈ {1, . . . , k}, where κ ≥ −1 is �xed by our choice for p∗1 ∈ [0, 1/k) and Zκ is a

normalization constant computed in (4.91). The optimal choice of κ in terms of error

probability is κ = −1, in which case

p∗i =
1

Z
(i− 1)2 (4.41)

for i ∈ {1, . . . , k}, where Z = Zκ=−1 computed in (4.93).

Thus power (pmf mass) scales as the square of the rank of the pmf's component.

Note that for the k = 2 case, the solution says that we should put all of the power in

one wire and none in the other; this makes sense. For the k = 3 case, the solution is

p∗ = (0, 1
5
, 4

5
). As κ→∞, p∗ approaches the uniform distribution and the probability

of error approaches 1 (see below).
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Figure 4.8 (top) shows the solution p∗ for several values of κ (corresponding to

several value of pmin). We see that both neighboring sectors do indeed look to be the

same distance in KL divergence away from p∗.

To leading exponential order in the sample size n the probability of error is

Pe
.
= e−nDi = e−nc (4.42)

where Di is the error exponent (rate function for incorrectly inferring a permutation

that swaps ranks i and i + 1 of the channel input permutation), independent of i,

computed in (4.98). The probability of error is then obtained by substituting (4.98)

into (4.42):

Pe
.
= e−nDi = e−nc (4.43)

=

(
1− 1

Zκ

)n
(4.44)

=

(
1− 6

2k3 + 3(2κ+ 1)k2 + (6κ2 + 6κ+ 1)k

)n
(4.45)

→ e−3 n
k3 as k →∞, n→∞, n/k3 →∞ (4.46)

Thus to maintain a constant probability of error to leading exponential order as

the number of bins/wires k grows, the sample size n must grow as the cube of k.

Figure 4.8 (bottom) shows the error exponent using both the exact and approximate

expressions (4.98), (4.99), respectively.

Since there are multiple possible errors (k−1 errors, corresponding to two adjacent

ranks �ipping in the received distribution), we should multiply Pe above by k−1, and

the sample size necessary to maintain a constant probability of error should become

(k/3) log(k − 1), but this polynomial prefactor for Pe does not change the result to

leading exponential order.
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Figure 4.8: (top) The solution to our permutation-resistance optimization problem
on the 2-simplex. The 2-simplex is divided into sectors corresponding to the 3! per-
mutations. The sector R(123) is shaded. The solid dots correspond to p∗ for varying
values of κ (see legend). Iso-Kullback-Leibler divergence contours are plotted in same
colors. The blue curve is the set of pmf's p∗ for κ ∈ [−1,∞). (bottom) The error
exponent (rate function for incorrectly guessing the input permutation) using both
the exact and approximate expressions (4.98), (4.99), respectively.
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Noise 

Figure 4.9: Sample use of the extra noisy multinomial channel with k = 3 wires and a
uniform pnoise extra noise pmf. The �dark counts� are colored in blue, but the observer
can't distinguish them from the other counts.

The conditional limit distribution (sampled pmf p̂) conditioned on error Ei occur-

ring is obtained by taking the geometric mean of entries p∗i and p
∗
i+1:

pEij =
1

Zi

{
(i+ κ)(i+ κ+ 1) : j ∈ {i, i+ 1}

(i+ κ)2 : otherwise
(4.47)

where it turns out that Zi = e1/Di (computed in (4.88)).

4.4 Permutation coding: the (extra) noisy case

Next we consider a generalization of the setup in the previous Section to include a

natural-looking source of noise. Suppose that the output p̂ ∈ ∆k−1
n of the multinomial

channel (Section 4.1) is no longer formed by taking n samples from the true input

pmf p ∈ ∆k−1, but is instead sampled from a noise-corrupted version of p, where the

noise adds some probability mass to each wire regardless of the input power to that

wire. We think of some of the incoming �clicks� as drawn from the true input pmf

p, and others drawn from �noise,� and the observer is unable to distinguish between

these two kinds of clicks. This happens in photodetection setups, where the extra

clicks are called �dark counts.� Figure 4.9 shows this setup for k = 3 wires.
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We model this noise by additively mixing the true input pmf p with a noise pmf

pnoise:

pα ≡ αpnoise + ᾱp (4.48)

where α ∈ [0, 1], ᾱ ≡ 1 − α, so larger α means more noise. I work out results below

for the uniform noise case and discuss later how to possibly extend the results to

non-uniform noise. In the uniform noise case:

pα = α
1

k
+ ᾱp (4.49)

There are now two sources of noise in this communication setup (hence the �extra-

�noisy): 1) the �counting� noise due to drawing a �nite sample from p to form p̂; this

is the noise we tried to deal with by quantizing p̂ in the previous Section. 2) the extra

�dark count� noise that we have just introduced. If we wanted to, we could write down

a channel transition matrix as in Section 4.1 for this extra noisy channel in terms of

the noise strength α, ask for this channel's capacity, and ask for practical schemes

that come close to achieving it. We didn't have much to say on these questions

previously for the non-extra-noisy case, and we don't have much to add now. We do,

however, extend the permutation quantization scheme of the previous Section to the

extra noisy setting.

The extra noisy setting is shown on the 2-simplex ∆2 in Figure 4.10. The extra

noise pulls every pmf towards the middle (uniform distribution). In particular, the

image of the boundary of the simplex under the noise map (4.49) is a smaller, concen-

tric triangle (blue dashed triangle). Stronger noise maps pmfs closer to the uniform

distribution. The image of the boundary of the simplex (blue dashed triangle) under

(4.49) shows the feasible set of noise-corrupted input pmfs - points outside this set

do not have a preimage (input pmf) under (4.49) that is a valid pmf (some entries

are negative).

This picture suggests a way of adapting our permutation quantization scheme to

the noise. The set of solutions p∗ (4.40) from the previous Section is plotted for
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input pmf
noise−corrupted pmf

Figure 4.10: The extra noisy setting shown on the 2-simplex (k = 3 wires) for noise
magnitude α = 0.25 (4.49). The 2-simplex is divided into sectors corresponding to
the 3! permutations. The sector R(123) is shaded. The dashed blue line is the image of
the boundary of the 2-simplex under the noise map (4.49). The red curve is the set K
(4.50): pmfs p∗ equidistant from neighboring sectors in KL divergence (and are thus
maximally permutation-resistant), indexed by parameter κ ∈ [−1,∞); see Figure 4.8
for another look. The red point is the intersection of the red curve and dashed blue
line - this is the noise-corrupted input pmf. The blue dot is the back-extension of the
red dot to the simplex boundary - this is the optimal input pmf for this noise level
α with respect to the criterion of minimizing the probability of guessing the wrong
output permutation.
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parameter κ ∈ [−1,∞). Let's denote this set by K (again up to permutation of p∗):

K ≡
{
pmf p∗ : p∗i =

1

Zκ
(i+ κ)2

}
κ∈[−1,∞)

(4.50)

where Zκ is a normalization constant (computed in (4.91)). Since p∗i ∼ (i + κ)2, the

set K is not convex and does not contain its image under the noise map (4.49). Thus,

if a pmf p ∈ K, then after corruption with uniform noise, pα = α 1
k

+ ᾱp /∈ K. We

would like pα ∈ K, however, so that pα possesses the permutation-resistance property
of being equidistant in KL divergence from neighboring sectors of the simplex.

We can achieve this by choosing a pmf p such that after corruption by noise it

lands on the set of permutation-resistant pmfs K. This is shown in Figure 4.10: we

�nd the point pα ∈ K that is farthest from the uniform distribution (to minimize

permutation error probability) and is still in the feasible set (noise-corrupted pmfs,

bounded by the blue dashed triangle in Figure 4.10. pα is the red point.). pα will be

the noise-corrupted input pmf (4.49). To �nd the input pmf p, we then back-extend

pα to the boundary of the simplex (blue line in Figure 4.10; p is the blue point).

Here is the symbolic version of this graphical construction: the input pmf p∗(α) is

given by inverting the noise map (4.49)

p
∗(α)
i =

1

ᾱ

(
1

Zκα
(i+ κα)2 − α1

k

)
(4.51)

for i ∈ {1, . . . , k}, where with some work we can show that

κα =
1

6(1− α)

(
3(k + 1)α− 6 +

√
3α(k − 1)(k(4− α)− α− 2)

)
(4.52)

and Zκα is computed in (4.91):

Zκα =
k∑
i=1

(i+ κα)2 =
1

6

(
2k3 + 3(2κα + 1)k2 + (6κ2

α + 6κα + 1)k
)

(4.53)
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As in the previous Section, we compute the error exponent (rate function for

incorrectly guessing the input permutation):

Pe
.
= e−nc (4.54)

=

(
1− 1

Zκα

)n
(4.55)

where Pe is the probability of guessing an incorrect input permutation.

These expressions are hard to look at, so let's compute some asymptotic expres-

sions.

Low noise limit

First, for the low noise limit α→ 0, we can see from (4.51) that p∗(α) → p∗ as α→ 0,

which makes sense. Let's expand the expression for p∗(α) (4.51) in powers of α:

p
∗(α)
i = p

∗(α=0)
i +

(
2
√

6(i− 1)(2k − 3i+ 2)

k(2k − 1)3/2(k − 1)1/2

)
α1/2 +

i2

k3
Θ
(
α3/2

)
(4.56)

=
6(i− 1)2

k(2k − 1)(k − 1)
+
i2

k3
Θ
(
α1/2

)
(4.57)

where the second line is a cruder approximation than the �rst, but makes it easier to

see that the components of p∗(α) shift linearly in
√
α.

Let's compute the error exponent c, where Pe
.
= e−nc, for the weak noise α → 0

regime using (4.55, 4.53, and 4.52):

c = − 1

n
log

(
1− 1

Zκα

)
(4.58)

= − 1

n
log

(
1− 6

k(2k − 1)(k − 1)
+

(
6
√

6

k(2k − 1)3/2(k − 1)1/2

)
α1/2 +

1

k3
Θ (α)

)
(4.59)

= − 1

n
log

(
1− 3

k3

(
1−
√

3α
)

+ Θ

(
1

k4

)
+
√
α Θ

(
1

k4

)
+

1

k3
Θ (α)

)
(4.60)
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so in the appropriate limits, the error exponent degrades by a factor of (1 −
√

3α)

relative to the noiseless case (4.46) and the error probability is given by

Pe
.
= e−3 n

k3
(1−
√

3α) (4.61)

Thus the sample size to maintain the same error probability as for the noiseless case

must grow by a factor of (1−
√

3α)−1. For noise strength α = 0.01, this is about 21%

more samples per channel use.

Large noise limit

What happens in the large noise limit α → 1, ᾱ → 0? Let's expand the expression

for p∗(α) (4.51) in powers of ᾱ:

p
∗(α)
i =

2(i− 1)

k(k − 1)

(
1 +

(3i− 2(k + 1))

6(k − 1)
ᾱ +

i

k
Θ
(
ᾱ2
))

(4.62)

=
2(i− 1)

k(k − 1)
+
i2

k3
Θ (ᾱ) (4.63)

where the second line is a cruder approximation than the �rst, but makes it easier to

see that in the high noise regime ᾱ → 1, the power (pmf mass) scales linearly with

the rank of the pmf's component, rather than quadratically as for the no-extra-noise

α = 0 regime (4.40).

Let's compute the error exponent c, where Pe
.
= e−nc, for the large noise ᾱ → 1

regime using (4.55, 4.53, and 4.52):

c = − 1

n
log

(
1− 1

Zκα

)
(4.64)

= − 1

n
log

(
1− ᾱ2

(k − 1)2k
+

1

k3
Θ
(
ᾱ3
))

(4.65)

so in the appropriate limits, the error exponent grows as ᾱ2 and the error probability

is given by

Pe
.
= e−

n
k3
ᾱ2

(4.66)
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In the large noise regime, doubling the strengh of the input pmf reduces the sample

size we need to maintain a given probability of error by a factor of 4.

Non-uniform noise

Suppose that our input pmf is corrupted by non-uniform noise: pα = αpnoise + ᾱp,

where pnoise is non-uniform. Then the image of this noise map applied to the sim-

plex boundary (the blue dashed triangle on Figure 4.10) is no longer a rescaled unit

simplex, but is linearly distorted (on Figure 4.10, the blue dashed triangle would no

longer be equilateral). We can apply the same recipe as above to �nd the farthest-

from-uniform pmf in K in the image of the noise map, but we would now have di�erent

error exponents for di�erent input permutations (i.e., a transition matrix P (σ′|σ) for

our permutation DMC whose rows are not permutations of each other). We might

therefore want to put a non-uniform prior on input distributions for our permutation

DMC. We might for the non-uniform noise case abandon permutation quantization

in favor of a more general quantization scheme.

4.5 Permutation coding and error correction

So far we have looked at the single shot setting and attempted to minimize the

probability of incorrectly inferring the input permutation. We worked in a large

sample size limit, so that the probability of an error was small and dominated by

the single most likely incorrect permutation (which involved swapping two adjacent

ranks).

Let's try to generalize this a bit to the case where the sample size is not so large

that errors are improbable. Perhaps the sample size is small enough that at least

some ranks are guessed incorrectly most of the time. Perhaps the sample size n is

even on the order of k, the number of wires/bins (or at least smaller than quadratic in

k2), so that it is impossible for the output pmf (a histogram) to be uniquely ordered

and thus to correspond to a unique permutation (see Section 4.3.1 for de�nitions of

these terms).
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4.5.1 Some background

A common approach is to use error correction. The idea of using permutations to

communicate over a Gaussian channel is due to (Slepian, 1965), wherein the single

symbol channel inputs are restricted to a certain set of values and the set of codewords

is obtained by permuting some initial codeword, and a procedure was given for �nding

numerically optimizing some code parameters to minimize error probabilities. Further

work on using subsets of the symmetric group Sk as the codebook is due to (Blake,

1974; Blake et al., 1979) and on using subgroups as codebooks by (Chadwick and

Kurz, 1969; Bailey, 2009). Related recent work on �rank modulation� for possible

enhancement of �ash memory storage capacity is due to (Jiang et al., 2008, 2009;

Barg and Mazumdar, 2010; Wang and Bruck, 2010; Wang, 2013).

Our motivation for studying communication with permutations in this Chapter is

that this setting arose reasonably naturally as a quantized version of communication

by sampling from input distributions (see Section 4.1 and Section 4.2). I do provide

below a few sketches of ideas for error-correcting permutation codes that as far as I

know are new (Section 4.5.3.1), but this Chapter's contribution is mainly in identifying

the encoding and quantization strategy for a permutation channel mediated by a

multinomial sampling step (see Figure 4.5). Aside from the early work by (Slepian,

1965) and more recent work on rank modulation for �ash memories (see references

in previous paragraph), much work on using permutations for error correction does

not specify a physical channel where permutations might arise, or uses a metric on

permutations that doesn't clearly correspond to some natural-looking process acting

on and degrading an input permutation. I clarify this point below in reviewing several

popular metrics on permutations. The following discussion (Section 4.5.2) doesn't add

new material, but at least frames the question I would like to get at in future work.

4.5.2 In search of a compatible permutation metric

We are sticking to the single-shot communication setting in this Section, so what does

error correction mean for us? Let's use an analogy from error correction in the noisy

channel coding setting for a binary symmetric channel (BSC), where the channel is
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used multiple times: A codebook is a set of codewords - allowable channel inputs

(binary strings in this case). The channel output is some other binary string. So

long as the noise isn't too large and the codewords are not too many, the channel

output is probably closest in Hamming distance to the true channel input. Finding

the codeword of minimum Hamming distance from the output is equivalent in this

case to maximum likelihood (codeword-wise, not symbol-wise) decoding.

Although our permutation communication scheme is single-shot, a single permu-

tation has multiple (k) components, which we will use in place of long binary strings.

Our codebook consists of some subset of the permutation group Sk that forms the

set of allowable channel inputs. In place of Hamming distance, we need some metric

on permutations σ1, σ2 ∈ Sk; the Kendall τ distance K(σ1, σ2) is a possible choice

(Kendall, 1970)13, where K counts the number of pair inversions. Previous work on

using permutations to store data in a similar setting and using the Kendall τ dis-

tance includes (Wang, 2013). Another option is Spearman's footrule (based upon

Spearman's rank-correlation coe�cient (Spearman, 1904))14 D(σ1, σ2), which counts

the total distance each rank has to move for the permutations to match, where �D�

is as in (Diaconis and Graham, 1977). D and K are similar in that K ≤ D ≤ 2K

(Diaconis and Graham, 1977).

The analogy to decoding the binary symmetric channel is unsatisfactory, however,

in that unlike the Hamming distance for the binary symmetric channel, both metrics

K and D are incompatible with maximum likelihood decoding in our setting. Here

compatibility means this: given a communication channel whose input x and output

x′ have the same alphabet x, x′ ∈ X and channel transition matrix P (x′|x), a metric

d is called compatible with the channel if

P (x′|x) = f(d(x, x′)) (4.67)

where f : R+ → R+ is some function. For example, for the binary symmetric channel

with crossover probability p and block length m, P (x′|x) = pd(x,x′)(1 − p)m−d(x,x′),

where d is the Hamming distance.

13K(σ1, σ2) ≡ |{(i, j) : i < j,
(
σ−11 (i)− σ−11 (j)

)
·
(
σ−12 (i)− σ−12 (j)

)
< 0}|.

14D(σ1, σ2) ≡
∑
i |σ1(i)− σ2(i)|.
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Consider the following example of the incompatibility we claim: suppose the in-

put permutation is 1 (identity) and consider σ1 ∈ Sk formed by swapping m pairs

of adjacent ranks and σ2 ∈ Sk formed by placing the m + 1-th rank �rst15. Then

K(1, σ1) = K(1, σ2) and D(1, σ1) = D(1, σ2)16. Recall that in our permutation com-

munication setting, the channel consists of encoding a permutation in a pmf p (power

distribution over k wires), sampling n times from this input pmf, and quantizing (by

sorting) the output pmf (see Figure 4.5). Thus, the number of counts in the i-th

wire/bin is binomially-distributed with parameters n, pi. For large enough n and k

it is therefore much more likely to have many adjacent bins swap ranks in the output

pmf than to have a single bin deviate by a large amount from its expected rank17.

We would thus like a metric on permutations that gives more weight to larger

rank swaps than Kendall's τ and Spearman's footrule. Quadratic weight seems like

a reasonable idea given the comments in Footnote 17:

S(σ1, σ2) ≡
k∑
i=1

(σ1(i)− σ2(i))2 (4.68)

where we have used �S� as in (Diaconis and Graham, 1977). (Diaconis and Graham,

1977) also derive many relationships between and statistical properties of the metrics

D, K, S, and others.

Is the metric S su�cient to complete our BSC decoding analogy; that is, is it

compatible with our permutation channel? The question is not fully posed until

we identify an encoder that maps permutations into pmfs. In the previous Section,

in constructing an encoder that minimizes the asymptotic (in sample size n) error

probability, we found an encoder such that the probability of bins i and i+1 swapping

rank in the output is independent of i. This seems like a desirable property, but I

don't know if it means that the metric S is compatible with our channel. The author

is curious to �nd a metric on permutations that is compatible with this channel.

15 e.g., σ1 = (2143), σ2 = (3124) for k = 4,m = 2.
16 = 2, = 4, respectively, for the example in Footnote 15.
17 This can be seen by approximating the binomials with normals and waving our hands that

the probability of receiving a rank i positions wrong scales as e−i
2

(omitting the variance), so this
probability is not invariant under splitting the �wrong� distance i into i1, i2 : i1 + i2 = i.
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Are there other channels whose inputs and outputs are permutation-valued for

which we can name a compatible metric? There is a natural choice, which we construct

again by analogy with the BSC. An alternative way to characterize the BSC is as

follows: starting somewhere on the {0, 1}n hypercube, do a random walk18 on the

hypercube for s steps, where s is drawn from a Poisson distribution of mean m. Then

the position of the random walk at time s is the same in distribution as the output

of BSC with crossover probability p, where p is a function19 of n and m. The BSC

can also be constructed from the multinomial channel of Section 4.1 by sampling

from the uniform pmf on n bins (the samples correspond to coordinate �ips for the

random walk) and then keeping only the parity of the histogram p̂ (that is, np̂→ np̂

(mod 2)).

For one possible permutation channel, our random walk is on the symmetric group

Sk and at each time step we swap the rank of two adjacent bins. In the language

of Section 4.3.1 and Figure 4.4, the random walk hops between adjacent sectors of

the simplex ∆k−1. This de�nes a channel with transition matrix P (σt|σ0), where σ0

is the starting point of the random walk and σt is the permutation after t steps. I

do not know if the quadratic weight metric (4.68) is compatible with this channel.

Heuristically, the behavior is di�usion on a regular graph (each vertex is connected

to k− 1 vertices), so distribution of random walkers after t steps might be something

like Gaussian in the distance from the start, justifying the quadratic distance metric.

Whether this is true requires us to consider more than the fact that the graph is

regular (we must consider the actual connectivity of adjacent sectors).

We do not need a compatible metric on permutations to create error-correcting

permutation codes, but it would be nice to have a reasonable-seeming one. The author

wonders whether the Kendall τ distance is one that best matches the actual noise

channel for �ash memory cells, given that the charge levels in a �ash memory are not

arbitrary labels, but measure something, so that perhaps it is much more likely that

many pairs of adjacent bins swap than that a single bin arrives far from its expected

rank. On the other hand, the Kendall τ distance might be natural if the channel is a

18 The random walk is not lazy; exactly one coordinate changes parity at each time step.
19 Sum over odd values: p =

∑
i∈{1,3,5,...} PoissonPMF (i;m/n).
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sequence of �push-to-top� operations, as discussed in (Jiang et al., 2009), where the

rank pushed to the top is perhaps drawn uniformly; we have not included an analysis

of this case in this work.

4.5.3 Some ideas for permutation codes

Let's return to the setting of the single shot permutation-quantized multinomial chan-

nel of Section 4.2 and 4.3 (see Figure 4.5) and suggest some error correcting codes.

As outlined in Section 4.5.1, our codebook consists of a subset or maybe a subgroup

of the symmetric group Sk, so while our communication scheme is single-shot, the k

ranks act like a block of bits in the usual (repeated use) noisy channel coding setting.

We haven't found a metric on permutations compatible with maximum likelihood

decoding for this channel in the sense of (4.67), but we have a channel matrix (4.12)

so we can do maximum likelihood decoding.

Figure 4.11 illustrates the idea. Here we have selected two permutations, (132) and

(231), as our codewords. So long as the output permutation is at most one adjacent

transposition away from the input pmf (e.g. outputs (312) or (123) for input (132)),

we can error correct the output permutatation to the correct input permutation. See

the caption for details. Now how do we build sequences of codes as k grows for various

rates?

4.5.3.1 Magic squares

One idea is to use magic squares. A magic square is a doubly stochastic matrix with

integer entries; that is, the row and column sums are all the same. We can view the

entries of a magic square as corresponding to the ranks of a permutation, so we are

interested here in normal magic squares20: m by m squares such that each number

(rank) (1, . . . ,m2) appears exactly once. Below is the historic normal magic square

20Henceforth by �magic square� we shall mean �normal magic square.�
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‘‘0’’

‘‘1’’

3

2

1

Figure 4.11: A permutation error-correction code, where �0,� �1� correspond to the
permutations (231), (132), respectively, and the permutations (321), (213) (resp.
(312), (123)) are error-corrected to �0� (resp. �1�). The 3! sectors of the 2-simplex
are bounded by the gray lines. The encoder in this case maps (231)→ p = (1

3
, 1

2
, 1

6
),

(132) → p = (1
6
, 1

2
, 1

3
) (plotted as black dots on the 2-simplex). We drew 25 samples

from both input pmfs 200 times and plotted a dot for each sampled pmf (histogram)
(red crosses for �0�, blue circles for �1�). Larger markers indicate more occurrences of
the same sampled pmf. A few uncorrected errors (blue or red markers on the wrong
side of the 2-simplex) are seen.
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of order 3: 
8 1 6

3 5 7

4 9 2

 (4.69)

The idea is to use only those permutations that form a magic square (we'll have

to specify some order of �lling the square), so we work now only with the symmetric

group Sk = Sm2 for m ≥ 3 21. Call this subset22 the set of magic permutations

Mm2 ⊂ Sm2 :

Mm2 ≡ {σ ∈ Sm2 : σ corresponds to a magic square} (4.70)

The decoder then maps the output permutation to the most likely input magic per-

mutation.

What can we say about this scheme? The magicness of a square is not a local

property - it takes on the order of m looks to establish that a given square is not

magic - so it feels like it should take quite a large perturbation to go from one magic

permutation to another.

How far apart are two magic squares? Let's re�ect that there are two sources of

magic squares: the �rst source is that given a magic square, we can make more magic

squares by permuting its rows and columns and by transposing it. This yields 2(m!)2

equivalent magic squares (where the 2 is due to the transpositions). Denote the set

of corresponding permutations by Mσ
m2 ⊂Mm2 :

Mσ
m2 ≡ {σ′ ∈ Sm2 : σ′ corresponds to an equivalent magic square as σ} (4.71)

21Normal magic squares exist for the positive integers except for m = 2, and the m = 1 case isn't
useful here, so we assume m ≥ 3.
22We can check that it is not a subgroup of Sm2 .
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where σ is some magic permutation. Then the rate of our code is

R =
log size codebook

log size input alphabet
(4.72)

=
log |Mσ

m2|
log |Sm2|

(4.73)

=
log (2(m!)2)

log ((m2)!)
(4.74)

→ 1

m
m→∞ (4.75)

so when we restrict the codebook to only a subset of magic squares that are equivalent

to each other, the rate vanishes as the size m → ∞. Table 4.1 shows the �rst few

approximate values for the rate as m increases.

m R

3 0.334
4 0.230
5 0.177
6 0.145

Table 4.1: Approximate rate R for permutation code using only magic squares of size
m that are all equivalent to each other.

The kinds of perturbation required to produce an error in this equivalent-only

coding scheme is large - two columns or rows must switch, so on the order of m ranks

must arrive incorrectly23.

Now let's consider the other source of magic squares: non-equivalent squares.

The number of these (counting only the equivalence classes) is only known up to

m = 5, and an estimate is available for m = 6 (see Footnote 24 for references24).

Table 4.2 below summarizes what is known and states the rate of our code if we use

all of the equivalence classes of magic squares, not just a single one as above. We

provide two estimates for the rate: R1 corresponds to a codebook that uses only a

23And then probably not only incorrectly, but very far from their expected value, though we have
not checked this.
24 The casem = 4 is due to Frénicle de Bessy in 1693. The casem = 5 is due to Richard Schroeppel

in 1973. The estimate for m = 6 is due to (Pinn and Wieczerkowski, 1998).
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single representative of each of the classes of non-equivalent magic squares and R2

corresponds to a codebook that uses all magic squares (the second codebook is a

factor of 2(m!)2 larger than the �rst). Thus

R2 =
log |Mm2|
log |Sm2|

(4.76)

where Mm is de�ned in (4.70).

m #non-equivalent magic squares R1 R2

3 1 0 0.334
4 880 0.221 0.451
5 275305224 0.335 0.512
6 (0.17745± 0.00016) · 1020 0.463 0.608

Table 4.2: Approximate rates for permutation codes using only all non-equivalent
magic squares (R1) and all magic squares (R2).

We don't know |Mm2|, but the table looks encouraging in that the rate grows

with the size m. Magicness imposes a sublinear number of constraints (2m) on a

permutation (of length m2), so perhaps the rate goes to 1 as m→∞ or at least does

not vanish. The author is curious to know the answer.

We also don't know how close two non-equivalent magic squares can be, and

so cannot not provide an estimate for the error probability for this communication

scheme25. Switching any two ranks breaks the magic; larger moves are needed. If

a square subset of the entries of a magic square form a smaller magic square (this

is possible), these entries can be transposed and row- and column-permuted while

preserving the magic. Larger magic squares have more subsets, but on the other

hand the mean rank grows with the square size, requiring a more improbable noise

to e�ect an error per subset, so it is not clear to the author if the overall error

probability shrinks or grows with m. An understanding of these issues would help us

set the sample size n as a function of m to control the probability of error.

25 at a �xed sample of size n from a pmf to which a magic permutation corresponds



CHAPTER 4. DISTRIBUTION CODING 116

Nor do we have a practical decoding scheme in mind beyond the maximum like-

lihood decoder26. Why discuss the magic squares schemes at all? The author thinks

they are neat, and not obviously unpromising in the m → ∞ limit (c.f. Table 4.2).

Perhaps for a small value of m the performance could be characterized numerically

and a not-too-large codebook stored, perhaps rendering the scheme useful for a �ash

memory storage application (if the cells are already laid out in a 2-dimensional square,

it might be feasible to compute the row and column sums in hardware and then feed

back on that information somehow). We could also imagine extending this to the case

where some ranks are allowed to repeat (�multipermutations�), but the magicness of

the squares remains.

4.5.3.2 Random codes

How about random permutation codes? By analogy with the random codebook used

to prove achievability in the channel coding theorem, let's uniformly randomly draw

m elements of the permutation group Sk to form our codebook. How do the error

probability under maximum likelihood decoding and code distance and scale with k

and m?

Relatedly, given a group G, draw some group elements (g1, . . . , gm) uniformly at

random and consider either the subgroup induced by these elements. What is the

size of this randomly generated subgroup? Given some metric on the group, what is

the minimum or typical distance of the subgroup viewed as a codebook? For �nite

groups G, it might be helpful to have answers for symmetric groups, since every �nite

group is isomorphic to a subgroup of a symmetric group. I have nothing to say about

this, but it would be an interesting scheme to consider.

26 Checking the row and column sums of a matrix could give us a clue about unusually large or
small entries.
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4.A Computation of the permutation-resistant dis-

tribution

This Appendix computes the solution to the optimization problem stated in Section

4.3.8.

Let's compute the error exponents Di (4.30). First, let's observe that

pEij =
1

Zi

{ √
p∗i p
∗
i+1 : j ∈ {i, i+ 1}

p∗j : otherwise
(4.77)

so

Di = D(pEi ||p∗) (4.78)

=
∑

j /∈{i,i+1}

p∗j
Zi

log

(
p∗j/Zi

p∗j

)

+
1

Zi

√
p∗i p
∗
i+1

(
log

(√
p∗i p
∗
i+1

Zi p∗i

)
+ log

(√
p∗i p
∗
i+1

Zi p∗i+1

))
(4.79)

=−
(
1− p∗i − p∗i+1

) logZi
Zi

− 2
√
p∗i p
∗
i+1

logZi
Zi

(4.80)

=

((√
p∗i+1 −

√
p∗i

)2

− 1

)
logZi
Zi

(4.81)

= c ∀i (4.82)

where we use the convention 0 log 0 = 1, 0 log 0/0 = 1 for the case p∗i = 0.

Let's compute the Zi (using eq. (4.77)):
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Zi =
k∑
j=1

√
σi(p∗j) p

∗
j (4.83)

=
∑

j /∈{i,i+1}

√
(p∗j)

2 +
∑

j∈{i,i+1}

√
σi(p∗j)p

∗
j (4.84)

= 1− p∗i − p∗i+1 + 2
√
p∗i+1 p

∗
i (4.85)

=

(
1−

(√
p∗i+1 −

√
p∗i

)2
)

(4.86)

Substituting this into eq. (4.81) we obtain:

− logZi = c (4.87)

⇓√
p∗i+1 −

√
p∗i =

√
1− e−c ≡ c′ ∈ [0, 1] (4.88)

where c′ ∈ [0, 1] follows from c = Di ≥ 0 since Di is the K-L divergence.

Solving this recurrence relation for p∗i we �nd

p∗i =
(

(i− 1)c′ ±
√
p∗1

)2

(4.89)

where we are free to choose the value of p∗1. Let's take the negative solution (the two

solutions correspond to the same set of solutions {p∗}, parametrized di�erently) and

rewrite this in the alternate form (eq. (4.34)):

p∗i =
(i+ κ)2

Zκ
(4.90)

where κ = −1 +
√
p∗1/c

′ ≥ −1 and

Zκ =
k∑
i=1

(i+ κ)2 =
1

6

(
2k3 + 3(2κ+ 1)k2 + (6κ2 + 6κ+ 1)k

)
(4.91)
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What remains is to choose κ to maximize Di = c. It turns out the maximum

is achieved for κ = −1 (alternately, we can impose the constraint p∗1 = 0, since we

know from the �rst observation in Section 4.3.6 that it corresponds to maximizing

Di = c, and obtain κ = −1), yielding exactly the result (4.35) obtained by an intuitive

argument:

p∗i =
1

Z
(i− 1)2 for i ∈ {1, . . . , n} (4.92)

Z =
k∑
i=1

(i− 1)2 =
1

6

(
2k3 − 3k2 + k

)
=

1

6
k(2k − 1)(k − 1) (4.93)

As noted earlier, it may be natural to have a �oor on the minimum value of p∗.

Suppose p∗1 = pmin > 0, then we choose κ to satisfy (using eq. (4.90) with i = 1):

(1 + κ)2

Zκ
= pmin (4.94)

A solution always exists since (1+κ)2

Zκ
∈ [0, 1/k) (map monotonic in κ ∈ [−1,+∞))

and pmin ∈ [0, 1/k).

Let's compute the error exponent Di = c (rate function for making an error

in inferring the sent permutation) for the case κ = −1 (optimal error exponent).

Substituting eq. (4.90) into eq. (4.86), and this into eq. (4.81), we �nd:

Di = c = − logZi (4.95)

= − log

(
1−

(√
p∗i+1 −

√
p∗i

)2
)

(4.96)

= − log

(
1− 1

Zκ

)
(4.97)

= − log

(
1− 6

2k3 + 3(2κ+ 1)k2 + (6κ2 + 6κ+ 1)k

)
(4.98)

→ 3

k3
as k →∞ (4.99)
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Independent of κ for k →∞



Chapter 5

Energy e�ciency in noisy channel

coding

This Chapter explores schemes for noisy channel coding with an eye to energy e�-

ciency, in particular focusing on the additive white Gaussian noise (AWGN) channel

and the Poisson channel. The motivation for this train of thought initially came from

considering the possible advantages of photonic computing circuits: these devices

would not clearly o�er better speed and are not smaller than classical computing

components, but they use potentially orders of magnitude less power. How can we

optimize them with regard to the advantage they potentially have?

For many popular channel models there is a parameter that acts like a power

constraint, e.g. the mean power-constrained AWGN and the peak rate-constrained

Poisson channel1. It might be a natural thing to �split� the power available to one

such channel into multiple, noisier channels (e.g., splitting the AWGN power into

multiple frequency bands, or increasing the number of �ash memory cells while keep-

ing constant the total charge available to all of them), or to �aggregate� multiple

channels into a single, less noisy one. If possible, are these operations worth doing in

terms of the total throughput of the split or aggregated channels? In attempting to

�nd a unifying perspective for splitting and aggregation, we �nd that it's reasonable

to call a channel �power-e�cient� for some input power P ∗ if the capacity is linear

1De�nitions come later.
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in the power in the neighborhood of P ∗. This o�ers a possible answer to the ques-

tion of how to most e�ciently use a given power budget over multiple transmissions.

Channel splitting and aggregation let us go to a power-e�cient point if we start at

an ine�cient one. Sections 5.2 and 5.4 apply these ideas to the AWGN channel, the

Poisson channel, and some other natural-looking channels for which the answers turn

out to be interest (like the spectrally constrained Poisson channel).

Along the way we delve more deeply into the AWGN in the low SNR regime.

We consider in particular coding schemes for the AWGN in the �nite block length

setting2 for block lengths inversely related to the SNR (again imagining that we have

the freedom to split a �xed power budget between any number of transmissions).

We further present a coding scheme for the AWGN in the low SNR regime that

relies on an input distribution very di�erent from the (capacity-achieving) Gaussian

distribution. Our input distribution is instead �spikes;� the sender mostly sends noth-

ing and occasionally sends a spike that rises far above the noise. We show that this

input distribution is capacity-achieving in the limit of some parameters. We further

discuss a communication scheme based on this distribution: the sender encodes the

message in the locations of the spikes and the receiver thresholds the channel output

to �nd the locations of the spikes. This is appealing because it potentially means no

error correction on the part of the receiver (whereas using a Gaussian input distribu-

tion would require increasingly complicated error correction as the SNR goes to 0).

We prove some encouraging observations about the feasibility of this communication

scheme and point out what needs to be done to complete the proof of feasibility.

This Chapter is organized as follows: Section 5.1 gives a lightning recap of noisy

channel coding and establishes notation. Section 5.2 introduces the idea of �channel-

splitting:� dividing the total available power between independent, noisier copies

of the initial channel, discusses when this might be a natural thing to encounter

in practice, and makes some observations for the example of the AWGN. Section

5.3 considers these ideas in the �nite block length communication regime. Section

5.4 discusses the related case of �channel-aggregation.� Section 5.5 presents some

2 For �nite block lengths, there is a penalty to the maximum achievable rate in terms of the
channel dispersion, a measure of the channel noisiness; this can set a limit to how many times we
should split a channel into noisier channels in terms of maximizing achievable communication rate.
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observations about splitting and aggregation for a broader class of channels. Section

5.6 presents a coding scheme for the AWGN at low power and concludes the Chapter.

5.1 Noisy channel coding in four pages

Decoder Encoder 
𝑃(𝑌|𝑋) 

Channel 𝑋𝑛 𝑌𝑛 𝑊  𝑊 

Figure 5.1: Noisy channel coding setup. Our focus in this Chapter is on the channel.

In this Section we remind the reader of channel coding concepts in su�cient detail

for our discussion to proceed; the author points the interested reader to (Cover and

Thomas, 2006) for an excellent introduction. We have already encountered these

concepts earlier in this thesis3, but state them so that this Chapter can be read

independently of the rest.

Recall the setup of communication over a noisy channel, shown in Figure 5.1 in

the notation of (Cover and Thomas, 2006). Here Xn = (X1, . . . , Xn) and Y n =

(Y1, . . . , Yn) are the channel inputs and outputs, respectively, of block length n and

W and Ŵ are the message to be encoded and the message estimated by the decoder,

respectively. Let's suppose that the set of possible messages is W ∈ {1, . . . ,M} for
some M ≥ 1 and that each message is equally likely to be sent. The encoder maps

the M possible messages W to channel inputs Xn of length n - this mapping is the

codebook. The communication rate is de�ned as the ratio

R =
logM

n
(5.1)

(throughout, our logarithms are in arbitrary but consistent base).

3 In Chapter 2 about a photonic LDPC decoder circuit.
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IfM = 2k, e.g., if the messagesW are binary strings of length k, then this reduces

to

R =
k

n
(5.2)

For example, for the (3,1) Hamming code that encodes �0� with �000� and �1� with

�111� to protect from bit �ips, the rate is 1/3.

The channel is characterized by a probability distribution of outputs given the

inputs P (Y n|Xn). In what follows we assume further that the channel is memoryless

and time-invariant, meaning that the probability distribution of the output depends

only on the current channel input:

P (yn|nn) =
n∏
i=1

P (yi|xi) (5.3)

(we denote random variables in capitals, e.g., X, and outcomes in lowercase, e.g., x).

Finally, the decoder takes in channel outputs Y n and produces estimates Ŵ of

the message W .

The rate R is achievable if there exists a sequence of codes (encoder and decoder

pairs) indexed by the block length n such that the maximal probability of error when

transmitting any of the M = 2nR messages tends to 0 as n → ∞. Suppose we �x a

particular encoder (mapping from messages W to channel inputs Xn), which in turn

�xes the rate and the distribution P (Xn) and its marginals P (X). Does a decoder

exist such that this rate is achievable?

The channel coding theorem due to (Shannon, 1948) answers this question: reliable

communication is possible at any rate below the mutual information I(X;Y ) and

impossible at any rate above I(X;Y ). The maximum possible value of the mutual

information over all choices of input distribution P (X) is the channel capacity4 C.

Below are some equivalent ways of writing the mutual information I(X;Y ) between

random variables X and Y :

4 This is the �information� channel capacity, which Shannon established is equal to the �opera-
tional� capacity, de�ned as the supremum of achievable rates.
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I(X;Y ) = I(Y ;X) (5.4)

= H(X)−H(X|Y ) (5.5)

= H(Y )−H(Y |X) (5.6)

= H(X) +H(Y )−H(Y,X) (5.7)

= D(PXY ||PXPY ) (5.8)

= EPXY
[
log

pXY (x, y)

pX(x)pY (y)

]
(5.9)

≥ 0 (5.10)

Where H(X) is the Shannon entropy

H(X) = −
∑
x∈X

P (x) logP (x) (5.11)

= E
[
log

1

P (X)

]
(5.12)

where X denotes the alphabet ofX. Here we are using sums over discrete alphabets X .
Later we will use continuous-valued variables X and replace the sums with integrals.

D(P (X)||Q(X)) is the Kullback-Leibler (KL) divergence

D(P (X)||Q(X)) =
∑
x∈X

P (x) log
P (x)

Q(x)
(5.13)

= EP
[
log

P (X)

Q(X)

]
(5.14)

Finally, the capacity C is a property of the channel de�ned5 by maximizing I(X;Y )

over the set of input distributions P (X) (that is, over the possible choices of the

encoder):

C = max
P (X)

I(X;Y ) (5.15)

5 See Footnote 4 on the distinction between �information� and �operational� capacity.
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Let's denote by P ∗(X) the capacity-achieving distribution:

P ∗(X) = arg max
P (X)

I(X;Y ) (5.16)

By concavity of the mutual information in P (X) and by convexity of the set of

probability distributions P (X), this is a global maximum (rather than a supremum).

Reliable communication is thus possible at any rate below capacity and impossible

at any rate above. The channel-coding theorem does not tell us how to construct

an encoder/decoder pair that achieves a particular rate below capacity6, but tells us

when this is possible.

The error probability for a communication scheme is the probability that the

decoder output does not match the encoder input:

Pe = P (Ŵ 6= W ) (5.17)

where the randomness is due to the use of the noisy channel and the randomness in

the encoder input. We can assume a uniform distribution over encoder inputs P (W )7

to de�ne Pe.

Many variations exist on the setup of Figure 5.1 exist (e.g., including feedback to

the transmitter), but we work below with this classic version.

5.2 Channel splitting

Given a noisy communication channel, it might be possible to de�ne (and implement!)

�splitting� the channel into multiple, noisier � meaning with smaller capacity �

channels, as depicted schematically in Figure 5.2. For example, in a �ash memory

cell, one imagines keeping the total amount of charge deposited in all cells constant

while increasing the number of cells, so that individual cells are noisier.

6 (Shannon, 1948) uses a random codebook and jointly typical decoding, but this can be imprac-
tical.

7 The source-channel separation theorem lets us do this without loss of generality in terms of the
distribution of W .
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If possible, is this worth doing, say in terms of the capacity of the noisier chan-

nels8? The answer is positive in some natural-seeming settings. This Section discusses

this idea for the AWGN and makes some observations relating the channel splitting

operation to the �nite block length setting. We further discuss the design of �ash

memory cells as a possible application of these ideas.

𝐶𝑘 

𝐶 

noisy 
channel 

𝑘 noisier 
channels 

𝐶𝑘 

𝐶𝑘 

Figure 5.2: Splitting a noisy channel with capacity C into k > 1 noisier channels with
capacity Ck < C.

5.2.1 AWGN with mean power constraint

Consider the additive white Gaussian noise (AWGN) channel, speci�ed by input X,

output Y

Y = X + Z (5.18)

where Z ∼ N (0, N) is the normally-distributed noise with variance N . The channel

input X is constrained to satisfy E[X2] = P , where P is the signal power. Henceforth,

we set

N = 1 (5.19)

and refer to P as the signal to noise ratio (SNR). The capacity is given by

C =
1

2
log (1 + P ) (5.20)

8 In the notation of Figure 5.2, is kCk larger than C?
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Consider the low and high SNR P regimes:

C ≈

{
P
2

: P � 1
1
2

logP : P � 1
(5.21)

Thus at low SNR (P � 1) communication over the Gaussian channel is exponentially

more power-e�cient than in the high power regime. We shall see below that splitting

the Gaussian channel can allow us to recover the linear scaling of capacity with input

power.

We can think of two ways to de�ne splitting this channel, which are equivalent for

our purposes: splitting in time and in frequency. Suppose we arrive at the Gaussian

channel by setting some sampling time Ts per transmission and holding the input

signal X �xed during each sampling window:

Y =
1

Ts

∫ Ts

0

(Xdt+ dWt) ∼ N (X, 1/Ts) (5.22)

where Wt is a Wiener process. Thus, splitting the sampling time into k equal parts of

size Ts/k is equivalent to increasing the noise variance 1/Ts by a factor of k. We can

also imagine splitting the signal power into di�erent frequency bands while leaving

the sampling time per band unchanged at Ts. Suppose our Gaussian channel accepts

inputs at some optical frequency. If we can use k di�erent frequencies (that are far

enough apart for us to ignore interference at the receiver), we again have k parallel

Gaussian channels with the same noise variance, but with sender power reduced to

P/k for each channel. This frequency division is also for our purposes equivalent to

simply using k wires with power P/k in each. For both time- and frequency-splitting,

the SNR is decreased by a factor of k per output sample.

Let's compute the capacity C
(k)
split of a Gaussian channel split into k identical chan-

nels whose SNR is reduced by a factor of k with capacity Ck. Since the capacities of
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independent channels add, we have

C
(k)
split = kCk (5.23)

= k · 1

2
log

(
1 +

P

k

)
(5.24)

≥ C =
1

2
log (1 + P ) ∀k ≥ 1 (5.25)

Thus the splitting operation always helps in terms of the total capacity of the parallel

noisier channels.

Note that (5.24) is almost the expression for the capacity of a band-limited Gaus-

sian channel (as given in (Cover and Thomas, 2006)) Y (t) = (X(t) + Z(t)) ∗ h(t),

where the band-pass �lter h(t) has 0 amplitude for all frequencies greater than W

(aside from a leading factor of 2 and a rede�nition of the noise power):

CW
band-limited = W log

(
1 +

P

WN0

)
(5.26)

where N0/2 is the noise power spectral density. This is not surprising, since the

above expression (5.26) can be derived by computing the capacity in bits per second

and setting the sampling time to 1/(2W ), just as we did when �time-splitting� the

Gaussian channel and computing the capacity.

As the number of splits k grows, we recover the linear scaling of capacity with

power:

C
(∞)
split = lim

k→∞
C

(k)
split =

P

2
(5.27)

The capacity of the AWGN channel (5.20) and the capacity of the split AWGN

channel (5.24) are plotted in Figure 5.3. Note that we only gain much from splitting

the channel in the ine�cient high SNR, P � 1 regime.

If we have an actual physical channel that we approximate as a Gaussian channel,

and imagine splitting it into ever more noisier channels, at some point the approx-

imation of the channel as Gaussian may no longer hold. For example, the channel

noise may arise due to discrete photodetection events (�dark counts�) at the receiver;

if the sampling time is short compared to the typical time between these dark counts,
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Figure 5.3: (black) capacity of the AWGN channel as a function of SNR (= P ), (blue)
split 2 times, (magenta) split 20 times, (red) in the limit of in�nitely many splits.
Natural log.

we should no longer treat the noise as a normally-distributed random variable. We

address this issue again in Section 5.4.1 when discussing the Poisson channel.

5.3 Coding schemes for split channels in the �nite

block length setting

Although splitting the AWGN boosts the total capacity of the parallel noisier chan-

nels, there is a potential pitfall in terms of performance in the �nite block length

setting, which potentially limits the use of this operation for an actual implementa-

tion. We shall be more precise later, but roughly the trouble is that noisier channels

require longer block lengths to allow communication within a given fraction of capac-

ity at a given block error rate. By splitting our channel into k noisier channels, the

block length for each of these noisier channels must be longer than the block length

for the unsplit channel to achieve the same performance. This increase must then

be multiplied by k to get the total new block length, possibly much larger than the

block length used for the unsplit channel.
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We describe two ways to deal with this issue. The �rst is to do �nothing:� we

compute the potential performance hit in terms of block error probability and nearness

to capacity for the split channel scheme. It turns out that the optimal number of

channel splits is no longer k →∞, but some value determined by the unsplit channel

power and block length. The second way is to not give each of the noisier split

channels its own block length, but to view the noisier channels as together forming

the block. Instead of using the parallel channels independently, we will distribute

codewords across the noisier channels; this can be useful even if the individual noisier

block lengths are equal to 1. This thinking further leads us to quantify the energy

budget necessary to communicate a given number of bits at a given block error rate

when given the freedom to choose how to distribute the energy between some number

of transmissions.

5.3.1 Facts about the �nite block length setting

The channel capacity (5.15) sets the supremum of achievable rates in the limit of

in�nite block length (n → ∞). For �nite block length n and a �xed maximum

allowable error probability ε, the supremum of achievable rates is in general strictly

below capacity. The intuition for this is that the mutual information I(X;Y ) (which

is maximized by the capacity) is the mean of the random variable i(X;Y ) de�ned

below:

I(X;Y ) = EPXY [i(X;Y )] = EPXY
[
log

pXY (x, y)

pX(x)pY (y)

]
(5.28)

where the expectation value is taken over the joint distribution PXY (X, Y ) =

PY |X(Y |X)PX(X). For �nite n, i(X;Y ) �uctuates about its mean, and so 1
n
I(Xn;Y n)

can dip below the design rate (5.1) set by the encoder. When this happens, it is likely

that multiple channel inputs are jointly typical with the output, leading to a high

probability of error. For a discussion of this that goes beyond rough intuition, see

(Polyanskiy et al., 2010).

Fortunately, quite a few things are known: (Shannon, 1959) established tight

bounds for the AWGN with a �nite block length, and (Strassen, 1962) and (Polyanskiy

et al., 2010) established a relationship between the block length n, the maximum error
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probability ε, and the degree to which the capacity can be approached in this setting

for the discrete memoryless channels and the Gaussian channel:

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) (5.29)

here M∗(n, ε) denotes the maximum codebook size achievable at block length n and

with maximum error probability ε, C is the channel capacity, Q−1(x) is the inverse

of Q(x) =
∫∞
x

1√
2π
e−t

2/2dt = 1
2

(
1− erf

(
x/
√

2
))
, and V is the channel dispersion,

which measures the �stochastic variability of the channel� (Polyanskiy et al., 2010).

For the case of a discrete memoryless channel, (Strassen, 1962) showed that the

expression above holds with V = Var[i(X;Y )] for X distributed according to the

capacity-achieving distribution P ∗(X)9, while (Polyanskiy et al., 2010) provides a

de�nition of the channel dispersion V applicable to a broader class of channels. A

useful implication of (5.29) due to (Polyanskiy et al., 2010) is a relation for the block

length n∗(η, ε) necessary to communicate at a fraction η of capacity with maximal

probability of error ε. Writing

logM∗(n, ε) = n∗(η, ε)ηC (5.30)

we subsitute this into (5.29) along with n→ n∗(η, ε) to obtain:

n∗(η, ε) ≈ V

C2

(
Q−1(ε)

1− η

)2

(5.31)

where the approximation denotes discarding the O(log n) term in (5.29).

For the AWGN channel with mean, peak, and equal-power constraint, (Polyanskiy

et al., 2009) established that the channel dispersion is10

VAWGN =
P (P + 2)

2(P + 1)2
=

{ (
P − 3

2
P 2 +O (P 3)

)
: P → 0(

1
2
− 1

2P 2 +O
(

1
P 3

))
: P →∞

(5.32)

9 In the case of multiple capacity-achieving distributions, use one with the smallest (largest)
variance if ε < 1/2 (ε > 1/2) (Polyanskiy et al., 2010).
10 For arbitrary base logarithms, the expression (5.32) should be multiplied by log2 e. We work

with natural logarithms in this Section.
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5.3.2 Split AWGN and �nite block length

Let's apply these statements to the split AWGN channel of Section 5.2.1. First, we

use the split noisier channels independently, and show that there can be an optimal

number of splits in terms of the size of the codebook. Then, we code �across� the sub-

channels rather than use them independently and heuristically suggest a relationship

between a total energy budget and the number of bits that can be sent with a given

block error probability.

Suppose we use the unsplit AWGN with mean power constraint P at a fraction

η of capacity with maximum error probability ε. Then the block length we are using

is given by n = n∗(η, ε) (5.31). Now we split this channel to form k parallel AWGN

channels with mean power constraint P/k, each with the same block length n 11 (so

the total number of transmissions across the noisier channels is nk). Denote the

capacity and dispersion of the individual noisier channels by Ck, Vk, respectively.

Let's compute using (5.29) the size M∗(k) of the codebook for the collection of the

k noisier channels. Since we are using them independently, the log size of this code

book is k times the log size of the codebook for one of them:

logM∗(k) ≈ k
(
nCk −

√
nVkQ

−1(ε)
)

(5.33)

= k
n

2
log

(
1 +

P

k

)
− k

√
n
P (P + 2k)

2(P + k)2
Q−1(ε) (5.34)

where the approximation sign means discarding the O(log n) term in (5.29). For small

number of splits k, say that k � P , the �rst term of (5.34) grows as k log P
k
, while

the second term grows as k, but with possibly a smaller numerical prefactor than the

�rst term depending on n and ε. For large values of k, say k � P , the �rst term

limits to a constant, while the second term grows as
√
k. Thus we expect there to be

some value of k that maximizes (5.34) for some values of P , ε, n.

We could try to get limiting expressions for the optimal number of splits in various

regimes, but there are many knobs to turn (P , ε, n), the expression is di�cult to work

11 This might be natural if we split the power P into di�erent frequency bands that are measured
simultaneously at the receiver while holding the total number of channel uses �xed.
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with algebraically, and it's unclear to the author which regimes are the most natural,

so let's just look at one example in Figure 5.4. Here the initial, unsplit AWGN has

mean power constraint (SNR) P = 10, maximum error probability ε = 1%, and block

length n = 100. The log size of the codebook for these parameters is then given by

(5.29) logM∗(n, ε) ≈ 1100 (blue line). We plot (solid red line) the log codebook size

of the k split channels with SNR P/k using (5.34).
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Figure 5.4: (blue line) log codebook size (logM) for the AWGN with SNR P = 10,
maximum error probability ε = 1%, block length n = 1000. (solid red line) log
codebook size for the AWGN split into k channels with SNR P/k. (dashed red line)
same as solid red line, but ignoring the dispersion penalty (second term in (5.34)).
When the log codebook size is negative, the approximation of ignoring the O(log n)
term in (5.29) is no longer valid.

We see in Figure 5.4 that as the number of splits k grows, the codebook size for

the split AWGN (solid red line) grows larger than the codebook size for the unsplit

AWGN (blue line), peaks for k ≈ 25, and then dips below the codebook size of the

unsplit AWGN for k & 250. For k & 450, the expression for the log codebook size

becomes negative; at this point the approximation of discarding the O(log n) term is

no longer valid. Note that without the channel dispersion penalty (second term in
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(5.29)), the codebook size for the split channels grows for all k ≥ 1 and asymptotes

to nP
2

= 5000 (red dashed line12).

These observations make sense: the AWGN is power-e�cient � its capacity is

linear in P � in the low SNR regime, so given an AWGN with P � 1, we should

�split� it into about13 1/P noisier channels so that each is power-e�cient. Splitting

beyond this point doesn't help much with power-e�ciency, but does make the pieces

noisier, so we incur a growing penalty in terms of the codebook size as the number of

splits increases.

5.3.3 Coding across split blocks

The discussion in the preceding section treated the k noisier split AWGN channels as

independent. Now let's see what happens if we view the k split channels as forming

the block. That is, instead of using a block length n inherited from the unsplit AWGN

for each noisier channel, let's give each of the noisier channels a block length of 1 and

code �across� these channels for a block length of k.

Why consider this scenario? Imagine someone gives you a �xed amount of energy

(not power) to communicate. How should you use this energy to send the greatest

number of bits with a particular probability of error? You are permitted to distribute

your energy budget between an arbitrary number of transmissions. Distributing your

energy between di�erent transmissions is the same as our channel splitting.

Again denoting by Ck, Vk the capacity and dispersion, respectively, of the AWGN

with SNR P/k, let's recall the expression (5.29) for the codebook size, but now set

n = k since we are coding across the k split channels:

logM∗(k, ε) = kCk −
√
kVkQ

−1(ε) +O(log k) (5.35)

=
k

2
log

(
1 +

P

k

)
−

√
k
P (P + 2k)

2(P + k)2
Q−1(ε) +O(log k) (5.36)

12 It doesn't look like it asymptotes on a log scale, but we know it does!
13 This value depends on P , ε, and n and is obtained by maximizing (5.34), which we haven't done.
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Let's be clear that we are playing fast and loose with our application of the

results of (Polyanskiy et al., 2010) to our problem: for (Polyanskiy et al., 2010), the

channel capacity and dispersion are �xed, while for us they vary with the blocklength,

potentially invalidating proofs of (Polyanskiy et al., 2010) that rely on approximating

the mutual information density with a normal random variable. The hope is that

these normal approximations hold at least for a range of k large enough to make our

claims, but I have not yet checked these hopes. The author intends to give this more

thought in the future. For now let's call this approach a heuristic and proceed.

What value of k maximizes the expression (5.35)? Let's guess that we want k

large, k � P . Then using the low-SNR expressions for the AWGN channel capacity

(5.21) and dispersion (5.32), Ck → P
2k

and Vk → P
k
for k → ∞, in which case the

expression (5.35) becomes

logM∗(k, ε) = k
P

2k
−
√
k
P

k
e Q−1(ε) + P 2O

(
1

k2

)
+O(log k) (5.37)

≈ P

2
−
√
PQ−1(ε) (5.38)

(Note that the dispersion penalty term now tends to a constant, rather than grows

with k, as for the independent subchannels case (5.34).) where the approximation is

valid for k � P . We must be careful not to let k get too large, since the �rst two

terms are k-independent, while we discarded the O(log k) term. The approximation

is then valid only for large enough P , such that P
2
� log(k) (and P/2�

√
PQ−1(ε)).

Therefore the conditions we need for the approximation to hold are

1� P � k � eP/2 (5.39)

The expression (5.38) is intuitively appealing: working with natural logs, it says

that the number of natural bits one can send given an energy budget P with error

probability ε is approximately P
2
−
√
PQ−1(ε). The way to send this many bits with

this error probability is to divide the energy P into k transmissions, where k satis�es

the conditions (5.39).
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Can we do better than this? We guessed that letting k be large is a reasonable

idea, and it's nice that letting k → ∞ results in a constant limit for the codebook

size, but we have not solved for k that maximizes (5.35). Numerically we have been

able to �nd cases of �nite k maximizing (5.35) for very large Q−1(ε) = O(
√
P ), so

that the �rst and second terms of (5.35) are of the same magnitude. This again

strays outside the setting of (Polyanskiy et al., 2010), where ε is held constant, so

that normal approximations hold as the block length grows. So we don't know how

to maximize (5.35), and even if we want to, given its deviation from the assumptions

of (Polyanskiy et al., 2010).

Using the same intuition as in the previous Section, given a �xed energy P � 1

budget, we should split this energy enough times so that each individual transmission

is in the energy-e�cient regime where capacity is linear in the power. There is scant

bene�t in terms of codebook size to splitting the energy further, and we don't yet

understand what the codebook size is when we split many more times anyway, so we

keep our comments to about O(P ) splits.

5.4 Channel Aggregation

So far we have discussed splitting the power available to a noisy channel into multiple,

noisier channel. What about the reverse direction: reducing the number of noisy

channels to make a single less noisy one, as depicted schmeatically in Figure 5.5. Is

this �aggregation� ever worth doing in terms of the capacity of the single channel14?

It isn't for the mean power constrained AWGN, since splitting always increases the

capacity (see (5.24))15.

In this Section we apply the aggregation operation to a Poisson channel and show

that it boosts capacity. The Poisson channel we focus on has a peak intensity con-

straint p, which of course means something di�erent than the mean power constraint

for the AWGN channel, but is related in that it can be viewed as a constraint on

14 In the notation of Figure 5.5, is C(k) larger than kC?
15 In the �nite block length regime, splitting enough times can reduce the achievable rate if the

subchannels are used independently; see Section 5.3. We focus on the capacity for now and return
to the �nite block length setting later.
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the sender power in some settings (like photon detection). Whereas capacity is linear

in power for the AWGN in the low SNR regime, capacity is linear in power for the

Poisson channel in the high peak intensity regime.

Where might these channels we are aggregating be coming from? Perhaps the

sender has access to multiple optical �bers and is trying to decide how best to dis-

tribute available power between them in terms of capacity. Later in Section 5.5 we

imagine having access to a large supply of identical channels for aggregation or split-

ting.

𝐶 

𝐶(𝑘) 

Less noisy 
Channel 

𝑘 noisy 
Channels 

𝐶 

𝐶 

Figure 5.5: Aggregating k noisy channels with capacity C into one less noisy channel
with capacity C(k) > C.

In Section 5.5 we attempt to provide a unifying perspective on our channel split-

ting/aggregation observations; the principle that emerges is that capacity �ought to�

be linear in power for power-e�cient channels. In Section 5.5.3 we provide examples

of channels that live in this framework in a less extremal way than the AWGN and

the Poisson channel � the spectrally limited Poisson channel, which is power-e�cient

at some positive input power (rather than 0 or in�nity), and one other example.
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5.4.1 Poisson channel with peak amplitude constraint

Consider the Poisson channel, whose input is an amplitude λt in continuous time

t ∈ [0, T ] 16 and whose output is a Poisson point process Nt with rate λt, that is,

Nt ∼ Poisson

(∫ t

0

dtλt

)
(5.40)

The noise is supplied by a �dark� count rate n, meaning λt ≥ n ∀t. We consider

here a peak amplitude constraint p, meaning λt ≤ n+ p ∀t 17. Thus

λt ∈ [n, n+ p] ∀t (5.41)

The sender attempts to modulate the amplitude λt within the allowed range to

communicate with the receiver via the arrival times of the clicks. An example use of

the Poisson channel is shown in Figure 5.6 (see caption for details).
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click (output)

Figure 5.6: Sample use of the Poisson channel with peak amplitude constraint. (black
line) input amplitude λt. (red lines) output clicks. Dashed black lines denote the
amplitude bounds (5.41). The black curve is just some curve, nowhere near what a
sample input from a capacity-achieving distribution looks like (it would not vary so
smoothly).

16 T plays the role of the block length in continuous time.
17 The �input� amplitude λt is the sum of the noise amplitude and the sender-supplied amplitude.
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The Poisson channel is a model for optical photodetection. The instantaneous click

rate is proportional to the amplitude of the electric �eld at the detector18 plus a �dark

count� rate corresponding to various things (maybe the external �eld stochastically

�uctuates a bit at all times, maybe the electronics in the detector is noisy).

A mean amplitude constraint might be a natural thing to add. The capacity

with both a peak and mean constraint was worked out by (Davis, 1980); it turns

out that above a certain threshold, the mean constraint is inactive for a capacity-

achieving distribution, and the capacity is given by (5.42). Below this threshold,

there is another expression in terms of both constraints. This would complicate our

story, but is worth keeping in mind for possible extensions.

The capacity19 was found by (Kabanov, 1978; Davis, 1980):

C(p, n) = n

(
1

e

(
1 +

p

n

)1+n
p −

(
1 +

n

p

)
log
(

1 +
p

n

))
(5.42)

Note that this is not a function of just the ratio p/n, a sort of signal to noise ratio

(SNR) for the Poisson channel, while the capacity of the AWGN (5.20) is conveniently

a function of just the appropriate SNR (P/N). This is because we are working in

continuous time, so C(p, n) has units of bits/s. We can use the noise rate n to set

the units of time or just set n = 1 to obtain the unitless quantity

C(p) ≡ 1

n
C(p, n) (5.43)

=
1

e
(1 + p)1+ 1

p −
(

1 +
1

p

)
log (1 + p) (5.44)

We compute the limiting forms of this expression below (5.45) and �nd that

C(p) ∼ p2 for p � 1, C(p) ∼ p � 1, so that the high SNR p � 1 regime is

18 The committed reader might recall this model from the quantum optical setting, where the role
of the �eld is played by the collapse operators; see (1.3) and (1.11).
19Here to de�ne the capacity C we take C = limT→∞ sup 1

T IT (θ,N), where {Nt}t∈[0,T ] counts the
number of clicks up to time t, the supremum is taken over admissible schemes, and admissibility
is de�ned in terms of adapted cadlag processes {θt}t∈[0,T ]. We refer the reader to (Kabanov, 1978;
Davis, 1980) for de�nitions and derivations; our interest in this Section is in the capacity in terms
of the parameters.
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power-e�cient. This may seem counterintuitive, but follows from the convexity of

C(p): the p� 1 regime therefore sets the upper bound on C(p).

Aggregating the Poisson channel: motivation

How could aggregation for the Poisson channel arise �in practice?� We imagine a

bundle of optical �bers going to an array of photodetectors, each �ber modeled as

a Poisson channel with a peak amplitude constraint p and dark count rate n = 1.

Given a power budget, how should the sender distribute this power across the �bers

if the goal is to maximize capacity? We saw that for AWGN, the answer is to split

the power P into k → ∞ �wires� (say, di�erent frequency bands), and we see below

that the opposite is true for the Poisson channel: all of the power should go into one

�ber.

(Davis, 1980) observed that given a constraint on total energy split between two

di�erent polarizations of light, it is better capacity-wise to put the energy in just one

of the two polarizations, while (Lapidoth and Shamai, 1998) note that the maximum

throughput of the Poisson multiple access channel20 is linear in the number of users,

so our observations are not new. I am using the Poisson channel as an example of our

splitting/aggregation framework and as a step to build another channel that lives in

this framework in a less extremal way in the �unifying observations� Section 5.5 �

the band-limited Poisson channel.

Only using the peak power constraint for the Poisson channel muddies this story,

since we have to imagine that aggregating the power from k �bers into one �ber boosts

the peak amplitude by a factor of k. Thus, we impose total power conservation by

uniformly distributing the peak amplitude budget between all of the �bers we are

using. We ignore here the natural-seeming mean amplitude constraint for the sake of

having a simple example of channel aggregation.

Another motivating picture is this: suppose the di�erent �bers are being used by

independent senders. Should the independent senders instead cooperate and use a

20 The relationship to the MAC comes up again in Section 5.5.2.
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single �ber? Turning many �bers into one can make the decoder more complicated21,

but does it at least help with the capacity? We return to this perspective in Section

5.5.2.

Aggregating the Poisson channel: computation

Consider the low and high �SNR� � meaning peak rate � p regimes:

C(p) ≈

{
1
8
p2 : p� 1

1
e
p : p� 1

(5.45)

Thus for the high power regime p� 1, communication over the Poisson channel is

quadratically more power-e�cent than in the high SNR regime. This statement may

seem counterintuitive from (5.45), but, as noted earlier, follows from the convexity

of C(p), so that the p � 1 regime upper bounds C(p) for all p. Let's consider what

happens when we aggregate k Poisson channels with SNR (peak power constraint) p

and capacity C into a single Poisson channel with SNR kp and capacity C
(k)
agg. Since

the capacities for independent channels add:

C(k)
agg(p) =

1

k
C(kp) ≈

{
k
8
p2 : kp� 1

1
e
p : kp� 1

(5.46)

so the aggregation boosted capacity in the low SNR regime kp � 1 and did not

change it in the high SNR regime. We compare this to the case of instead splitting

a a single Poisson channel into k noisier channels with SNR p/k with total capacity

(sum over the subchannels) C
(k)
split:

C
(k)
split(p) = kC

(p
k

)
≈

{
1
8k
p2 : p/k � 1

1
e
p : p/k � 1

(5.47)

21More complicated if we treat the single �ber as a multiple access channel and try to untangle
the individual senders at the receiver; we can imagine a single super-sender instead.
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so the splitting only hurts capacity for the Poisson channel. We can check22 that

these observations hold exactly - meaning that it is always better to aggregate than

to not aggregate or to split - for the Poisson channel capacity expression (5.44):

1

k
C(kp) ≥ C(p) ∀k ≥ 1 (5.48)

Thus for the Poisson channel, there is a large bene�t to aggregation if we start with

a low SNR (p� 1) channel and aggregate until the aggregated channel is in the high

SNR, capacity linear with power regime. This is opposite the case of the AWGN from

Section 5.2.1, where there is a bene�t to splitting a chanel with high SNR (P � 1)

until the noisier subchannels are in the low SNR, capacity linear with power regime.

As the number of aggregations k grows, we recover the linear scaling of capacity

with peak amplitude:

C(∞)
agg = lim

k→∞
C(k)
agg =

1

e
p (5.49)

The capacity of the Poisson channel (5.44) and the capacity of the aggregated

Poisson channel (5.46) are plotted in Figure 5.7. Note that we only gain much from

aggregating the channel in the ine�cient low peak amplitude (SNR), p� 1 regime.

5.5 A unifying perspective

Is there a way to unify our observations about channel splitting and aggregation so

far? Let's recall what we've seen23:

• The capacity of the AWGN is linear in the mean power constraint P in the

P � 1 regime. We can split the channel k � P times to get there.

• The capacity of the Poisson channel is linear in the peak amplitude constraint

p in the p� 1 regime. We can aggregate the channel k � p times to get there.

22 This follows from the convexity of C(p)
23We set the noise variance N = 1 for the AWGN channel and the dark count amplitude n = 1

for the Poisson channel.
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Figure 5.7: (black) capacity of the Poisson channel as a function of peak power
constraint/SNR (= p), (blue) aggregated 2 times, (magenta) aggregated 20 times,
(red) in the limit of in�nitely many aggregations. Natural log.

Of course P for the AWGN and p for the Poisson mean di�erent things, but both are

constraints on the input power. Moreover the Poisson channel is in continuous time

and its capacity has units of bits/time24, while the AWGN is in discrete time. Let's

hold our noses and plot both the AWGN and Poisson channel capacities on the same

plot in Figure 5.8.

A feeling we might have from this cartoon is that a channel is power-e�cient when

its capacity is linear in the power. The AWGN is power-e�cient at low power and

the Poisson channel is power-e�cient at high power.

24We used the dark count rate n to set the units of time in Section 5.4.1, so C(p) = 1
nC(p, n) has

units of bits.
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Figure 5.8: (red line) the capacity of the AWGN with SNR P (5.20). (blue line) the
capacity of the Poisson channel with peak amplitude (SNR) p (5.44). The dashed
line is the �bits� = �power� line.

5.5.1 The geometry of channel splitting and aggregation

Let's get at this intuition by examining the geometry of channel splitting and aggre-

gation. Figure 5.9 shows this. Recall that

C
(k)
split =

1

k
C(kP ) (5.50)

C(k)
agg = kC

(
P

k

)
(5.51)

Here �P � denotes some kind of �power� constraint that can be split or aggregated

between subchannels without reference to a particular channel. When the capacity

C(P ) is sublinear (superlinear) in P (left (right) subplot), splitting helps (hurts) and

aggregation hurts (helps).

This leads us to wonder, what if the capacity C(P ) is exactly tangent to the line

αP for some α ≥ 0 at some point P ∗? This case is shown in Figure 5.10. For reasons

soon stated we call P ∗ a �xed point.
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Figure 5.9: (both subplots) The capacity C(P ) for some channel is plotted in red.
The black line is αP for some α ≥ 0. Splitting/aggregation corresponds to reduc-
ing/increasing the power P by a factor of k, and then increasing/decreasing the
number of subchannels by a factor of k. (left/right) capacity sublinear/superlinear in
P .

The red capacity curve C(P ) does not correspond to any channel that we have in

mind. We �nd channels that exhibit this phenomenon in Section 5.5.3.

We see here that when the capacity curve C(P ) is tangent to αP at a �xed point

P ∗ for some α, then for P < P ∗ (P > P ∗) the capacity is sublinear (superlinear) in

P and so it helps to aggregate (split) the power between subchannels.

Where are all these subchannels coming from? What if we would like to do a

non-integer number of splits/aggregations to get to the �xed point P ∗? Let's forgo

the distinction between splitting and aggregation and parametrize the transformed

capacity by a parameter κ > 0:

C(κ) ≡ κC

(
P

κ

)
κ > 0 (5.52)

κ > 1 (κ < 1) corresponds to channel aggregation (splitting). We imagine perhaps

having some huge number of subchannels available to use, so we can approximate the
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Figure 5.10: (red curve) the capacity C(P ) for some channel and power constraint
P . (black line) αP for some α ≥ 0. The black line is tangent to the red curve at P ∗.
Aggregating (splitting) the power P between the subchannels boosts capacity when
P < P ∗ (P > P ∗). P ∗ is the �xed point.

number of aggregations or splits by the real parameter κ or its reciprocal. We note

that the transformation (5.52) is called the perspective of C(P ).

Let's try to �nd a �xed point P ∗ for a given capacity curve C(P ). Denote by

C ′(P ) the derivative25

C ′(P ) =
d

dP
C(P ) (5.53)

We are trying to match the tangent to C(P ) at P ∗ to αP ∗ for some α. At P ∗, the

slope is (vertical over horizontal) α = C(P ∗)/P ∗. Thus we must have

C ′(P ∗) =
C(P ∗)

P ∗
(5.54)

25 Let's assume everything is well-de�ned to proceed.
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Solving this relation for the AWGN yields P → 0. Solving this for the Poisson channel

yields p → 0. We have seen that the Poisson channel is power-ine�cient for p � 1,

so what does this �xed point mean?

To answer this, let's de�ne a dynamical system and consider the stability of its

�xed points. We imagine that a benevolent engineer is either splitting or aggregating

the channel power P whenever P does not satisfy the �xed point relation (5.54). The

model is:
d

dt
Pt = PtC

′(Pt)− C(Pt) (5.55)

where t is �time� and C ′(P ) is the derivative given in (5.53). Then d
dt
Pt = 0 when

Pt = P ∗ is a �xed point. We evaluate the stability of the �xed points by computing

the derivative of the right side of (5.55) with respect to P :

d

dP
(PC ′(P )− C(P )) = C ′(P ) + PC ′′(P )− C ′(P ) (5.56)

= PC ′′(P ) (5.57)

so the sign of the second derivative C ′′(P ) with respect to P determines the stability

of a �xed point, which seems intuitive. For the AWGN, limP→P ∗=0 C
′′|P = −1

2
< 0,

so P ∗ = 0 is stable. For the Poisson channel, the �xed point at p = 0 is unstable

since limp→p∗=0C
′′|p = 1

4
> 0; this makes sense, since we have found that channel

aggregation always increases capacity for the Poisson channel for any p > 0.

We shall see examples of channels with positive �xed points in Section 5.5.3, but

for now we make the cartoon in Figure 5.11. The red capacity curve C(P ) once again

does not correspond to any channel that we have in mind. Note that we are not using

a logarithmic P -axis in this Figure.

This channel has at least two �xed points, identi�ed in Figure 5.11 (maybe there

is an unstable one at P = 0). Call them P ∗1 < P ∗2 . Using the stability criterion

C ′′(P ) < 0, we see that P ∗1 is stable and P ∗2 is unstable. Thus, for κ = 1 + ε

and |ε| small enough, C(κ) > κC
(
P ∗2
κ

)
(see (5.52)), so both channel splitting and

aggregation increase capacity in the vicinity of P ∗2 . Neither channel splitting and

aggregation increase capacity in the vicinity of P ∗1 , which is stable.
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Figure 5.11: (red curve) the capacity C(P ) for some channel and power constraint P .
Two �xed points are identi�ed and labeled by their stability. Note that we are not
using a logarithmic axis for the power P .

This perspective o�ers a way to decide how to split a given power budget between

identical copies of a given channel with capacity C(P ): among the set of stable �xed

points {P ∗} choose the one that maximizes the slope C ′(P ∗). Split or aggregate

power so that each subchannel is operating at this power. Thus we think of a channel

operating at power P ∗ power-e�cient when its capacity is linear in P near P ∗ because

the freedom we've given ourselves (an arbitrary choice of κ in C(κ) = κC(P/κ)) can

not improve upon capacity when capacity is linear in power. The idea of power-

e�ciency when capacity is linear in the power thus arises because the freedom we've

given ourselves (an arbitrary choice of κ in C(κ) = κC(P/κ)) can not improve upon

capacity when capacity is linear in power.

5.5.2 Multiple access and broadcast channels

The cartoon in Figure 5.10 invites a loose analogy to multiple access and broadcast

channels. When the capacity is superlinear in the power parameter P , we aggregate



CHAPTER 5. ENERGY EFFICIENCY IN NOISY CHANNEL CODING 150

multiple channels into a single one to boost capacity, a bit like having a multiple access

channel (MAC). When the capacity is sublinear in P , we parcel out the power to

multiple channels, a bit like broadcasting. So far we have imagined only a single user

and have been interested only in comparing the total capacity of all of the subchannels

to the original channel, but we could also phrase things in terms of achievable rates

for the individual users. The Poisson MAC was considered by (Lapidoth and Shamai,

1998), who found that the maximum throughput is linear in the number of users,

unlike for the Gaussian MAC.

A rough sketch of a possible application for this analogy is this: imagine we are

trying to optimize the total throughput, or something else related, of a network of

nodes. The nodes talk to each other through a noisy channel with some power-like

parameter P and each is supplied with a power budget. The connectivity graph for

this network is determined by decisions made at the nodes: each node tries to divide

its power budget between a variable number of recipients so that the each node-to-

recipient link is in the power-e�cient regime. Perhaps the nodes are solar-powered

and on sunny days try to talk to more neighbors (rather than talk harder to their

current neighbors) to maximize total throughput. So far this is a vague cartoon, but

the author intends to give it thought!

5.5.3 Examples

So far we have seen that the AWGN and Poisson channel are power-e�cient (capacity

linear in SNR) at P → 0 and p→∞, respectively. It would be fun if the perspective

we developed above applied to a less extremal case. In this section we develop two

such examples.

5.5.3.1 Spectrally constrained Poisson channel

We understand this example less well than the next one, but the spectrally constrained

Poisson channel feels like a more natural channel, so we state it �rst.

What is it that makes the AWGN power-ine�cient at high SNR and the Poisson

channel power-e�cient at high peak amplitude? For the AWGN with mean power
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constraint P and noise variance N = 1, the number of distinguishable outputs26 �

roughly the size of the e�ective output alphabet - grows as logP for P � 1. For the

Poisson channel with peak amplitude p and �dark� count amplitude n = 1, we can

see that the size of the e�ective output alphabet is linear in P using this suboptimal

scheme: Divide the total transmission time T into k chunks of size T/k and for

each chunk transmit either at amplitude 1 (only the dark count amplitude) or at the

maximal amplitude p+ 1. Then we have a binary symmetric channel for each chunk

with some mutual information I per chunk, so that the mutual information over time

T between input and output for our scheme is IT = kI. Now suppose we double

the peak amplitude constraint p. Now we can a�ord to use twice as many chunks27

because we need to wait half as long to resolve that the sender is sending at peak

amplitude. Thus for our suboptimal scheme, the mutual information IT is already

linear in p.

So it feels like the Poisson channel in continuous time is letting us divide time

more �nely as p increases to boost the alphabet size, while the AWGN in discrete

time is sticking to �xed time samples. What lives in between these cases?

How about a spectrally constrained Poisson channel? We imagine that the Pois-

son input amplitude λt can't vary faster than a certain bandwidth B. (Shamai, 1993)

investigates the spectrally constrained Poisson channel for the case of a second mo-

ment bandwidth constraint and a strict bandwidth constraint (a constraint on the

spectrum support size) and derives upper and lower bounds for the capacity in these

cases. These bounds are not straightforward to apply to a Poisson channel with

a peak constraint; we make the heuristic argument below, but intend more careful

study.

The heuristic to infer the scaling of the capacity in the low and high bandwidth

regime is:

• For p� B and p� 1, the bandwidth constraint is irrelevant and the capacity

grows as p2 (see (5.45)).

26Assuming the input distribution is the capacity-achieving Gaussian distribution.
27Actually slightly more since the noise amplitude did not double.
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• For p� B, we can no longer split the peak amplitude into O(1/p) time chunks

due to the bandwidth constraint; the minimum chunk time is now of order

O(1/B).

Thus we expect the capacity to grow superlinearly in p for p � B, p � 1 and

sublinearly in p for p� 1. Thus we expect C(p) to have a stable �xed point p∗ for a

�nite p∗.

5.5.3.2 Malfunctioning channels

Here we do a more careful analysis of a particular channel whose capacity has a stable

�xed point.

We imagine a channel with some kind of power constraint P that malfunctions

increasingly often as P increases. Perhaps, for the Poisson channel with peak ampli-

tude p, the photodetector �burns out� with some probability α(p) and loses all of the

data for an entire transmission28. We can model this by �augmenting� our channel

output alphabet with an erasure symbol e.

Suppose that the channel input (output) alphabet is X (Y) and the channel matrix

is P (Y |X). We construct a new channel whose input is x ∈ X , whose output is

ye ∈ Y ∪ {e} (5.58)

and whose channel matrix is

P (ye|x) =

{
α : ye = e

ᾱP (y|x) : ye 6= e
(5.59)

where ᾱ = 1− α and α depends on the power constraint somehow. Then we leave it

as an exercise to the reader to show that the mutual information is

I(X;Ye) = ᾱI(X;Y ) (5.60)

28And then gets replaced by a working one in time for the next transmission.
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where I(X;Y ) is the mutual information for the original non-malfunctioning channel.

Thus maximizing the mutual information over the input distribution is the same

for the malfunctioning and the non-malfunctioning channel, so the capacity of the

malfunctioning channel is

Ce(P ) = (1− α(P ))C(P ) (5.61)

where C(P ) is the capacity of the non-malfunctioning channel with power constraint

P . In continuous time for a transmission of length T , we imagine that the erasure

symbol e corresponds to the loss of the entire transmission.

Let's apply this erasure augmentation to the Poisson channel with peak ampli-

tude constraint p. For our erasure model, let's assume that the probability of no

malfunction is

1− αλ(p) = e−λp (5.62)

This corresponds to the case of a constant malfunction probability per unit time29

and at least one malfunction event causing the whole transmission to be lost (causing

e to be output).

Figure 5.12 plots the capacity for the malfunctioning Poisson channel (see cap-

tion for parameters). We see that there is a stable �xed point p∗ ≈ 0.75 (satisfying

the relation (5.54)). Maybe counterintuitively, given a �xed power budget to spread

between some number of copies of this channel, the total capacity of all of the sub-

channels is maximized at p∗, rather than the global maximum of the capacity C(p)

at p ≈ 1.60.

29We should use the length T of the transmission in (5.62); we don't want to add another param-
eter, and so subsume T into λ.
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Figure 5.12: (top) (red curve) The capacity Ce(p) (5.61) for the Poisson channel

with erasure probability αλ(p) (5.62), λ = 1 tangent to the line c(p∗)
p∗
p (black line).

(bottom) the erasure probability αλ(p).

5.6 Spike trains achieve capacity for the AWGN in

the low power regime

We have seen in Sections 5.2 and 5.3 that it can be worthwhile in terms of capacity30

to split the AWGN channel with mean power constraint P and noise variance 1 (SNR

P ) into k noisier subchannels, each with mean power constraint P/k (SNR lower by

a factor of k), and that the savings are potentially large when P � k (so that the

unpsplit channel's capacity grows only logarithmically with P ) and k is at least on

the order of P .

30 and achievable rate in the �nite blocklength setting.
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A possible di�culty with this capacity-boosting approach is the increased com-

plexity of the encoder and decoder required to use the noisier subchannels: Suppose

the encoder is using the capacity-achieving Gaussian distribution on inputs for each

of the k noisier subchannels. Then as k grows, the signal in each subchannel becomes

increasingly poorly resolvable above the noise, requiring more and more work to de-

code � error-correct � the output, and so possibly making the channel splitting

impractical. One goal of this Section is to describe a communication scheme for the

AWGN that requires no error correction as the mean power constraint (SNR) goes to

0 in hopes of overcoming the encoder/decoder complexity di�culty.

The basic idea is to encode messages in the positions of a few �spikes� that rise

far above the channel noise; the decoder would threshold the channel output and

read o� the spike positions. The spikes train input distribution is very di�erent from

the capacity-achieving Gaussian distribution, so it is not clear that this has a chance

of working. In the following subsection we prove that it is possible to construct a

sequence of spike distributions that comes arbitrarily close to capacity as the SNR

P → 0 (corresponding to an increasing number of channel splits, k →∞).

We show that the block error probability for a spike-distributed input to the

AWGN vanishes as P → 0 for block lengths that grow as P decreases in a certain way,

suggesting the feasibility of the proposed message-to-spike communication scheme.

We point out what has yet to be worked out to complete the proof of the feasibility

of our proposal; the author intends to keep at it.

It would be fun to consider possible applications of these observations in consid-

ering the e�ciency and complexity of naturally occurring communication schemes

involving spike inputs, like neuron �ring.

We note the channel dispersion of the spike train input distribution turns out to

be larger than for the Gaussian input distribution, thus placing a smaller limit on the

set of achievable rates in the �nite block length setting, but possibly with a simpler

encoder/decoder. We imagine approaching the low SNR regime by splitting a total

energy budget into multiple transmissions (subchannels) and coding across the noisier

subchannels (see Section 5.3.3), so our block length goes to in�nity as the power per

symbol goes to 0.
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5.6.1 AWGN: Setup

Recall the additive white Gaussian noise (AWGN) channel with input X, output Y ,

and average input power constraint P :

Y = X + Z (5.63)

Z ∼ N (0, 1) (5.64)

E[X2] ≤ P (5.65)

Note that our noise power Var[Z] is �xed to 1, so that P sets the signal to noise ratio

(SNR) of our channel. The capacity C(P ) is given by (all logs are natural):

C(P ) =
1

2
log(1 + P ) (5.66)

Denote the capacity-achieving distribution for the AWGN by p∗(x;P ):

p∗(x;P ) =
1√
2πP

e−
x2

2P (5.67)

5.6.2 A di�erent distribution on inputs: spikes

Consider a distribution on AWGN inputs denoted by pd(x;P ) (the `d' is for �discrete�)

that has support on two distinct values31:

pd(x;P ) = p1 δ(x−K) + (1− p1) δ(x) (5.68)

31 It may seem more natural to have a symmetric support on three values, X ∈ {−K, 0,K}. This
would not alter the fraction of non-zero inputs computed in (5.70), and the sign of the input could
be used to communicate at a greater rate. We shall see that this sign contributes a vanishingly small
addition to I(X;Y ) as P → 0 32 so that most of the information is contained in the positions in
time of the spikes.
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so that X ∈ {0, K} with distribution (1 − p1, p1). To satisfy the power constraint

E[X2] = P , we have

E[X2] = p1 ·K2 + (1− p1) · 02 = P (5.69)

⇓

p1 =
P

K2
(5.70)

The idea is to make the spike height K large enough to be easily resolvable in the

presence of noise, so that the positions in time of the spikes carry the information.

The distribution pd (5.68) di�ers from p∗ (5.67) and is thus not-capacity achieving.

The goal is to choose a spike height K such that the rates achievable via the spikes

input distribution come arbitrarily close to capacity in the low SNR regime as P → 0.

We shall see that ifK grows too slowly or too quickly with the SNR P , then the spikes

will either fail to be resolvable above the noise, or will be easily resolvable, but occur

too rarely to carry enough information to come close to capacity.

5.6.2.1 Choice of spike height

Consider the following dependence of the spike height K on the SNR P :

KP,ε =
√
−2(1 + ε) logP for P < 1 (5.71)

Here ε > 0. We shall see below that this scaling gets us to a factor of 1/(1 + ε) of the

AWGN capacity as P → 0.

5.6.2.2 Output quantization

To simplify our analysis, we quantize the output of the AWGN supplied with the

spikes input into two values corresponding to the presence or absence of a spike. The

quantization can not help in terms of achievable rates, but turns out not to hurt in

that we still come arbitrarily close to the capacity of the un-quantized AWGN as

P → 0.
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Let Ȳ ∈ {0, 1} denote the quantization of the channel output Y , where ȳ = 1

(resp. ȳ = 0) corresponds to the presence (resp. absence) of a received spike. The

quantization is accomplished by thresholding the output Y :

ȳ =

{
1 : y > αK

0 : otherwise
for 0 < α < 1 (5.72)

where α ∈ (0, 1) is the threshold for our quantizer. (We could use values of α outside

this range, but then the result below would not hold.) Figure 5.6.2.2 shows the setup

for the AWGN with input X with discrete distribution, quantized output Ȳ ∈ {0, 1}
viewed as a discrete memoryless channel (DMC) between X and Ȳ .

AWGN Quantizer 
𝑋 𝑌 𝑌  

0 

1 

0 

𝐾 

𝑋 𝑌  

Figure 5.13: (top) AWGN channel with X ∈ {0, K} with quantized output Ȳ de�ned
in (5.72) is equivalent to (bottom) DMC with input alphabet {0, K}, output alphabet
{0, 1}, crossover probabilities p1→0, p0→1.

Choice of quantization threshold

For the result below to hold it turns out that we need

1√
1 + ε

< α < 1 (5.73)
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we shall see later that a reasonable choice is

α =
1 + ε/2

1 + ε
(5.74)

so as a possible choice let's set α = (1 + ε)−1/4. Note that α → 1− (from below) as

ε→ 0+ (from above). The quantization threshold moves close to the spike height as

ε→ 0.

Quantized DMC crossover probabilities

We compute the crossover probabilities between X discrete-distributed as pd and the

AWGN quantized output Ȳ :

p0→1 ≡ P[Ȳ = 1|X = 0] =
1

2
erfc

(
1√
2
αKP,ε

)
(5.75)

p1→0 ≡ P[Ȳ = 0|X = K] =
1

2
erfc

(
1√
2

(1− α)KP,ε

)
(5.76)

where erfc(x) = 1− erf(x) = 2√
π

∫∞
x
e−t

2
dt. It is useful to compute asymptotic forms

for these in the P → 0 (K →∞) limit:

p0→1
P→0−−−→ Pα2(1+ε)

2α
√
π(1 + ε) log 1

P

(5.77)

p1→0
P→0−−−→ P (1−α)2(1+ε)

2(1− α)
√
π(1 + ε) log 1

P

(5.78)

(5.79)

Moreover, we will later use the fact that p0→1, p1→0 are upper bounded by the above

limiting expressions.
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5.6.2.3 Summary of discrete input distribution

Table 5.1 summarizes the parameters of our discrete distribution for AWGN inputs

and the quantized channel output Ȳ . Figure 5.6.2.3 shows a sample input distributed

according to pd for the parameters given in the caption.

pd(x;P, ε) = p1δ(x−KP,ε) + (1− p1)δ(x) (5.80)

p1 = P/K2
P,ε =

P

−2(1 + ε) logP
(since E[X2] = P ) (5.81)

ȳ(y) = 1y>αKP,ε (5.82)

P < 1 AWGN mean power constraint
ε > 0 parameter

KP,ε =
√
−2(1 + ε) logP Spike height

α ∈
(
(1 + ε)−1/2, 1

) AWGN output quantization threshold
as fraction of spike height KP,ε

Table 5.1: AWGN discrete input distribution pd(x;P, ε, α) and output quantization
parameters

5.6.3 Results about the discrete input distribution

Suppose the AWGN input X is distributed according to the discrete pmf pd(x;P, ε),

ε > 0, P < 1 and the channel output Y is quantized as in (5.82) for a quantization

threshold α ∈
(
(1 + ε)−1/2, 1

)
, so that there is a DMC between X and the quantized

output Ȳ (c.f. Section 5.6.2.3). Then

lim
P→0

I(X; Ȳ )

C(P )
=

1

1 + ε
(5.83)

where C(P ) is the capacity of the AWGN channel (5.66). In the low SNR regime

P � 1 we can thus approximate

I(X; Ȳ ) ≈ P/2

1 + ε
(5.84)
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noise power = 1

output quantization threshold = α K

AWGN input

Figure 5.14: Sample spike-distributed AWGN input (circles) with parameters: mean
power constraint P = 0.01, ε = 0.5, spike height K =

√
−2(1 + ε) logP ≈ 3.7,

quantization threshold αK = 0.8K ≈ 3.0. The crossover probabilities (5.75,5.76) are
p0→1 ≈ 0.0015, p1→0 ≈ 0.23.

Furthermore, denoting by Pe the error probability for the point-wise input estimator

x̂ = K · 1ȳ=1 = K · 1y>αKP,ε ,
Pe = P[X̂ 6= X] (5.85)

lim
P→0

Pe

p1

= 0 (5.86)

Furthermore,

lim
P→0

H(X|Ȳ )

H(X)
= 0 (5.87)

m

lim
P→0

H(X)

I(X; Ȳ )
= 1 (5.88)

where p1 = P[X 6= 0] (5.81), so the probability of error vanishes faster than the

fraction of spikes as P → 0. The result (5.86) suggests that we might be able to

approximate the DMC between X and Ȳ as a noiseless DMC and use a simple coding
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scheme to communicate at a rate close to I(X; Ȳ ): encode the message in the locations

of the spikes. We discuss this idea in the next Section.

We further compute the variance of the mutual information density Var[i(X;Y )]

of the DMC between X and the quantized output Ȳ for input distributed according

to pd in the limit P → 0:

lim
P→0

Var[i(X;Y )]

V d
= 1 (5.89)

where

V d =
P log 1

P

2(1 + ε)
(5.90)

This quanti�es the penalty33 in achievable rate in the �nite block length regime (see

Section 5.3). Recalling that the channel dispersion for the AWGN in the low SNR

regime P � 1 is V = P + O(P 2) (see (5.32)), we see that by using the spikes

distribution pd we incur an extra factor that scales as log 1
P
. Thus, using the spikes

distribution is strictly worse than using the capacity-achieving Gaussian distribution

in the �nite block length setting. Moreover, the extra penalty in the �nite block

length regime does not go to 0 as ε → 0 34, unlike the penalty of 1
1+ε

in the mutual

information I(X;Y ) for X ∼ pd relative to AWGN capacity (see (5.83)).

Proofs and numerical results

The proofs of the above claims are given in Appendix 5.B. Some numerical results for

the discrete input distribution are given in Appendix 5.A.

5.6.4 Coding schemes

We attempt to construct a communication scheme that uses the spikes input distri-

bution by encoding our message in the locations of the spikes. The spikes distribution

33 For a DMC, the channel dispersion is given by the variance of the mutual information evaluated
at a capacity-achieving distribution. Here we are interested only in the spikes distribution pd.
34 The penalty factor is

log 1
P

2(1+ε) , so the penalty actually grows as ε → 0. Since the leading contri-

bution to the supremum of achievable rates for X ∼ pd is I(X;Y ) ≈ CAWGN/(1 + ε), we don't want
to make ε too large. Perhaps there is an optimum value of ε to use in the �nite block length regime.
The author intends to give this more thought.
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is e�cient in the low power P � 1 regime in the sense that I(X; Ȳ ) ≈ C(P ) ≈ P/2.

Thus as P → 0, the achievable rate vanishes, so we need to de�ne carefully what we

want achievability to mean in this setting.

Let's de�ne things in terms of achievable codebook sizes instead of rates; we can

make up for the vanishing rate by growing the block length n as P → 0. An (M,n, P )

code for the quantized AWGN (see Section 5.6.2.2) has a codebook of size M , block

length n, and SNR P . Instead of considering sequences of (M,n, P ) codes to de�ne

achievable rates at �xed P , we consider sequences of (M(n), n, P (n)) codes to de�ne

achievable codebook sizes, where P (n) → 0 as n → ∞ 35. Alternately, we can think

of (M(P ), n(P ), P ) codes where we choose some vanishing sequence of SNRs (Pi),

Pi → 0 as i→∞.

We can make the block length n arbitrarily large to more than make up in code-

book size for any reduction in rate as P → 0, so what n(P ) should we use? We

motivate two choices. First, a motivation for considering the P → 0 limit is that we

imagine having a �xed total power budget to split between an arbitrary number of

transmissions. In this case we would set nP constant, so that n ∼ 1/P .

Second, the spikes input scheme seems easy to use. Perhaps the decoding can

be done symbol-wise on the output of the quantized channel. What block length

should we use when using this decoding scheme? We turn to this question in the next

Section.

5.6.4.1 Symbol-wise decoding (no error correction)

Consider the following coding scheme that uses the spikes input distribution. The

message is encoded in the locations of the spikes. The decoder infers the locations

of the spikes from the quantized channel output Ȳ . No error correction is done

on the quantized output � the decoding is done symbol-wise. The lack of error

correction is potentially (if this works) an appealing feature that might make this

scheme practical. In contrast, for the case of the capacity-achieving Gaussian input

distribution, decoding can't be done symbol-wise and an increasingly complicated

decoding procedure is required as P → 0 to achieve rates close to capacity.

35We can make it a sequence by choosing some vanishing sequence of SNRs (Pi).
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When using a symbol-wise decoder (i.e. without error correction), the block error

probability goes to 1 as the block length n → ∞, so the block length can't grow

too quickly as P → 0 for the block error probability to vanish. On the other hand

the block length shouldn't grow too slowly as P → 0 in order to have a non-trivial36

achievable codebook size. We show below that the following conditions need to hold

in order to have vanishing block error probability and non-trivial codebook size.

Suppose the block length n(P ) satis�es37 for P → 0

n(P ) = Ω

(
log(1/P )

P

)
(5.91)

n(P ) = o

(
log(1/P )3/2

P 1+(1+ε)(1−α)2

)
(5.92)

n(P ) = o

(
log(1/P )1/2

P (1+ε)α2

)
(5.93)

where the channel input Xn is drawn point-wise from the spikes distribution pd, and

the decoder uses the point-wise estimator x̂i = K · 1yi>αKP,ε . Note that the upper

bounds never exclude the lower bound since α ∈
(
(1 + ε)−1/2, 1

)
. If we use the choice

(5.74) α = (1 + ε/2)/(1 + ε), then the upper bounds (5.92,5.93) become the single

upper bound

n(P ) = o

(
log(1/P )1/2

P
(1+ε/2)2

1+ε

)
(5.94)

Then the block error probability vanishes as P → 0, n(P )→∞:

lim
P→0

P
[
X̂n(P ) 6= Xn(P )

]
= 0 (5.95)

This is the sense in which we do not need error correction for this communica-

tion scheme. For n(P ) satisfying these assumptions, there exists a sequence38 of

(M(P ), n(P ), P ) codes with vanishing error probability and non-trivial codebook size

36Meaning M = 1 since we can always put at least one codeword in our codebook.
37 For example, n(P ) =

[
P
− 1+ε/2√

1+ε

]
works (satis�es (5.91) and (5.94)), where [] denotes the integer

part.
38We choose some vanishing sequence of SNRs (Pi), Pi → 0 as i → ∞. We do this, rather than

let n be the index and P (n) vanish, because it's easier to work with n(P ) than P (n).
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M(P ) as P → 0. If n(P ) exceeds the upper bounds (5.92, 5.93) and the block error

probability vanishes, then M(P )→ 1, the trivial codebook.

We would like to use instead n ∼ 1/P in order to conserve total power nP , but

this doesn't work when we use the point-wise decoder; we need the extra ε-dependent

scaling in (5.91) for this result. We are threading the needle here in choosing a block

length so that the error-correctionless scheme is asymptotically feasible, but at least

we know it is possible. As ε→ 0

Let's derive the conditions (5.91, 5.92, 5.93). For the lower bound, we want a

block length large enough so that the expected number of spikes per n channel uses

does not vanish; otherwise the probability of having at least one spike vanishes, and

the achievable codebook is trivial as P → 0, n(P ) → ∞. The expected number of

spikes is

E[# spikes] = n(P ) p1 = n(P )
P

2(1 + ε) log 1
P

(5.96)

For this not to vanish as P →∞, we choose n(P ) = Ω
(

log(1/P )
P

)
39.

For the upper bound (5.94), we want a block length small enough that the expected

number of symbol-wise errors vanishes as P → 0, n(P ) → ∞, so that the block

error probability vanishes. We computed an upper bound for the symbol-wise error

probability (5.111):

Pe = P[X̂ 6= X] = p1p1→0 + (1− p1)p0→1 (5.97)

≤ c10(ε, α) P 1+(1+ε)(1−α)2 log

(
1

P

)−3/2

+ c01 (ε, α)P (1+ε)α2

log

(
1

P

)−1/2

(5.98)

(a)
= P

(1+ε/2)2

1+ε

(
c10(ε) log−3/2 1

P
+ c01 (ε) log−1/2 1

P

)
(5.99)

where c10 and c01 depend only on ε and α and in (a) we have chosen α = (1+ε/2)/(1+

ε) so that the two terms in (5.98) vanish at the same rate P
(1+ε/2)2

1+ε . Then we can

39We could have a codebook size logarithmic in n(P ) by choosing n(P ) so that there is one spike
on average. For the lower bound (5.91), the codebook size grows faster than logarithmically. In this
Section, we only try to show that the codebook size is nontrivial.
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upper bound the block error probability

P
[
X̂n(P ) 6= Xn(P )

]
≤ n(P ) Pe (5.100)

For this to vanish, we choose n(P ) = o

(
P−

(1+ε/2)2

1+ε log
(

1
P

)1/2
)

40.

5.6.4.2 With error correction

We might still be able to use the block length n ∼ 1/P (to conserve total power nP )

if instead of using a point-wise decoder as in the previous Section, we simply use some

decoder (i.e., use error correction). How well can we do? I don't know, but I can at

least state what I would like to know.

As we discussed in Section 5.6.4, as P → 0, the rate vanishes, so we instead con-

sider achievable codebook sizes M(n, P, β) where n ∼ 1/P and β(n) is the block error

probability. A codebook size M(β) is called achievable with block error probability β

if a sequence of (M,n(P ), P ) codes exists such that supn β
(n) ≤ β as n ∼ 1

P
→∞. We

do not know if nontrivial codebook sizes are achievable with block error probability

β = 0.

Let's de�ne

PT = nP (5.101)

as the total energy budget (constant since n ∼ 1/P ). Now we seek the supremum of

achievable codebook sizes:

l∗(PT, β) ≡ sup logM(β) (5.102)

where the supremum is taken over all schemes that satisfy the total energy constraint

PT
41 and for which β(n) is upper bounded by β as n → ∞. The quantity l∗(PT, β)

has units of bits per unit energy (rather than per unit time). We can interpret it

40Had we chosen some other value of α ∈
(
(1 + ε)−1/2, 1

)
, we would get some other upper bound;

hence the two upper bounds (5.92,5.92), one for each term in the expression (5.98) for the symbol-
wise error probability.
41 That is, the input xn for any such scheme satis�es

∑n
i=1 xi ≤ PT.
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as the maximum number of bits that can be sent using a �xed amount of energy PT

with given block error probability β.

Our setting is very similar to the capacity-per-unit-cost setting, where one seeks

to communicate near the capacity-cost function C(P )/P (for an introduction to the

topic, see (Verdú, 1990)). For the AWGN with mean power constraint, (Golay, 1949)

observed that the minimum energy per bit for P � 1 is 1/2 (we set the noise variance

to N = 1), so we expect l∗(PT) ≈ PT/2 for PT � 1. Moreover, (Golay, 1949) used

a pulse position modulation scheme that involved using all of the power budget on a

single transmission communicating log2N bits, similar to our spikes distribution (we

do not �x the number of spikes per transmission).

Does a scheme that uses the spikes distribution for inputs X ∼ pd come arbitrarily

close (as the parameter ε→ 0 after the limit n→∞) to achieving l∗? We expect that

when using X ∼ pd with a �xed energy budget PT � 1 and block error probability β,

there is some optimal block length n∗(PT) that maximizes the achievable codebook:

if the block length is too small, we �nd ourselves in the ine�cient high-SNR regime

for the AWGN. If the block length is too large, then there are no spikes at all42,

yielding a trivial codebook. Equivalently we can ask, how does the codebook-size

optimal number of spikes per transmission grow with the total energy budget? Does

it grow at all, or is the single-pulse scheme of (Golay, 1949) already do as well as we

can hope?

5.A Numerical results for discrete input distribution

for the AWGN

Figure 5.A (1) shows I(X; Ȳ )/C(P ) for di�erent values of the SNR P vs. ε. The

AWGN output quantization threshold α (5.82) for these plots is

α =
1 + ε/2

1 + ε
(5.103)

42 The spike probability is p1 = P
2(1+ε) log 1

P

, so E[# spikes] = p1n ∼ p1/P = O
(

1
log 1

P

)
→ 0 as

n ∼ 1/P →∞.
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derived in (5.113) to minimize the error probability Pe (5.105) as P → 0.

Figure 5.A (2) shows other functions of the discrete AWGN input distribution

pd(x;P, ε) for di�erent values of SNR P and ε. See the caption for this �gure for

discussion.

5.B Proofs of results about the discrete input distri-

bution for the AWGN

The program is to use Fano's inequality to show that H(X|Ȳ )/H(X)→ 0 as P → 0,

so that I(X; Ȳ ) ≈ H(X) as P → 0, and then to compute H(X) in the low power

limit and show that it matches the capacity of the AWGN channel up to a factor of

1/(1 + ε).

5.B.1 Upper bound on the error probability

To apply Fano's inequality, let's compute an upper bound for the error probability

Pe. Our estimator X̂ for X given Ȳ is

x̂ = KP,ε · 1ȳ=1 (5.104)

where KP,ε is given in (5.71). Then
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Figure 5.15: I(X; Ȳ )/C(P ) (fraction of capacity of AWGN), where X is distributed
according to a discrete input distribution and Ȳ is the quantized channel output
(c.f. Section 5.6.2.3). The SNR P is held �xed for each curve and ε is varied (recall
that the spike height is KP,ε =

√
−2(1 + ε) logP ). The quantization threshold is

α = (1 + ε/2)/(1 + ε) (5.113). The thick black line 1/(1 + ε) is the limiting curve for
all ε > 0 as P → 0.
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Figure 5.16: (top) Pe/p1 at �xed SNR P (colors) vs. ε, where the error probability
Pe and p1 = P[X 6= 0] are as given in (5.85,5.81), respectively. This ratio vanishes
as P → 0 for all ε > 0 (5.86). (middle) H(X|Ȳ )/H(X) (same colors and SNR
P as above). This ratio vanishes as P → 0 for all ε > 0 (5.87). (bottom) The
ratio of the dispersion of the AWGN with the discrete input distribution pd(x;P, ε)
to the dispersion of the AWGN using the (Gaussian) capacity-achieving distribution
p∗(x;P ) (5.67) (same colors and SNR P as above). The former dispersion is computed
as Var[i(x; ȳ)] for the DMC betweenX and Ȳ (Strassen, 1962; Polyanskiy et al., 2010),
the variance of the information density between x and ȳ. The latter dispersion is given
by V (P ) = 1

2
P (P + 2)/(P + 1)2 (Polyanskiy et al., 2009). This ratio scales as (5.90)

log 1
P

2(1+ε)
as P → 0. Natural log.
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Pe = P[X̂ 6= X] (5.105)

= P[X = K, Ȳ = 0] + P[X = 0, Ȳ = 1] (5.106)

(a)
= p1p1→0 + (1− p1)p0→1 (5.107)

≤ p1p1→0 + p0→1 (5.108)

(b)
=

(
P

K2
P,ε

)(
1

2
erfc

(
1√
2

(1− α)KP,ε

))
+

(
1

2
erfc

(
1√
2
αKP,ε

))
(5.109)

(c)

≤

(
P

K2
P,ε

)(
e−((1−α)KP,ε)

2
/2

(1− α)KP,ε

√
2π

)
+

(
e−(αKP,ε)

2
/2

αKP,ε

√
2π

)
(5.110)

(d)
=

(1 + ε)−3/2

4
√
π(1− α)

·
(

log
1

P

)−3/2

· P 1+(1+ε)(1−α)2 +
(1 + ε)−1/2

2
√
πα

·
(

log
1

P

)−1/2

· P (1+ε)α2

(5.111)

where in (a) p1 = P[X 6= 0] (computed in (5.81)) and p1→0 and p0→1 are the crossover

probabilities computed in Section 5.6.2.2. In (b) we substituted the values of p1,

p1→0, and p0→1 (5.81,5.75,5.76) for the discrete input distribution. In (c) we used

an approximation for erfc(x) ≤ e−x
2
/(x
√
π) (an approximation for x � 1, an upper

bound for x > 0). In (d) we substituted our choice of the spike height KP,ε (5.71).

The boxed terms in (5.111) dominate the behavior of the error probability Pe for

P � 1, since the other terms are constant or logarithmic in the power P (at �xed

ε and α). Note that since ε > 0 and 0 < α < 1, the error probability vanishes as

P → 0, yielding (5.86) (since p1, the probability of a spike input, vanishes as well, it

is not clear that this input distribution is useful).

We might want for the two contributions to the error probability Pe to have the

same scaling with the power P to minimize Pe:

P 1+(1+ε)(1−α)2 = P (1+ε)α2

(5.112)

⇓

α =
1 + ε/2

1 + ε
(5.113)
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This is the motivation for the choice of α given in Section 5.6.2.2 and (5.74).

5.B.2 Some lemmas

We shall need the following lemmas.

Lemma 1: Given two functions q : R+ → R+, p : R+ → R+, suppose that

lim
x→0+

q(x) = lim
x→0+

q(x)

p(x)
= 0 (5.114)

Then

lim
x→0+

H(q(x))

H(p(x))
= 0 (5.115)

where H(x) = −x log x− (1− x) log(1− x) is the binary entropy function. Note that

this lemma only takes some work to prove in the case that limx→0+ p(x) = 0.

Lemma 1.1: Given x > 0, y > 0 and x and y small enough, the following identity

holds:

H(xy) < H(x)H(y) (5.116)

It is su�cient to have x, y < x∗, where x∗ ≈ 0.416 is the unique solution of H(x2) =

H(x)2 on the open interval x ∈ (0, 1).

Proof of Lemma 1.1 : Suppose that x < 1/2 and suppose without further loss of

generality that y = αx, α ∈ (0, 1]. Then

H(xy)

H(x)H(y)
=

H(αx2)

H(x)H(αx)

(a)

≤ H(αx2)

H(αx)2

(b)

≤ H(αx2)

α2x2 log2(αx)
(5.117)

where (a) follows from the monotonicity of H(x) for x ∈ [0, 1/2] and (b) follows from

keeping only one of the two terms in the binary entropy function. Now because

lim
x→0

(1− x) log(1− x)

x log x
= 0 (5.118)

then for small enough x, we can crudely upper bound the binary entropy function by

twice the term:

H(x) ≤ −2x log x for x small enough (5.119)
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Substituting this into (5.117) we obtain

H(xy)

H(x)H(y)
≤ −2

αx2 log(αx2)

α2x2 log2(αx)
for x small enough (5.120)

= − 4

α

log(αx)

log2(αx)
(5.121)

→ 0 as x→ 0 (5.122)

Thus for x small enough and for y ≤ x we have H(xy) < H(x)H(y). Switching x and

y completes the proof. � We looked at a plot to check that it is su�cient to have

x, y < x∗, where x∗ ≈ 0.416 is the unique solution of H(x2) = H(x)2 for x ∈ (0, 1).

Proof of Lemma 1 : Let's de�ne

r(x) ≡ q(x)

p(x)
(5.123)

Then

H(q(x))

H(p(x))
=
H(r(x)p(x))

H(p(x))
(5.124)

(a)
<
H(r(x))H(p(x))

H(p(x))
for x small enough (5.125)

= H(r(x)) for x small enough (5.126)

where in (a) we used the assumptions (5.114) to �nd x small enough to apply Lemma

1.1. r(x) vanishes as x→ 0+ by the assumptions (5.114), so Lemma 1 follows. �

Lemma 1 will be useful when q and p are as given in Lemma 2:

Lemma 2: For the discrete input distribution pd(x;P, ε) for the AWGN channel, let

the probability of error Pe and p1 = E[X 6= 0] be as given in (5.105, 5.81), respectively.

Furthermore, let the output quantization threshold be α ∈
(

1√
1+ε

, 1
)
. Then

lim
P→0

Pe

p1

= 0 (5.127)
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Proof of Lemma 2 :

Pe

p1

(a)
=

(
2(1 + ε) log 1

P

P

)
Pe (5.128)

(b)

≤ (1 + ε)−1/2

2
√
π(1− α)

·
(

log
1

P

)−1/2

· P (1+ε)(1−α)2 +
(1 + ε)1/2

√
πα

·
(

log
1

P

)1/2

· P (1+ε)α2−1

(5.129)

In (a) we substituted (5.81). In (b) we we used the inequality (5.111). As in (5.111),

the boxed terms dominate the behavior of the expression as P → 0. The �rst boxed

term vanishes as P → 0 with ε and α �xed by the assumptions ε > 0, 0 < α < 1.

The second boxed term vanishes as P → 0 when

(1 + ε)α2 − 1 > 0⇒ α >
1√

1 + ε
(5.130)

Since α < 1 by assumption (otherwise the quantization threshold would be greater

than or equal to the spike height) we �nd

α ∈
(

1√
1 + ε

, 1

)
(5.131)

This is the condition on α we stated without motivation in Section 5.6.2.2. This

completes the proof of Lemma 2. �

Let's put these lemmas together to obtain Lemma 3

Lemma 3: For Pe and p1 as in Lemma 2,

lim
P→0

H(Pe)

H(p1)
= 0 (5.132)

Proof of Lemma 3 : Apply Lemma 1 with q = Pe, p = p1. The conditions of

Lemma 1 (5.114) follow from Lemma 2. �

We shall also use apply Fano's inequality as stated in Lemma 4.
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Lemma 4 (Fano's inequality): Let X have the discrete distribution pd(x;P, ε) and

Ȳ be the quantized AWGN output de�ned in (5.72). Then

H(X|Ȳ ) ≤ H(Pe) (5.133)

where Pe is the error probability de�ned in (5.105).

Proof of Lemma 4 : We use the form of Fano's inequality given in Cover & Thomas

(2.140):

H(X|Ȳ ) ≤ H(Pe) + Pe log (|X | − 1) (5.134)

= H(Pe) (5.135)

where the equality follows from input alphabet X = {0, 1}, |X | = 2. �

5.B.3 Proofs of main results

Let's apply these lemmas to derive the main results stated in Section 5.6.3, starting

with the limits (5.87,5.88)

Proof of (5.86): This follows from Lemma 2 since p1 ∈ [0, 1]. �

Proof of (5.87,5.88):

We write

H(X|Ȳ )

H(X)

(a)

≤ H(Pe)

H(X)
(5.136)

(b)
=
H(Pe)

H(p1)
(5.137)

(c)→ 0 as P → 0 (5.138)

where (a) follows from Lemma 4 (Fano's inequality), (b) follows since X is distributed

according to a discrete distribution with input alphabet X = {0, 1}, and (c) follows

from Lemma 3. Thus (5.87) follows. (5.88) is equivalent to (5.87), writing I(X; Ȳ ) =

H(X)−H(X|Ȳ ) and rearranging the expression. �

Finally, let's prove the result (5.83).
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Proof of (5.83): First, let's compute H(X) in the low power limit:

H(X)

C(P )

(a)
=

H(p1)
1
2

log(1 + P )
(5.139)

(b)
=
H
(

P
−2(1+ε) logP

)
1
2

log(1 + P )
(5.140)

(c)
=

log 1
P

+ log log 1
P

+ 1 + log(2(1 + ε))

(1 + ε) log 1
P

+O(P ) (5.141)

=
1

1 + ε
+O

(
log log 1

P

log 1
P

)
(5.142)

→ 1

1 + ε
as P → 0 (5.143)

where (a) follows from the discrete distribution of X with support size of 2. In (b) we

substituted the value of p1 = P[X 6= 0] (5.81). In (c) we computed the power series

about P = 0. Note that our O(f(P )) notation corresponds to the case P → 0, rather

than P →∞.

Finally, we derive (5.83)

lim
P→0

I(X; Ȳ )

C(P )

(a)
= lim

P→0

H(X)

C(P )
(5.144)

(b)
=

1

1 + ε
(5.145)

where (a) follows from (5.88) and (b) follows from (5.143).

where in (a) p1 = P[X 6= 0] (computed in (5.81)) and p1→0 and p0→1 are the

crossover probabilities computed in Section 5.6.2.2. In (b) we substituted the values

of p1, p1→0, and p0→1 (5.81,5.75,5.76) for the discrete input distribution. In (c) we

used an approximation for erfc(x) ≤ e−x
2
/(x
√
π) (an approximation for x � 1, an

upper bound for x > 0). In (d) we substituted our choice of the spike height KP,ε

(5.71). �

Let's derive the limiting expression for the variance of the mutual information

density, Var[i(X;Y )] of the DMC between X ∼ pd and Ȳ in the limit P → 0. Recall
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from the discussion in Section 5.3.1 that this quanti�es the penalty in the supremum

of achievable rates in the �nite block length setting.

Proof of (5.95): Using sloppy methods we guess that the limiting expression for

Var[i(X; Ȳ )] is as given in (5.89)

V d =
P log 1

P

2(1 + ε)
(5.146)

Let's check that it works. First, let's compute E[i(X; Ȳ )2]:

E[i(X; Ȳ )2] =
∑
x,ȳ

p(ȳ|x)p(x) log2

(
p(ȳ|x)

p(x)

)
(5.147)

Let's recall the asymptotic forms for the DMC crossover probabilities p1→0, p0→1 in

the limit P → 0 (5.77,5.78):

p0→1 = O

Pα2(1+ε)√
log 1

P

 (5.148)

p1→0 = O

P (1−α)2(1+ε)√
log 1

P

 (5.149)

and for the spike probability p1 = p(x = K) (5.81):

p1 =
P

2(1 + ε) log 1
P

(5.150)

Thus all of the log2 terms in the expression (5.147) � except for the one corresponding

to x = ȳ = 0 � are ∼ log2 P γ for some γ, so to establish which terms of (5.147) are

dominant we must look at the prefactors p(ȳ|x)p(x). Let's �rst consider the cross
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terms (x = 0, ȳ = 1) and (x = K, ȳ = 0):

p0→1p0

V d
= O

(
Pα2(1+ε)−1 logβ01

(
1

P

))
(5.151)

p1→0p1

V d
= O

(
P (1−α)2(1+ε) logβ10

(
1

P

))
(5.152)

p0→0p0

V d
= O

(
P−1 logβ00

(
1

P

))
(5.153)

where β01, β10 are constants. We assumed that α ∈
(
(1 + ε)−1/2, 1

)
in the construc-

tion of the spikes distribution, so both of the expressions above tend to 0 as P → 0.

We can approximate the x = ȳ = 0 term by expanding the log2 for small P :

log2

(
p0→0

p0

)
=

(
1− p0→1

1− p1

)
= O

(
Pα2(1+ε) log−1/2 1

P

)
(5.154)

Therefore the ratio of this term to V d vanishes as P → 0:

p0→0p0 log2
(
p0→0

p0

)
V d

= O

(
Pα2(1+ε)−1 log−1/2 1

P

)
P→0−−−→ 0 (5.155)

(where we again used α > (1 + ε)−1/2) The only remaining term corresponds to

(x = K, ȳ = 1). Let's compute its ratio to V d as P → 0:

lim
P→0

p1→1p1 log2
(
p1→1

p1

)
V d

(a)
= lim

P→0

p1→1 log2
(
p1→1

2(1+ε) log 1
P

P

)
log2 1

P

(5.156)

(b)
= lim

P→0

log2
(

log 1
P

P

)
log2 1

P

(5.157)

= 1 (5.158)

In (a) we substituted p1 (5.150) and V d (5.146). In (b) we used p1→1
P→0−−−→ 1 and

expanded the log2 term. Thus we have found

lim
P→0

E[i(X; Ȳ )2]

V d
= 1 (5.159)
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So far we have only said something about E[i(X; Ȳ )2]. To compute the vari-

ance, we compute E[i(X; Ȳ )]2 = I(X; Ȳ )2. We already found (5.84) that I(X; Ȳ ) ≈
(P/2)/(1 + ε) for P � 1. Thus I(X; Ȳ )2 = O(P 2), so

I(X; Ȳ )2

V d
= O

(
P log

1

P

)
(5.160)

and the ratio to V d vanishes as P → 0. We thus have

lim
P→0

Var[i(X; Ȳ )]

V d
= lim

P→0

E[i(X; Ȳ )2]− I(X; Ȳ )2

V d
= 1− 0 = 1 (5.161)

This completes the proof of (5.95). �



Chapter 6

Object coding

This Chapter is a sketch of an idea for a communication scheme using whatever one

�nds at hand. The motivation is as follows: sometimes one �nds at one's disposal

many degrees of freedom to use in a memory or communication scheme, but has little

theoretical understanding of what an optimal scheme might look like (optimal, say, in

terms of error probability). We have so far encountered setups consisting of multiple

optical modes subject to photodetection, atomic systems with an internal state, and

brie�y mentioned �ash cell memories (in the previous Chapter). Characterizing an

associated noisy channel might be hard and of limited usefulness in practice - the

actual realization of the channel might di�er from our idealization, requiring di�erent

schemes or at least rendering what we �nd nonoptimal. We must make do with the

setups we �nd, but it would be nice if something about our analysis outlasts a partic-

ular setup. Is there something we can say about a broad class of hard-to-characterize

communication setups without wedding ourselves too closely to a particular channel?

This Chapter o�ers a perspective on communication with an ill-characterized channel

and suggests some ideas for constructing reasonable schemes in more speci�c settings

once details are �lled in.

The idea is roughly to create a random list of binary properties that the channel

input (we'll call it an �object� below) might have, so that the ill-characterized noise

corrupting the object approximately turns into a binary symmetric channel on the list

of properties. Section 6.1 o�ers an introductory example of what we mean and de�nes

180
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the setup more concretely. Section 6.2 applies these ideas to the case of random linear

properties � e.g., whether a certain random linear combination of vector components

exceeds a threshold. We make some observations about the possible existence of a

feasibility phase transition in this setting and conclude.

6.1 The object channel

6.1.1 An example

Suppose we are given an object with many degrees of freedom, but little idea of the

distribution of these objects, what a typical one looks like, and how the object evolves

in time or due to �noise.� For concreteness, let's suppose that our object is a pepperoni

pizza (see Figure 6.1). The pizza has many degrees of freedom - its shape, weight,

positions of the pepperonis and so on - and we suspect that it could enable quite

a bit of information to pass from sender to receiver via the pizza delivery channel,

but it's hopeless to attempt to construct a channel matrix, compute entropies, or do

anything like an optimal scheme.

Let's try to capture the information in the pizza by establishing a correspondence

between the pizzas and binary strings. Each entry of the string corresponds to a

binary property of the pizza - whether there are more pepperonis on the left on the

right, whether its weight is greater than something, whether it is delicious and so on.

The properties are not all independent of one another, but so long as their number is

not too great, there is probably1 at least one pizza that has all of them. The sender

encodes a message in this list of properties, attempts to make a pizza that satis�es

all of the properties, and gives it to the delivery person.

What is the action of the delivery channel on the pizza? This is di�cult to describe

in terms of the pizza, but easier to describe in terms of the binary string of properties.

In the example in Figure 6.1, some pepperonis fell o� or were jostled around to the

right side of the pizza, violating the �rst property, but the pizza remained large and

delicious, so the binary string of properties changed in only its �rst bit. From the

1 �Probably� meaning, say, assuming the entries are sampled Bernoulli(1/2).
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Figure 6.1: The pizza channel. The encoder uses a 3-bit Hamming code ((3,1)) to
prepare a binary list of properties. The cook then cooks some pizza that conforms
to these properties and gives the pizza to the delivery person. The receiver measures
the pizza's properties and outputs the nearest codeword in Hamming distance. The
dashed arrow is the induced binary channel between sender and receiver.

perspective of the sender and receiver, there is thus an induced binary channel (dashed

arrow). What can we say of this induced channel? If the choice of pizza properties

is a good one, then hopefully the violation of one property doesn't say much about

another. Better yet, the binary properties should be robust against the kind of noise

a�ecting the pizza2.

How can we correct errors induced in the pizza delivery channel? This is hard to

describe for the pizza, but easier for the binary list of properties: we can try using

some error-correcting code suitable for a binary symmetric channel. In the example

of Figure 6.1, the sender makes pizzas that correspond to lists of properties that are

codewords for the (3,1) Hamming code (000 or 111). Thus error correction is achieved

through the outer code. No error correction is done on the pizza itself since we are not

interested in reconstructing the input pizza, only the corresponding list of properties.

Additionally, if the cook fails to prepare a pizza that conforms to all of the properties,

2 e.g., a bit corresponding to the property �the weight is an even number of grams� would probably
�ip with probability a half, so we would not want to use this property too much.
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this can be lumped into the action of the channel, and hopefully error-corrected by

the outer code.

We could even use what we learn about the induced binary channel to make

estimates about the size of the set of typical pizzas and of how noisy the channel

is. For example, we could try encoding ever longer Bernoulli(1/2)-distributed lists of

properties (the properties would have to be randomly generated somehow), until we

begin to fail to cook corresponding pizzas. We could measure how many bits �ip per

channel use for these randomly generated lists of properties.

So far, this is a loose set of thoughts. Things become a bit more concrete in the

next Section, and we present some explicit schemes in Section 6.2.

6.1.2 A block diagram

Figure 6.2 shows the schematic diagram corresponding to our object coding scheme,

formalizing and setting up notation for the preceding example. There is an outer code

intended for use on a binary symmetric channel implemented by the encoder/decoder

pair. The encoder maps messages W to binary lists of properties Xm. The channel

accepts object S as input and produces a noisy object S̃ as output according to

channel matrix P (S̃|S), so we must somehow prepare an object that corresponds to

the list of properties Xm. The receiver measures those same properties to produce

binary string Y m, which is then given to the decoder to produce an estimate Ŵ for

the intended message.

The ingredients needed for this scheme to work are:

• A way of choosing a �random� set of binary properties. The properties should

not be too many (so that at least one object possesses all of them), not be too

redundant (so changing one is informative about many others), and not be too

susceptible to the actual channel noise.

• A way of preparing an object that corresponds to a random list of properties -

this is a random constraint satisfaction problem.

• A way of measuring the set of properties of the received noisy object.
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𝑆  𝑆 

𝑋𝑚 𝑌𝑚 

Channel 
𝑃(𝑆 |𝑆) 
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Encoder Decoder 𝑊 𝑊  

Figure 6.2: Object coding. The encoder maps the messageW into a binary string Xm

corresponding to an assignment of properties of an object. An object S is prepared
that corresponds to this set of properties and is sent through the channel to produce
a noise-corrupted object S̃ according to the channel matrix P (S̃|S). The receiver
measures the same set properties of S̃ that the sender used and produces binary
string Y m, which is passed to the decoder to obtain a guess Ŵ for the intended
message.

It would also be nice if it were easy to extend the list of properties by perturbing

the object; if we use some message-passing scheme to make objects that correspond

to a list of properties, it might be possible to run the scheme a bit longer after adding

a few more constraints until all are satis�ed. It might also be ok if no object is

found that satis�es all of the properties, but only most of them, as this case can

be lumped into a noisier induced binary channel between lists of properties and our

measurements of those properties.

Acting randomly and using random constraints to achieve good performance for

information processing is nothing new: there are e�cient random constructions for

LDPC codes (the properties are parity check constraints that include a uniformly

randomly drawn set of bits), for compressed sensing (the properties are random linear

functions of the object), for the construction of probabilistic data structures like

Bloom �lters (the random properties are a collection of hash functions), and for

many other things.

Our contribution here is an amalgamation of some of these ideas into the per-

spective of Figure 6.2. In a random LDPC code, a set of randomly-drawn constraints

must all have the same value (the parity checks must evaluate to 0); in our case,
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we think of the parity checks as carrying a message � the parity checks can be

randomly assigned to 0 or 1 and the bits are responsible for taking on values that

correspond to this message. Our observer makes a set of measurements of the same

randomly-generated properties that the maker used to prepare the object; unlike in

compressed sensing, our goal is not to reconstruct the underlying object from these

measurements, but to recover the binary list of properties that was encoded in the

object. The hash functions used in a Bloom �lter are ideally as brittle with respect to

variations in the input data as possible to minimize false positive probability; for our

purpose, we would like to instead �nd properties that are as insensitive to channel

noise as possible.

The next Section presents an explicit construction that follows this approach.

6.2 Linear properties

In this Section we consider a particular instance of the coding schemes outlined above

suitable for objects that are distributions or more generally collections of numbers.

We aim to create random descriptions of our objects using linear constraints. The

object preparer in this case becomes a linear program solver. The object measurer

becomes a matrix multiplication followed by thresholding.

6.2.1 Setup

Imagine we have the following setup: Our object is a collection of n wires or bins

that each carry some amount of stu�. If these are optical channels, then perhaps

we split some total amount of power between them. If the bins are cells in a �ash

memory, then we are loading some number of electrons in each bin. The observation

model depends on the particular system we are imagining: for optical channels, the

observations in a �xed unit of time might be a Poisson-distributed number of clicks,

with mean determined by the power in the channel plus some background noise rate;

for cells in a �ash memory, we might have something more complicated as we measure
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Figure 6.3: Factor graph for the setup in 6.3. The factor a corresponds to a linear
constraint on the variable nodes in ∂a with coe�cients cai.

the charge in each bin. We will make more concrete assumptions as we need them,

but for now let's set some notation:

si : amount of stu� in bin i for i ∈ {1, . . . , n} (6.1)

s̃i : observation of bin i (6.2)

The assumptions we will need are that s, s̃i ∈ R and that the expectation E[s̃i] is

linear in si.

We de�ne things with respect to the bipartite graph shown in Figure 6.3. Here

the circles correspond to our n bins and the squares correspond to m constraints. We

follow the notation of (Mézard and Montanari, 2009), where i ∈ {1, . . . , n} indexes
the bins, a ∈ {1, . . . ,m} indexes the constraints, and ∂a ⊂ {1, . . . , n} is the set of bins
connected to the a-th constraint (similarly, ∂i is the set of constraints that include

bin i).

The constraints are some functions fa(∂a, xa) of the bins ∂a and the constraint

setting xa. Recalling the discussion of Section 6.1.2, in our scheme we think

of the constraint settings (x1, . . . , xm) as encoding a message. The function fa

must evaluate to a value in some acceptance set for the constraint to be consid-

ered satis�ed. For example, in the parity check code setting, the constraints are

fa(∂a, xa) =
(⊕

i∈∂a si
)
⊕xa = 0 (mod 2) and the settings are restricted to xa = 0∀a.
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We impose linear constraints on our object (the collection of n bins). Let the a-th

constraint be of the form

xa ·

(∑
i∈∂a

caisi

)
> 0 (6.3)

where

xa ∈ {−1,+1} (6.4)

cai ∈ R (6.5)

where xa is the setting of the a-th constraint, and {cai}i∈∂a is a set of coe�cients (we

shall draw them randomly as described below). Recall from the discussion in Section

6.1.2 that the sender shall seek to exhibit an assignment of the bins sn that satis�es

the m constraint settings xm. The receiver receives a noisy measurement ym and

forms an estimator for the constraint settings by measuring the object � computing

and thresholding the constraint values:

ya = sign

(∑
i∈∂a

cais̃i

)
(6.6)

where we have to de�ne sign(0) somehow.

So long as E[s̃i] is proportional to si and there is not much noise, we expect ya

to be be a good estimator for xa. We shall assume a particular channel (AWGN) in

Section 6.2.6. How do we �nd the sn corresponding to all constraints? This involves

solving a linear program as described in Section 6.2.3.

6.2.2 Robustness to noise

Suppose we have values sn that satisfy the constraint settings xm in (6.3). Leaving

for now aside the issue of �nding this assignment, how robust is it to noise in the

channel? That is, how likely is it that the measured constraint setting ya = xa (6.6)?

We have not said what the channel is yet, but we can make this observation: since

the constraints are linear, we can scale our si → αsi for any positive α to produce

another satisfying assignment and to satisfy the power constraint (6.20) for arbitrarily
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low P . As α → 0, the scheme becomes increasingly vulnerable to noise in that the

probability P (ya 6= xa)→ 1/2. We shall make this observation more precise once we

�x a particular observation channel (we shall use the AWGN in Section 6.2.6).

We can add robustness to noise to our scheme by insisting that not only are the

constraints (6.3) satis�ed, but satis�ed by some positive margin b, which we shall try

to make as large as possible without violating the power constraint. That is, we seek

an assignment sn that in addition to (6.3) satis�es for all constraints a ∈ {1, . . . ,m}∣∣∣∣∣∑
i∈∂a

caisi

∣∣∣∣∣ ≥ b (6.7)

Of course once we have some assignment of the bin values sn that satis�es all of

the linear constraints (6.3), we can set s′ = αs for α large enough so that the margin

constraint (6.7) is satis�ed for any positive b. To deal with this, we must impose

another constraint to bound the maximum size of the bin values. A constraint on the

L1 norm of s is straightforward to add:

1

n
‖s‖1 =

1

n

n∑
i=1

|si| ≤ L (6.8)

If we are using a power-constrained AWGN with input s, we want instead a constraint

on the L2 norm of s, but this would not �t neatly into a linear program solver. We

discuss this issue in Section 6.2.3. We could also instead use a peak-value linear

constraint like |si| ≤ L ∀i, but stick to the L1 norm constraint in the discussion that

follows.

Figure 6.4 shows this setup. Our object preparation task is loosely like the inverse

of classi�cation by a support vector machine (SVM). An SVM tries to �nd a linear

boundary that separates a set of labeled points with the largest possible margin. We

start with the labels (xm) and a �xed boundary (at 0) and try to move the points

around to opposite sides with the largest possible margin. There are many possible

variations on this (e.g., more than binary constraint settings), but we stick with this

setup in the following discussion.
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Figure 6.4: Linear constraints (values shown as black dots) satis�ed with margin b > 0
(dashed lines). Red numbers indicate constraint settings. Three of the constraints
(2, 3, and 5) are active � satis�ed with equality.

6.2.3 Optimization problem

We are now ready to state the optimization problem to be solved by our encoder,

which maps constraint settings xm to bin values sn.

6.2.3.1 Optimization problem P1

Let X denote the m×m diagonal matrix Xaa = xa ∈ {−1,+1}, C denote the m× n
matrix formed by the constraint coe�cients, C = (cai), s ∈ Rn denote the vector sn,

and the scalar b denote the constraint satisfaction margin (P1):

arg max
s,b

b (6.9)

subject to

XCs ≥ 0m×1 (6.10)

|Cs| ≥ b 1m×1 (6.11)

1

n
‖s‖1 ≤ L (6.12)
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where 0 and 1 denote vectors of all 0s, 1s, respectively, of the sizes indicated and the

inequalities and absolute value are meant point-wise for all elements when comparing

two vectors. Appendix 6.A shows how to turn (P1) into a linear program in standard

form.

For the natural case of the mean-power-constrained AWGN, we would instead

want to solve another optimization problem:

6.2.3.2 Optimization problem P2

In the notation of optimization problem (P1),

arg max
s,b

b (6.13)

subject to

XCs ≥ 0m×1 (6.14)

|Cs| ≥ b 1m×1 (6.15)

1

n
‖s‖2

2 ≤ P (6.16)

We have replaced the linear constraint ‖s‖1 ≤ nL with a quadratic constraint

‖s‖2
2 ≤ nP . The quadratic constraint appears to be a �y in the ointment because it

prevents us from applying a linear program solver to this problem3. It doesn't change

the convexity of the problem4, however, and there exist methods to solve (P1) exactly

(e.g., (Martein and Schaible, 1987)). We deal with this issue using an approximate

method outlined below.

We would really like to just use a linear program solver to keep the computations

simpler and easy to code up (and possibly easier to implement in a device that used

this scheme), so we resign ourselves to an approximate method: we adapt the solution

to (P1) to obtain an approximate solution to the power-constrained problem (P2).

3 The absolute value constraint (6.11) and the L1 norm constraints aren't linear either, but can
be massaged into a linear form using a standard trick, as shown in Appendix 6.A.

4 Because {s : ‖s‖22 ≤ nP} is a convex set that we intersect with the simplex formed by the linear
constraints.
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Here �approximate� means that the solution satis�es all of the linear constraints and

the power constraint, but the margin b might not be maximal.

Method to solve (P2) approximately:

Input: Constraint matrix C, constraint settings xm, and power constraint P .

Output: Solution to (P2) (if it is feasible): bin values sn(= s) satisfying the

linear constraints and the power constraint with (possibly-not-maximumally

large) margin b > 0.

1. Solve (P1) using a linear program solver to obtain solutions b′ and s′ (if it is

feasible).

2. Find α > 0 s.t. ‖αs′‖2
2 = P .

Return s = αs′, b = αb′.

That is, we solve the L1-constrained problem (P1) and then scale the solution

until it satis�es the power constraint of (P2). How do we know that scaling s = αs′

yields another set of assignments that satis�es all of the linear constraints? This

follows from the linearity and homogeneity of the constraints (6.10) and is shown in

Appendix 6.A. How close is this approximate solution to the solution of (P2)? We

don't know, but we o�er some observations for estimating this in Appendix 6.A.

It is possible that (P2), (P1) are infeasible (have no solution) 5, in which case we

declare an error. We expect that if the number of constraints is too large, a �typical�

set of constraints is infeasible. We investigate this issue in Section 6.2.5 and observe

evidence of a feasibility phase transition in the number of constraints.

6.2.4 Constraint matrix ensemble

Let's make things concrete by �xing an ensemble of constraint satisfaction problems

for our encoder to solve. For the imagined bene�t of practicality, we don't want these

5 Since s = 0, b = 0 is always a solution, we call a problem infeasible if it is infeasible with margin
b > 0. We use non-strict inequalities in (P1) and (P2) since inputs for linear program solvers are in
this form (this way we can �nd a maximum over a closed set).
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problems to be too hard for a linear solver to solve, so let's use an ensemble of sparse

constraints. That is, only a few of the coe�cients cai in each constraint (6.3) are

non-zero, so the bipartite factor graph of Figure 6.3 is a sparse graph. There are two

things to specify in order to �x the constraint ensemble:

• The constraints factor graph � which constraints are non-zero.

• The values of the constraints coe�cients cai.

There are two popular ways to de�ne ensembles of sparse graphs. The one we use

is: given n variable nodes (�bins�) and m constraint nodes, we �x the degree of each

constraint node to some value k, and for each constraint node a draw the boundary

∂a uniformly randomly from the set of subsets of {1, . . . , n} of size k (there are
(
n
k

)
such subsets). Another way to de�ne a sparse graph ensemble is to de�ne a �xed

probability for each of the k-subsets to correspond to a constraint, and then draw the

constraints independently with this probability; here the total number of constraints

is binomially distributed6. We stick to the former method in the discussion that

follows. We set

|∂a| = k ∀a ∈ {1, . . . ,m} (6.17)

for some integer k. We then uniformly randomly draw k distinct variable nodes and

connect them to the a-th constraint. How do we set the number m of constraints?

We discuss this question in Section 6.2.5.

What of the coe�cient values cai? Let's use the popular choice (e.g., from com-

pressed sensing) to sample from the standard normal distribution:

cai ∼ N (0, 1) iid ∀a, i (6.18)

Another reasonable choice is to sample cai ∈ {+1,−1} iid ∼ Bernoulli(1/2) ∀a, i. The
Bernoulli ensemble might seem more suitable than the Gaussian ensemble for a prac-

tical implementation, since then checking whether the constraints are satis�ed or not

(or measuring the channel output as in (6.6)) involves only two possible edge values

6We encountered another ensemble in Chapter 2 in our photonic scheme to decode LDPC codes.
There, the degree of each variable and constraint node was �xed, and the edges were drawn uniformly.
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±1, possibly simplifying a circuit implementation. We provide numerical results for

both the Gaussian and Bernoulli ensembles in Section 6.2.6.

Recall that the actual constraint matrix used in the optimization problem (P1),

(P2) is XC, where X is a diagonal matrix of constraint settings, xaa ∈ {+1,−1} iid
∼ Bernoulli(1/2) ∀a. Thus the distribution of values cai should be invariant under

sign change, cai → −cai, as the Gaussian and Bernoulli distributions are.

6.2.5 Evidence of a feasibility phase transition

We have now speci�ed the ensemble of constraints, but have not yet �xed the number

of constraints. We proceed to investigate the feasibility of our linear constraint sat-

isfaction problem as a function of the number of constraints in this Section. We can

consider this question without reference to any communication scheme at all (though

this motivation led us here); below we put this question in the context of related

work.

Let's consider what happens when we increase the ratio m/n of the number of

constraints to the number of bins. Perhaps as the ratio m/n grows beyond some

threshold the probability of feasibility decreases dramatically. This happens, for

instance, for random constraint satisfaction problems like K-SAT (see (Mézard and

Montanari, 2009)) and for randomly drawn LDPC codes7. (Gamarnik, 2004) proved

the existence of such a phase transition for random linear constraint satisfaction

problems, but drawn from a di�erent ensemble8 than the one we are interested in.

Figure 6.5 shows this scenario for several conditions (see caption; A nice thing

about linear programs is that we can establish feasibility in time polynomial in the

problem size9 in contrast to, e.g., number partitioning10). We see that when the

constraint size |∂a| is large enough (4 appears su�cient), then most randomly drawn

linear programming programs (P1) are feasible for m/n < 2 and not feasible for

m/n > 2. The case of a |∂a| = 2 seems to have a smaller threshold near m/n = 1.

7Drawing too many constraints results in a code space that contains only the all 0s codeword.
8 (Gamarnik, 2004) studied the linear programming relaxation of K-SAT.
9 Though we entrusted our fate to Matlab's implementation of a linear program solver.
10 This is the problem of determining whether it is possible to partition a set of numbers into two

sets with equal sum. For a discussion of the feasibility transition see (Mézard and Montanari, 2009).
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Figure 6.5: Fraction of linear programming problems (P1) that are feasible. The
problems are randomly drawn from the ensemble of Section 6.2.4 (cai ∼ N (0, 1)).
Parameters are indicated in the legend. We sampled 100 problems per parameter
setting. We used Matlab's linear program solver.

We observe that, encouragingly for our interpretation of this as a feasibility phase

transition, the crossover from feasibility to infeasibility becomes steeper as n (the

number of bins) grows near m/n = 2 (for |∂a| ≥ 4). Figure 6.6 shows the same thing

as Figure 6.5, but for the cai ∈ {+1,−1} ensemble. The transition to infeasibility for

|∂a| = 2 seems less sharp than for the cai ∼ N (0, 1) ensemble (Figure 6.5).

How can we understand these phenomenona?

The large |∂a| case

A heuristic argument for the case of |∂a| large enough is as follows: at least one

solution to the LP problem is at a vertex of a convex polytope of dimension n 11. The

11Actually n+ 1, since we are treating the margin b on the same footing as the n bin values; See
Appendix 6.A.
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Figure 6.6: Same as Figure 6.5, but with the constraint coe�cients drawn
Bernoulli(1/2) cai ∈ {+1,−1}.

number of faces meeting at a vertex is n 12, so there are n �active� constraints at this

solution � inequality constraints that are satis�ed with strict equality.

Now suppose we have some assignment of bin values and impose one more

randomly-drawn linear constraint from the ensemble of Section 6.2.4. With prob-

ability 1/2 this constraint is already satis�ed by the current bin assignment. The

other half of the time we must change our assignment in order to satisfy the new

constraint, so this new constraint becomes active. So we expect to be able to add

about 2n constraints so that n of them are active. Adding more constraints would

require more than n active constraints at a solution, which happens with probability

0. Thus we expect to exhibit an assignment of n bins that satis�es the m constraints

for m < 2n, and for no such assignment to exist for m > 2n.

12More than n faces can meet at a vertex, but this happens with probability 0 for randomly drawn
constraints, as in our case.
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The case |∂a| = 2

What about the case |∂a| = 2? There appears to be a smaller threshold, perhaps

neear m/n = 1, for the transition between feasibility and infeasibility (see Figure

6.5 for the Gaussian ensemble; the transition for the Bernoulli ensemble appears less

sharp in Figure 6.6). We have concocted another post-hoc heuristic for this case:

When each constraint includes exactly two bins, then we can replace the bipartite

factor graph of constraints (see Figure 6.3) with another graph G that has only the n

variable nodes and connects two variable nodes whenever these two nodes appear in

the same constraint. So long as G is a tree, we can �nd an assignment of the variable

nodes (bins) that satis�es all of the constraints � for each connected component, take

a leaf, and then work outwards towards the other leaves, making sure each constraint

is satis�ed13.

What if G has a cycle of size c? The cycle corresponds to c constraints on c

variables, so there is at least one satisfying assignment of the variables. If G contains

another distinct cycle involving the same c variables, then we have overconstrained

these variables and with probability 1 there is no satisfying assignment. How many

edges can G have before it has two distinct cycles on the same set of variables? Let's

recall a result about Erd®s-Rényi random graphs (Erd®s and Rényi, 1960): suppose

m/n > 1, then G has O(n) cycles with probability tending to 1 as n → ∞. If

m/n < 1, then G has no cycles with probability tending to 1 as n → ∞. We

moreover want to �nd distinct cycles in the same connected component, but this

follows from another property of Erd®s-Rényi graphs: if m/n > 1, then G has a

giant component (O(n) vertices) with probability tending to 1 as n→∞. This giant

component includes O(n) of the cycles, so it contains distinct cycles. Thus we expect

to exhibit an assignment of n bins that satis�es the m constraints for m < n, and for

no such assignment to exist for m > n.

13 e.g., suppose s1 and s2 are connected via the constraint −3s1 + 2s2 > 0⇒ s1 <
2
3s2. Then set

s1 = 0 and s2 = 1 and move on to the neighbors of s2. The procedure might only fail if we make
our way back to s1, but this can not happen since G is a tree by assumption.
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We have given heuristics for computing a feasibility threshold at m/n = 2 for

large-enough |∂a| and at m/n = 1 for |∂a| = 1 and presented numerical evidence for

this phenomenon (see Figures 6.5 and 6.6). Of course an actual proof would be nice!

6.2.6 Additive white Gaussian noise

We have examined the feasibility of random linear constraint satisfaction problems

in the previous Section, but not yet talked about using these constraints as part

of a communication scheme. Let's make our scheme more concrete by assuming a

particular observation model, the additive white Gaussian noise (AWGN) channel.

That is,

S̃i = Si + Zi where Zi ∼ N (0, 1) ∀i (6.19)

where we are using noise variance N = 1. We can endow our AWGN with a mean

power constraint on any set of settings sn used as the channel input:

1

n

n∑
i=1

s2
i ≤ P (6.20)

The mean power constraint presents a di�culty for us in that it is not linear in Sn.

We shall discuss some ways of circumventing this di�culty later.

There are several reasons why applying our object coding idea to the AWGN is

probably a poor idea. The AWGN doesn't well model the photon counting channel

we discussed in Chapter 4 (the number of clicks per wire is approximately normal

for many clicks, but can not be negative), and there are more accurate models for

the �ash memory cell readout channel (Bez et al., 2003). Moreover, since so much is

known about the AWGN, it is unclear why anyone would ever use our funny random

linear constraints scheme. We use the AWGN results to see if there is any promise

to our scheme, to evaluate its performance, and to gain some intuition about the
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linear constraint setting through an explicit example that might be relevant for other

channels14.

Beyond some numerical observations, the story stops here. First, given an assign-

ment of bin values sn that satis�es |Cs| ≥ b > 0, for each constraint a we can estimate

the probability P (ya 6= xa) that the measured constrained setting does not match the

input constraint setting. We can do this by recalling that (6.6)

ya = sign

(∑
i∈∂a

cais̃i

)
(6.21)

The sum is normally distributed since each term cais̃ ∼ N (s, c2
ai), so we can straight-

forwardly compute error probabilities. This computation is less useful for estimating

a mean error probability over all constraints because the measured values of the con-

straints are not independent, since the measurements ya are correlated due to the

constraints graph structure. In our numerical experiments we estimate the mean

error probabilities by random sampling.

The bigger each constraint size (|∂a|), the more terms are in the sum (6.21),

increasing the probability of an error. On the other hand, as |∂a| grows it becomes

easier to satisfy a constraint by a larger margin b without violating other constraints

because there are more total bins in the support of each constraint to adjust. Which

of these e�ects wins? First let's de�ne a performance measure for our scheme.

Let's de�ne the mean error probability averaged over the all m constraints :

Pe =
1

m

m∑
a=1

P (ya 6= xa) (6.22)

14 Besides, in the process we ended up gaining some intuition about coding schemes for the AWGN
in the low signal to noise (SNR) regime (P � N = 1) that lead to the coding scheme presented in
Section 5.6
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Next let's pretend that we have a memoryless binary symmetric channel15 with chan-

nel matrix

P (y|x) =

{
1− Pe : y = x

Pe : y 6= x
(6.23)

Let's approximate the maximum throughput rate of our object coding scheme by the

capacity of this BSC and call this approximation Robj:

Robj = 1−H(Pe) (6.24)

whereH(·) is the binary entropy function. If there arem constraints, then the number

of bits we are sending through using the linear constraints coding scheme is

Nobj = (# bits sent by random linear constraints scheme) ≈ mRobj (6.25)

There is some non-vanishing probability of error since m < ∞, but we ignore this

issue here. Finally, let's compare this to the maximum number of bits we can send

using any scheme at all for the AWGN with mean power constraint P :

NAWGN = (max # bits sent over AWGN) ≈ nCAWGN(P ) =
n

2
log

(
1 +

P

2

)
(6.26)

The ratioNobj/NAWGN is one measure of performance. Given that with some probabil-

ity our linear constraint problems turn out to be infeasible, let's treat the infeasibility

case as an �erasure,� so the receiver has no information about the constraint settings

xm. Then the rate for our linear constraints scheme is reduced by the complement of

the probability of an erasure. Thus the performance metric we use is

NobjPfeas

NAWGN
(6.27)

where Pfeas is the probability that a randomly drawn constraint satisfaction is feasible

for some parameters. Figure 6.7 plots this measure of performance for the same

15 It isn't memoryless because the ya measurements are correlated due to the constraints factor
graph structure (see Figure 6.3).
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Figure 6.7: Estimated fraction of AWGN with SNR P = 1 capacity, measured by
NobjPfeas
NAWGN

(6.27). The problems are randomly drawn from the ensemble of Section 6.2.4
(cai ∼ N (0, 1)). Parameters are indicated in the legend. We sampled 100 problems
per parameter setting. We used Matlab's linear program solver.

parameters as Figure 6.5. We are using the AWGN with SNR P = 1. Figure 6.8

shows the same thing as Figure 6.7, but for the cai ∈ {+1,−1} ensemble.
We see for the cai ∼ N (0, 1) ensemble (Figure 6.7) that we come closer to AWGN

capacity as the constraint size |∂a| grows. The optimal ratio of constraints to bins

seems to be near m/n ≈ 1/2. For the cai ∈ {+1,−1} Bernoulli(1/2) ensemble (Figure

6.8), we see that small constraint sizes seem to do better than large constraint sizes

form/n < 0.5, while the curves for the large constraint sizes look similar to the curves

in Figure 6.7.

These �gures appear discouraging: simply using quantized ±1-valued inputs to

the AWGN channel with SNR P = 1 gets us within about 0.74 of capacity, while

none of the curves in Figures 6.7 and 6.8 rise above about 0.4.

The motivation for the random linear constraints coding scheme is to make

some not-too-ine�cient communication over ill-understood channels, rather than the

AWGN, so this outcome is perhaps not surprising. We could do better if the receiver

attempted error correction whenever the received constraint was satis�ed by less than

the expected margin b. Finding the nearest margin-satisfying set of bin values to some
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Figure 6.8: Same as Figure 6.7, but with the constraint coe�cients drawn
Bernoulli(1/2) cai ∈ {+1,−1}.

other set of bin values is a non-convex optimization problem16, so we cannot easily

use another linear program solver for this task. Perhaps some message-passing pass-

ing scheme on the constraints factor graph can be devised to implement this error

correction (though having error correction con�icts with the picture of leaving error

correction to the outer code of Figure 6.2).

Finally, let's take a look at a histogram of bin values that a linear program solver

found to satisfy some randomly-drawn linear constraints. Figures 6.9 and 6.10 show

this for the Gaussian and Bernoulli(1/2) constraint coe�cients ensembles, respec-

tively. We chose to set the number of constraints and variables equal (n = m = 200)

based on our previous observations � the problem is probably feasible and does rea-

sonably well in terms of fraction of AWGN capacity versus other parameter settings

(see Figures 6.7 and 6.8).

We see that a large number of all variables (about a third) is �xed at 0. As we

increase the number of constraints, more and more constraints become active and

the peak at bin value s = 0 decreases. Eventually the problems become infeasible.

16 To see this, suppose our only constraint is |s1| ≥ 1 and we receive s̃1 = 0. Then we can satisfy
the margin by either increasing or decreasing s̃1 by 1. The sum of these solutions leaves s̃1 unchanged
and the margin remains unsatis�ed, so the set of solutions is non-convex.
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Figure 6.9: Histogram of sn � bin values satisfying a random constraint problem
drawn from the ensemble of Section 6.2.4 (cai ∼ N (0, 1)). Here m = n = 200,
|∂a| = 16 ∀a, and 1

n
‖x‖1 = 1. For this sample 1

n
‖x‖2 ≈ 2.52. We used Matlab's linear

program solver.

These observations and optimism about this scheme inspired us to try (Section 5.6

the discrete input distribution as a capacity-achieving input for the AWGN in the

low SNR regime.

6.A Maximizing the constraint margin with linear

programming

This Appendix shows how to map the optimization problem (P1) in Section 6.2.3

into a linear programming problem in a standard form. We also make some obser-

vations about the solutions of (P1) that justify linearly scaling these solutions to

approximately solve (P2) in Section 6.2.3.
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Figure 6.10: Same as Figure 6.9, but with the constraint coe�cients drawn
Bernoulli(1/2) cai ∈ {+1,−1}. For this sample 1

n
‖x‖2 ≈ 2.24.

6.A.1 Arranging (P1) in standard form

Let's recall the statement of optimization problem (P1): Given constraint settings

xm ∈ {+1,−1}m, constraint coe�cients cai ∈ R, and L > 0:

�nd s, b that

maximize b

subject to

XCs ≥ 0m×1 (6.28)

|Cs| ≥ b 1m×1 (6.29)

1

n
‖s‖1 ≤ L (6.30)

where X is a m ×m diagonal matrix Xii = xi, C is a m × n matrix formed by the

constraint coe�cients C = (cai), and s denotes s
n viewed as a column vector.
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The standard form of a linear program is: Given Am×n, bm×1, and cn×1:

�nd x that

maximizes c · x

subject to

Ax ≤ bm×1 (6.31)

x ≥ 0n×1 (6.32)

where the �standard� quantities are underlined to avoid confusion with our variables.

There are two standard tricks to apply to convert (P1) into standard form. The

�rst is to turn the absolute value constraint (6.29) into a linear constraint. This can

be done by writing:

|si| ≤ b (6.33)

m

si = s+
i − s−i (6.34)

0 ≤ s+
i ≤ b (6.35)

0 ≤ s−i ≤ b (6.36)

so we have broken each bin value si → (s+
i , s

−
i ) into a positive and negative part that

satisfy linear constraints.

Second, the problem (P1) seeks to maximize the margin b in (6.29). We can handle

this by appending the margin b to the list of bin values sn. The vector to maximize

c is then 0 for every entry except the one corresponding to the margin b, where it is

positive. We must also modify the constraints matrix A to have a rightmost column

of 1s for the margin variable b. Below we state explicitly what these sentences mean.
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Putting these two tricks together, we map to a linear programming problem in

standard form thus:

A(m+1)×(2n+1) =


1

−XC XC
...

1

1 · · · 1 1 · · · 1 0

 (6.37)

x(2n+1)×1 =
[
s+

1 · · · s+
n s−1 · · · s−n b

]T
(6.38)

b(m+1)×1 =
[

0 · · · 0 nL
]T

(6.39)

c(2n+1)×1 =
[

0 · · · 0 0 · · · 0 1
]T

(6.40)

where the ±XC blocks act on the positive and negative parts of s. The −XC block

is �rst because in (P2) we have a lower bound constraint (6.28), while in the standard

form for linear programming we have an upper bound constraint (6.31). The last row

of A corresponds to the constraint (6.29) ‖s‖1 ≤ nL. We can now use a linear program

solver to solve this problem and pull out the solutions sn and b to the problem (P1).

6.A.2 Scaling the solution to (P1) to obtain an approximate

solution to (P2)

Next, we'd like to show that rescaling the solution s′, b′ to (P1) to satisfy the quadratic

power constraint in (P2) produces an approximate solution of (P2), meaning that the

linear constraints (6.28). This follows from the form of (6.28) and (6.29) in (P1):

scaling s → αs′ results in an equivalent problem with b → αb, L → αL (this would

not be the case if the constraint (6.28) were not homogeneous - if we did not use a 0

lower bound). Thus, scaling the solution of (P1) is equivalent to �nding the solution

to (P1) with some other upper bound for the L1 constraint (6.30). In particular, we

can scale the solution of (P1) so that it satis�es the power constraint of (P2). It

would be nice to estimate how close the solution of (P1) is to (P2).
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